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We consider a general class of problems of minimization of convex integral functionals (such as entropy
maximization) subject to linear constraints. Under general assumptions, the minimizers are characterized.
Our results improve previous literature on the subject in the following directions:

- necessary and sufficient conditions for the shape of the minimizers are proved

- without constraint qualification

- under infinitely many linear constraints subject to natural integrability conditions (no topological
restrictions).

This paper extends previous results of the author by relaxing some integrability conditions on the con-
straint. As a consequence, the minimizers may admit a singular component. Our proofs mainly rely on
convex duality.
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1. Introduction

In this article, we characterize the solutions to a general problem of minimization of an
energy functional under “badÔ linear constraints, see (3). This badness is a consequence of
a lack of integrability of the moment function defining the constraint. As a consequence,
the minimizers may exhibit a singular component. This characterization is obtained
without assuming any constraint qualification for a general linear constraint. In [18], the
author had already obtained the characterization of the minimizers under more integrable
constraints.

Let us begin describing the minimization problem.

The energy functional. Let (Ω,A, R) be a measure space where R is a nonnegative
σ-finite measure. Let U be a vector space of measurable functions u : Ω → IR and U∗ be
the space of all (algebraic) linear forms on U. We denote 〈`, u〉 ∈ IR the action of ` ∈ U∗

on u ∈ U. Let γ : IR → [0,∞] be a nonnegative convex function such that

γ(0) = 0 and lim
s→±∞

γ(s) = +∞.
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The energy functional to be minimized is

Φ∗(`) = sup
u∈U

{〈`, u〉 −
∫

Ω

γ(u(ω))R(dω)} ∈ [0,∞], ` ∈ U∗ (1)

It is the convex conjugate for the duality (U,U∗) of

Φ(u) =

∫

Ω

γ(u) dR ∈ [0,∞], u ∈ U.

Let us note that, as γ ≥ 0, Φ(u) is defined for every measurable function u (if A is rich
enough).

The constraints. Let a vector space X be given, together with a function ϕ : Ω → X .
The linear constraints subject to which Φ∗(`) will be minimized have the following form:
` ∈ U∗ is subject to “〈ϕ, `〉 = x" where x ∈ X . For instance, a finite number K of moment
constraints: 〈`, ϕk〉 = xk with ϕk ∈ U, xk ∈ IR, 1 ≤ k ≤ K, is expressed by 〈ϕ, `〉 = x

with ϕ = (ϕk)k≤K and x = (xk)k≤K ∈ X = IRK .

More generally, let us consider (X ,Y) a couple of vector spaces in separating duality such
that for each y ∈ Y, the application 〈y, ϕ〉 : ω ∈ Ω 7→ 〈y, ϕ(ω)〉Y,X ∈ IR stands in U. The
constraint 〈ϕ, `〉 = x signifies:

〈〈y, ϕ〉, `〉U,U∗ = 〈y, x〉Y,X ,∀y ∈ Y. (2)

The minimization problem. The general form of our minimization problem is

minimize ` ∈ U∗ 7→ Φ∗(`) subject to 〈ϕ, `〉 = x (3)

where Φ∗ is given at (1) and 〈ϕ, `〉 = x signifies (2). Let us note that we assumed

〈y, ϕ〉 ∈ U,∀y ∈ Y (4)

to insure the expression (2) to be meaningful.

The aim of this paper is to give a characterization of the minimizers of (3) without
constraint qualification, in situations where the constraint is “badÔ: that is when ϕ is not
very integrable. This characterization is the object of our main results: Theorems 3.2 and
3.4 which are stated in Section 3.

When the constraints are integrable enough, one expects the minimizers to be measures
which are absolutely continuous with respect to the reference measure R, see [18]. It will
be proved in this paper, that the lack of integrability of “badÔ constraints is responsible for
the coming out of a singular component of the minimizers (which is not even a measure!).

In order to make precise the notion of bad constraint at Section 2.3, we are going to
introduce at Section 2.1 an Orlicz space which is naturally associated with γ and we shall
present at Section 2.2 a simple example of entropy maximization. This example will allow
us to illustrate the notion of “bad constraintÔ and to motivate the study of (3) under a
bad constraint.

To characterize the minimizers, it is usual to identify them as subgradients of a convex
conjugate Φ of the objective function Φ∗. Since we do not require any constraint qual-
ification, to build Φ, we have to consider the richest duality involving U∗. This duality
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is (U∗, U∗∗) where U∗∗ is the algebraic bidual space of U. Indeed, the geometric version
of Hahn-Banach theorem insures that at any internal point of its effective domain, the
convex function Φ∗ has a nonempty algebraic subdifferential (in U∗∗, not requiring any a

priori topological regularity on the subgradients). Therefore, one has to compute Φ with
respect to this “saturated" duality. Fortunately, it appears that the effective domain of Φ∗

and its subdifferentials are included in topological dual spaces of Orlicz spaces naturally
associated with the integrand γ. This will allow us to obtain an explicit expression of Φ.
Our approach is described in details at Section 4.

About the literature. The problem (3) leads to solutions of some moment problems
under the additional constraint: Φ∗(`) < ∞, which implies in particular that ` is ab-
solutely continuous with respect to R, if ϕ is integrable enough (in a sense to be made
precise). Among others, let us refer to: [1-5], [8-10], [11], [14], [23], [26] and more recently
[7], [18] and [19].

The special case where Φ∗ corresponds to the relative entropy is of special interest and
is extensively studied in the literature. For more details on the relative entropy, see the
examples treated in Sections 2 and 6. It arises naturally in the theory of large deviations,
see [12], which is a part of probability theory that is mostly connected with statistical
physics and information theory. More precisely, the minimization problem (3) in this
context is a consequence of the contraction principle applied to an extended Sanov’s
theorem to obtain the usual statement of Cramér’s theorem (see [22], [21]). This is
closely related to the work of I. Csiszár about the generalized I-projections. Indeed, it
appears that the absolutely continuous part of the minimizers are precisely the generalized
I-projections which were discovered by I. Csiszár ([9], [10]). Another example is given
by the large deviations of renormalized Lévy processes (with very frequent and very
small jumps) in the situation where the Lévy kernel only integrates some (but not every)
exponential moments of the jumps (see [20]). Applying the contraction principle to the
renormalized underlying Poisson measures to obtain the large deviation principle for the
Lévy process, leads us to a minimization problem (3).

For an interesting connection between large deviations and energy minimization problems
under good constraints, the reader may have a look at [14] and [6], among others, and
[22] where bad constraints are considered.

Outline of the paper. The main results are stated in Section 3, they are Theorems 3.2
and 3.4. The method of their proofs is described in details at Section 4, and their proofs
are completed in Section 5. The notion of bad constraint is defined and illustrated in
Section 2. Simple illustrations of Theorem 3.4 are presented in Section 6. The proofs of
preliminary technical results are collected in the Appendix. In particular, the first section
of the Appendix is deserved to the statements of basic results on the duality of Orlicz
spaces.

2. Good and bad constraints. An example

Before giving a simple example, let us state some notations and introduce a natural Orlicz
space.

An Orlicz space. The natural domain of Φ is the set of all measurable functions u such
that

∫

Ω
γ(u) dR < ∞. In this paper, we shall not work with this natural domain, but
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with a smaller one which is the largest vector space contained in the cone with vertex 0
generated by the natural domain. It is the Orlicz space

Lγo := {u : Ω → IR;∃λ > 0,

∫

Ω

γo(λu) dR < ∞}

where
γo(s) := max(γ(s), γ(−s)), s ∈ IR

is a Young function, under our assumptions on γ. As the evaluation of Φ(u) is insensitive
to R-almost everywhere equality, we identify R-almost everywhere equal functions. We
assume that

U ⊂ Lγo . (5)

One shows with (5) that the effective domain dom Φ∗ = {` ∈ U∗; Φ∗(`) < ∞} is a
subset of the topological dual L′

γo of the Banach space Lγo endowed with the gauge norm:

‖u‖γo := inf{a > 0;
∫

Ω
γo(u/a) dR ≤ 1}. Because of (5), we obtain that Φ∗ is σ(L′

γo , Lγo)-
lower semicontinuous. We shall only consider σ(L′

γo , Lγo)-closed constraints since it is
assumed that ϕ satisfies

〈y, ϕ〉 ∈ Lγo ,∀y ∈ Y (6)

which is (4) with (5).

A simple example. (Entropy maximization). In what follows we do not go into the
details, such as the existence of the encountered integrals, and stay at a formal level.
Let R be a bounded nonnegative measure on Ω. We search a probability measure which
attains the infimum of

minimize Q 7→
∫

Ω

{dQ
dR

log
dQ

dR
− dQ

dR
+ 1} dR (P1)

subject to Q is a probability measure, Q ¼ R,

∫

Ω

ϕdQ = x+

∫

Ω

ϕdR

where ϕ : Ω → IR is measurable and x ∈ IR. Applying formally Lagrange multipliers
method, one gets a solution the form of which is (if it exists): Qy(dω) = exp(yϕ(ω) −
Λ(y))R(dω) where y ∈ IR satisfies x =

∫

Ω
ϕd(Qy − R) and Λ(y) := log

∫

Ω
eyϕ dR. But

∫

Ω
ϕdQy = Λ′(y), hence when dom Λ = (−∞, y∗] with Λ′(y∗) := x∗ < ∞ and x +

∫

Ω
ϕdR > x∗, (P1) has no solution.

Let us analyse this in our framework. Identifying Q with f = d(Q−R)
dR

, (P1) becomes

minimize f 7→
∫

Ω

γ∗(f) dR subject to

∫

Ω

f dR = 0 and

∫

Ω

ϕf dR = x (P2)

where γ∗(t) = (t + 1) log(t + 1) − t is the convex conjugate of γ(s) = es − s − 1.The
Young function γo is γo(s) = e|s| − |s| − 1, s ∈ IR. With U = Lγo , as R is bounded, (4) is:
∫

Ω
eα|ϕ| dR < ∞, for some α > 0. The energy functional is Φ∗(`) = supu∈Lγo

{〈`, u〉−Φ(u)}
with Φ(u) =

∫

Ω
(eu − u− 1) dR. As a consequence of the results of the present paper (see

Theorem 3.4), the problem

minimize ` ∈ L∗
γo 7→ Φ∗(`) subject to 〈`, 1〉 = 0 and 〈`, ϕ〉 = x (P3)
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has infinitely many solutions when x+
∫

Ω
ϕdR > x∗. These solutions are in dom Φ∗ ⊂ L′

γo

and L′
γo is decomposed (see Theorem 7.2) into L′

γo = Lγ∗
o
⊕ Ls

γo . This means that each

` ∈ L′
γo can be uniquely decomposed as ` = `a + `s where `a = d`a

dR
· R, d`a

dR
∈ Lγ∗

o
is the

absolutely continuous component of ` and `s, which is called the singular component of `,
is not a measure (it isn’t σ-additive, unless it is null). Moreover, it is shown in (12), that
for all ` ∈ dom Φ∗ ⊂ L′

γo , Φ
∗(`) =

∫

Ω
γ∗(d`

a

dR
) dR + sup{〈`s, u〉;u,Φ(u) < ∞}. This means

that (P3) is an extension of (P2). The main point is that, if
∫

Ω

eα|ϕ| dR

∫

Ω

eβ|ϕ| dR = ∞, for some 0 < α < β < ∞, (7)

then (P2) may not be attained while (P3) is. Let us note that if
∫

Ω

eλ|ϕ| dR < ∞,∀λ > 0, (8)

then (P2) is attained and the problems (P2) and (P3) are equivalent. Indeed, any singular
form `s is such that 〈`s, u〉 = 0, as soon as u satisfies (8) (see Proposition 7.3). In
particular, this implies that, although `s may not be null, its mass 〈|`s|, 1〉 = 0.

For additional details about this example, see Section 6 below.

Good and bad constraints. Considering the previous example, it appears that not
enough integrable constraints may generate minimizers with a singular component. Let
us be more precise and introduce the following vector subspace of Lγo

Mγo := {u : Ω → IR;∀λ > 0,

∫

Ω

γo(λu) dR < ∞}

Taking (7) and (8) into account, one says that the constraint function ϕ is good if

〈y, ϕ〉 ∈ Mγo ,∀y ∈ Y, (9)

and that it is bad if

ϕ satisfies (6) and ∃yo ∈ Y, 〈yo, ϕ〉 6∈ Mγo . (10)

If γo doesn’t satisfy the ∆2-condition (see (33)), Mγo is a proper subset of Lγo . A bad
constraint is not very integrable.

Let us notice that if (9) holds, one can choose U = Mγo which yields Φ∗(`) =
∫

Ω
γ∗( d`

dR
) dR

if ` ∈ Lγ∗
o
and +∞ otherwise. This gives the following problem, with f = d`

dR
:

minimize f ∈ Lγ∗
o
7→

∫

Ω

γ∗(f) dR = sup
u∈Mγo

{〈f, u〉 − Φ(u)} subject to

∫

Ω

fϕ dR = x (Px)

where
∫

Ω
fϕ dR = x means:

∫

Ω
f〈y, ϕ〉 dR = 〈y, x〉, for all y ∈ Y.

Only assuming (6), these integrals are still well defined as f ∈ Lγ∗
o
and 〈y, ϕ〉 ∈ Lγo : the

problem (Px) is meaningful. The following problem

minimize ` ∈ L∗
γo 7→ Φ∗(`) = sup

u∈Lγo

{〈f, u〉 − Φ(u)} subject to 〈`, ϕ〉 = x (P x)

is an extension of (Px). When (10) holds, it may happen that for some x, (Px) is not

attained. While (P x) is always attained in L′
γo ⊂ L∗

γo .
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3. The main results

We shall use basic results on the duality of Orlicz spaces. The interested reader may have
a look at the Appendix 7.1 where such results are collected. If L is an Orlicz space, let
us denote L∗ its algebraic dual space, L′ its topological dual space and Ls the space of all
continuous singular forms on L.

Recall that the integrand γ : IR → [0,∞] is a function which satisfies

γ is convex, lower semicontinuous, γ(IR) ⊂ [0,+∞], 0 < γ(−a) + γ(a) < ∞
for some a > 0 and γ(0) = 0.

(11)

The dual space L′
γo is decomposed as L′

γo = Lγ∗
o
⊕ Ls

γo . Writing this decomposition:
` = `a + `s, ` ∈ L′

γo , `
a ∈ Lγ∗

o
, `s ∈ Ls

γo , the objective function Φ∗ is given for any ` ∈ L∗
γo ,

by

Φ∗(`) =

{
∫

Ω
γ∗ (d`a

dR

)

dR + sup{〈`s, u〉 ; u ∈ U,Φ(u) < ∞} if ` ∈ L′
γo

+∞ otherwise.
(12)

where γ∗ is the convex conjugate of γ. This result is a direct consequence of ([17], Lemma
2.1) and Proposition 7.2. Note that Φ∗ is not strictly convex when the singular contribu-
tion is nontrivial. The primal problem

minimize ` ∈ L∗
γo 7→ Φ∗(`) subject to 〈`, ϕ〉 = x (P x)

admits the following formal dual problem

maximize y ∈ Y 7→ 〈x, y〉 −
∫

Ω

γ(〈y, ϕ〉) dR. (Dx)

Let us denote its value

Λ∗(x) = supDx = sup
y∈Y

{〈x, y〉 −
∫

Ω

γ(〈y, ϕ〉) dR}, x ∈ X

which is the convex conjugate for the duality (X ,Y) of Λ(y) :=
∫

Ω
γ(〈y, ϕ〉) dR, y ∈ Y .

We have proved in [19] that (P x) has at least one solution if and only if Λ∗(x) < ∞.

We shall say that x ∈ X is a subgradient constraint if Λ∗ is subdifferentiable at x for the
algebraic duality (X ,X ∗), that is if ∂Λ∗(x) := {η ∈ X ∗ ; ∀x′ ∈ X ,Λ∗(x′) ≥ Λ∗(x)+〈η, x′−
x〉} is not empty. Because of the geometric version of Hahn-Banach theorem, this holds
in particular when x belongs to the geometric relative interior of the effective domain of
Λ∗.

The case of an even integrand. To make our statements simpler, let us first assume
that γ is an even function. This restriction will be removed later on. The characterization
of the minimizers will be expressed in terms of dual parameters that are called admissible
dual parameters. Here is their definition.

Definition 3.1. (γ is even). Let z1 be a linear form on X . One says that (z1, ζ2) is an
admissible dual parameter, if the following properties are satisfied.
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1. 〈z1, ϕ〉 is a measurable function

2.
∫

Ω
γ(〈z1, ϕ〉) dR < ∞ and

∫

Ω
γ∗ ◦ γ′(〈z1, ϕ〉) dR < ∞

3. ζ2 stands in Ls′
γ

4. for all ε > 0, K ≥ 1, fk ∈ Lγ∗ , `k ∈ Ls
γ k ≤ K, there exists y ∈ Y such that

∫

Ω
γ(〈y, ϕ〉) dR < ∞ and for all k ≤ K, |

∫

Ω
(〈z1, ϕ〉 − 〈y, ϕ〉)fk dR| ≤ ε, |〈ζ2 −

〈y, ϕ〉, `k〉| ≤ ε.

Remarks.

• As γ is even, we have γ = γo.

• In 3, Ls′
γ is the topological dual space of Ls

γ endowed with the relative topology of
the uniform dual topology on L′

γ.

• Property 4 means that 〈z1, ϕ〉 ∈ Lγ and ζ2 ∈ Ls′
γ can be approximated simultane-

ously by some 〈y, ϕ〉’s in the effective domain of Φ with respect to the topologies
σ(Lγ, Lγ∗) and σ(Ls′

γ , L
s
γ), respectively.

To be able to characterize the solutions of (Px) at Theorem 3.2 below, we also need to
introduce a normal cone K(u, ζ). Let us describe it now.

Consider the equivalence relation on Lγ : u1 ∼ u2 ⇔ u1 − u2 ∈ Mγ. The quotient space
is Nγ := Lγ/Mγ. Because of the orthogonality property of Proposition 7.3, up to some
isomorphisms, Ls

γ is equal to N ′
γ and Nγ is a subset of Ls′

γ .

DenoteDγ = dom Φ = {u ∈ Lγ;
∫

Ω
γ(u) dR < ∞} andDγ = Dγ/Mγ ⊂ Nγ. The geometric

closure of Dγ is Dγ. As Dγ has a nonempty ‖ · ‖γ-interior, Dγ is also the ‖ · ‖γ-closure of

Dγ. The σ(Ls′
γ , L

s
γ)-closure of Dγ is denoted D

σ

γ .

For all u ∈ Lγ, ζ ∈ Ls′
γ , let us define

K(u, ζ) = {` ∈ L′
γ; 〈`, h〉 ≤ 0;∀h ∈ Lγ, u+ h ∈ Dγ, ζ + Úh ∈ D

σ

γ}

where Úh is the equivalence class of h. It is a σ(L′
γ, Lγ)-closed convex cone with vertex 0.

We are now ready to state our first main result. Let us denote S(x) the set of solutions

to (P x).

Theorem 3.2. (γ is even). Let us assume that γ satisfies (11) and is even.

The set of minimizers S(x) of (P x) is nonempty if and only if x ∈ dom Λ∗.

Let x be a subgradient constraint (in particular, this holds for any x in the geometric rel-
ative interior of dom Λ∗). One can associate with it an admissible dual parameter (z1, ζ2)
in the sense of Definition 3.1, such that

x =

∫

Ω

ϕγ′(〈z1, ϕ〉) dR + 〈ϕ, ˜̀〉, for some ˜̀∈ K(〈z1, ϕ〉, ζ2). (13)

Moreover, the set of all minimizers of (P x) is

S(x) = {γ′(〈z1, ϕ〉) ·R + ˜̀; ˜̀∈ K(〈z1, ϕ〉, ζ2) such that (13) holds}. (14)

Conversely, for any admissible dual parameter (z1, ζ2), x being defined by (13) is in
dom Λ∗. If in addition x is subgradient, then S(x) is given by (14).
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Of course, (13) means that for all y ∈ Y , 〈x, y〉 =
∫

Ω
〈y, ϕ〉γ′(〈z1, ϕ〉) dR + 〈〈y, ϕ〉, ˜̀〉, for

some ...

Finitely many constraints. Let us have a look at the special case of finitely many
constraints. This means that Y = X = IRd with 1 ≤ d < ∞ and ϕ = (ϕ1, . . . , ϕd) : Ω →
IRd is measurable. It is supposed that ϕi ∈ Lγo , for all 1 ≤ i ≤ d. A constraint is given
by: 〈ϕi, `〉 = xi ∈ IR, 1 ≤ i ≤ d. It will be proved (see the remark below Proposition 5.3)
that provided that γ is even (to simplify), the dual parameter (z1, ζ2) of any subgradient
constraint satisfies 〈z1, ϕ〉 = ζ2. More precisely,

〈z1, ϕ〉 ∈ Lγ 〈ζ2, `〉 = 〈〈z1, ϕ〉, `〉,∀` ∈ Ls
γ (15)

Saturated constraints. In the opposite direction, one may consider the saturated con-
straints ` = x ∈ X = L∗

γo , where Lγo is the function space corresponding to Lγ without
R-a.e. everywhere equality. This corresponds to ϕ : ω ∈ Ω 7→ δω ∈ X and Y = Lγo ,
since 〈y, ϕ(ω)〉 = y(ω) for any ω and 〈`, ϕ〉 = ` for any y ∈ Lγo , ` ∈ L∗

γo . To simplify,
let us suppose that γ is even. The set of admissible constraints is the domain of Φ∗ :
` is admissible if and only if ` ∈ L′

γ, Iγ∗(d`
a

dR
) < ∞ and δ∗(`s | dom Φ) < ∞. In this

situation, (z1, ζ2) is an admissible dual parameter in the sense of Definition 3.1 if and only

if z1 ∈ Lγ,
∫

Ω
γ(z1) dR < ∞,

∫

Ω
γ∗ ◦ γ′(z1) dR < ∞ and ζ2 ∈ D

σ

γ . As `
a = γ′(z1) · R and

`s ∈ K(z1, ζ2) may be chosen indepently to make ` = `a+`s admissible, the corresponding
dual parameters z1 and ζ2 are not linked to each other. For a similar behavior, see the
end of Section 6.

A more general integrand. When γ is not supposed to be even, the situation is techni-
cally more delicate to handle. One has to separate the positive and negative contributions
of the linear forms (see Propositions 4.4 and 4.5 below for more details). We are going
to state at Theorem 3.4 below a result, analogous to Theorem 3.2, in the case where γ
satisfies the following hypothesis. Let us denote

γ+(s) = γ(|s|) γ−(s) = γ(−|s|), s ∈ IR

and in addition to (11), let us assume that

[γ∗
+ is ∆2 γ+ is steep] [γ∗

−(κ−) < ∞ γ− is ∆2] (16)

where
κ− = lim

s→−∞
γ(s)/|s| > 0.

As a special important example, we think of the relative entropy (see Section 6) which
corresponds to γ∗(t) = (t + 1) log(t + 1) − t and γ(s) = es − s − 1, as already used at
Section 2.

Note that γ∗
−(κ−) = γ∗(−κ−) and that if R is a bounded measure and γ∗

−(κ−) < ∞, then
γ− is ∆2.

We have proved in [18] that in the case where γ∗
−(κ−) < ∞, infinite force fieldsmay be part

of the admissible dual parameters attached to the negative component of the minimizers
of (P x). On the contrary, as γ∗

+ is assumed to be ∆2, the representation of the positive
part of the minimizers doesn’t require any infinite force field. But, if γ+ is not ∆2, the
positive part of the minimizers may admit a singular component.
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To be able to state the characterization of S(x) under the assumption (16), we have to
recall the definition of a force field z1 +∞(n).

Let J be a totally ordered countable index set which admits a smaller element: [. We
consider a family (n) = (nj)j∈J of linear forms on X such that for each j, 〈nj, ϕ〉 is

measurable. For any j ∈ J , let us denote T j
+ = {〈nj, ϕ〉 > 0}

⋂

∩i<j{〈ni, ϕ〉 = 0} and

T j
− = {〈nj, ϕ〉 < 0}

⋂

∩i<j{〈ni, ϕ〉 = 0} with the convention:
⋂

i<[{〈ni, ϕ〉 = 0} = X , so

that T [
+ = {n[ > 0} and T [

− = {n[ < 0}. We define

S =
⋂

j∈J

{〈nj, ϕ〉 = 0}, T+ =
⋃

j∈J

T j
+ T− =

⋃

j∈J

T j
− (17)

Up to a R-negligible set, S, T+ and T− form a measurable partition of Ω.

Let us introduce a notation for the force fields. Let z1 be a measurable linear form on
X and (n) = (〈nj, ϕ〉)j∈J as above. We define the application 〈z1 + ∞(n), ϕ〉 : Ω →
[−∞,+∞], for any ω ∈ Ω, by

〈z1 +∞(n), ϕ(ω)〉 =











+∞ if ω ∈ T+

−∞ if ω ∈ T−

〈z1, x〉 if ω ∈ S.

It is a measurable application. If (n) = 0, z1 +∞(n) = z1 has no infinite value. We are
now ready to state the definition of an admissible dual parameter.

Definition 3.3. (γ satisfies (16)). Let z1 +∞(n) be a force field. Its infinite component:
∞(n), determines the measurable subsets S, T+ and T−, see (17). Its finite component z1
is a linear form on X .

Under assumption (16), (z1 +∞(n), ζ2) is said to be an admissible dual parameter, if the
following properties are satisfied.

1. 〈z1, ϕ〉 is a measurable function whose support is included in S
2.

∫

S γ(〈z1, ϕ〉) dR < ∞ and
∫

S γ
∗ ◦ γ′(〈z1, ϕ〉) dR < ∞

3. for any j ∈ J ,
∫

∩i<j{〈ni,ϕ〉=0}〈n
j, ϕ〉− dR < ∞

4. R(T−) < ∞ and R(T+) = 0

5. ζ2 ∈ Ls′
γ+

and ζ2 ≥ 0

6. for all ε > 0, K ≥ 1, fk ∈ Lγ∗
+
, gk ∈ Lγ∗

−
, `k ∈ Ls

γ+
, k ≤ K, there exists y ∈ Y such

that
∫

Ω
γ(〈y, ϕ〉) dR < ∞ and for all k ≤ K :

|
∫

S(〈z1, ϕ〉+ − 〈y, ϕ〉+)fk dR|+ |
∫

S(〈z1, ϕ〉− − 〈y, ϕ〉−)gk dR| ≤ ε
|〈ζ2 − 〈y, ϕ〉+, `k〉| ≤ ε

In the above definition, we have used the usual convention: f+ = max(f, 0) and f− =
max(−f, 0). Beware of the notational conflict with γ+ and γ−. We are now ready to state
our main result.

Theorem 3.4. Let us assume that γ satisfies (11) and (16).

The set S(x) is nonempty if and only if x is in dom Λ∗.

Let x be any such constraint. One can associate with it an admissible dual parameter
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(z1 +∞(n), ζ2) in the sense of Definition 3.3, such that

x =

∫

S
ϕγ′(〈z1, ϕ〉) dR− κ−

∫

T−
ϕdR + 〈ϕ, ˜̀〉, for some ˜̀∈ K(1IS〈z1, ϕ〉+, ζ2). (18)

The set of minimizers of (P x) is

S(x) =
{

[γ′(〈z1, ϕ〉)1IS−κ−1IT− ]·R+˜̀; ˜̀∈ K(1IS〈z1, ϕ〉+, ζ2) such that (18) holds
}

(19)

Moreover, S(x) is a σ(L′
γo , Lγo)-compact convex subset of L′

γo . All the elements of S(x)
share the same absolutely continuous part: [γ′(〈z1, ϕ〉)1IS −κ−1IT− ] ·R and have a nonneg-

ative singular part: ˜̀, in Ls
γ+
.

Furthermore, if x is a subgradient constraint (in particular if x is in the relative geometric
interior of dom Λ∗), no infinite force field enters its dual representation: S = Ω and
T− = ∅ up to R-negligible sets.

Conversely, for any admissible dual parameter (z1 + ∞(n), ζ2), x being defined by (18),
we have x ∈ dom Λ∗ and S(x) is given by (19).

The cones. We give below a description of the cone K(u, ζ) that arises in the dual
description of the minimizers at Theorems 3.2 and 3.4.

Let us denote for any u ∈ Dγ and ζ ∈ D
σ

γ :

K1(u) = {` ∈ L′
γ ; 〈`, h〉 ≤ 0,∀h ∈ Lγ, u+ h ∈ dom Iγ}

K2(ζ) = {` ∈ L′
γ ; 〈`, h〉 ≤ 0,∀h ∈ Lγ, ζ + Úh ∈ D

σ

γ}

These are σ(L′
γ, Lγ)-closed convex cones with vertex 0. K1(u) and K2(ζ) are respectively

the polar cones (for the duality (L′
γ, Lγ)) of the cones: {h ∈ Lγ ; ∃t > 0, u+ th ∈ dom Iγ}

and {h ∈ Lγ ; ∃t > 0, ζ + t Úh ∈ D
σ

γ}. More,

K(u, ζ) = cl(K1(u) +K2(ζ))

where the closure is in σ(L′
γ, Lγ). For a proof of this equality, see ([Ro2], Corollary 16.4.2).

The following proposition specifies the “supportsÔ of the elements of K(u, ζ).

Proposition 3.5. Let u ∈ Dγ be such that u ≥ 0. Then, ` ∈ K1(u) if and only if ` ≥ 0

and for all h ∈ Lγ, (h ≥ 0 and ∃t > 0, u+ th ∈ Dγ) ⇒ 〈`, h〉 = 0.

Let ζ ∈ D
σ

γ be such that ζ ≥ 0. Then, ` ∈ K2(ζ) if and only if ` ≥ 0 and for all h ∈ Nγ,

(h ≥ 0 and ∃t > 0, ζ + th ∈ D
σ

γ) ⇒ 〈`, h〉 = 0.

Let us assume that the function γ∗ is stricly convex at infinity, or equivalently that γ is
steep. Then, for any u ∈ Dγ and ζ ∈ D

σ

γ , K(u, ζ), K1(u) and K2(ζ) are subsets of Ls
γ :

their elements are singular.

4. The method of proof

The approach is classical: If ` is such that ∂Φ∗(`) is nonempty, we pick some ζ in ∂Φ∗(`) to

obtain ` ∈ ∂Φ(ζ), where Φ is a convex conjugate of Φ∗. Therefore, ζ is our dual parameter
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and ` ∈ ∂Φ(ζ) is a representation of `. Now, if ` is a minimizer of Φ∗ under a linear
constraint, ζ must have a special form connected with the constraint. With the formal
Lagrange multipliers method in mind, one expects that ζ must be something like a linear
combination of the components of the constraint function ϕ. As a prototype, let us think
of ζ = 〈y, ϕ〉 for some y ∈ Y . Of course, if Y separates X , but is a “smallÔ space, one
cannot expect that the 〈y, ϕ〉’s will dually describe all the minimizers (for all admissible
constraints x.) Nevertheless, one can guess that the 〈y, ϕ〉’s will be dense (in some sense)
in the set of all admissible dual parameters. This means that the dual problem is usually
not attained, but that one can expect that the maximizing (generalized) sequences of y’s
are convergent in some sense.

But the implementation is unusual: Since we do not assume any constraint qualification
and we do not seek approximations of the dual parameters but exact (nonasymptotic)
dual representations of the minimizers, our strategy is to consider the algebraic duality
(U∗, U∗∗), so that the ζ’s are attained in U∗∗ (without approximating them by maximizing
sequences of the dual problem) for all the “internalÔ constraints, and even other ones (the
so-called subgradient constraints). Of course, in such a program, the difficult task is to

compute the convex conjugate Φ of Φ∗ for the duality (U∗, U∗∗).

An abstract solution. To describe the linear constraints, let us introduce the following
vector space of “prototypesÔ of the dual parameters:

V = {〈y, ϕ〉; y ∈ Y}.

Because of assumption (4), we have V ⊂ U. The algebraic dual and bidual spaces of V
are denoted by V ∗ and V ∗∗.

Let us consider the relations between the vector spaces. We define the equivalence relation
on U∗ : ` ∼ `′ for any `, `′ ∈ U∗ if and only if `(u) = `′(u),∀u ∈ V. In other words:
` ∼ `′ ⇐⇒ `V = `′V . We identify V ∗ with the factor space:

V ∗ = U∗/ ∼

and Ú̀ ∈ V ∗ stands for the equivalence class of ` ∈ U∗. Therefore, one can identify V ∗∗

with a vector subspace of U∗∗ : V ∗∗ ⊂ U∗∗ as follows. For any ζ ∈ U∗∗,

ζ ∈ V ∗∗ ⇐⇒
(

∀`, `′ ∈ U∗, ` ∼ `′ =⇒ 〈ζ, `− `′〉 = 0
)

.

We are going to solve the minimization problem:

minimize Φ∗(`) subject to ` ∈ α (20)

with α ∈ V ∗. Since α is an affine subspace of U∗, ` ∈ α is a linear constraint. In order to
solve it, let us introduce the restriction Ψ of Φ to V ⊂ U :

Ψ : u ∈ V 7→ Φ(u) ∈ [0,∞].

Its conjugate is

Ψ∗ : α ∈ V ∗ 7→ sup
u∈V

{〈α, u〉 − Φ(u)} ∈ [0,∞].
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The convex biconjugate of Φ is

Φ : ζ ∈ U∗∗ 7→ sup
`∈U∗

{〈ζ, `〉 − Φ∗(`)} ∈ [0,∞].

Let us introduce the following algebraic subdifferentials:

∂Ψ∗(α) = {ζ ∈ V ∗∗ ; Ψ∗(α+ η) ≥ Ψ∗(α) + 〈ζ, η〉,∀η ∈ V ∗}, α ∈ dom Ψ∗.

∂Φ(ζ) = {` ∈ U∗ ; Φ(ζ + u) ≥ Φ(ζ) + 〈`, u〉,∀u ∈ U}, ζ ∈ dom Φ

Notice that in the definition of ∂Φ(ζ), the increment u stands in U, rather than in U∗∗.

Theorem 4.1. Suppose that the following dual equality holds:

Ψ∗(α) = inf{Φ∗(`); ` ∈ α} for all α ∈ V ∗. (21)

Then, for any α ∈ V ∗ such that Ψ∗(α) < ∞ and ∂Ψ∗(α) 6= ∅, we have:

S(α) = α ∩ ∂Φ(ζ),∀ζ ∈ ∂Ψ∗(α),

where S(α) is the set of solutions to (20).

Remarks.

• As V ∗∗ ⊂ U∗∗, Φ(ζ) is meaningful for every ζ ∈ V ∗∗ and in particular for ζ ∈
∂Ψ∗(α) ⊂ V ∗∗.

• The main interest of this result is that any α in ridom Ψ∗ satisfies ∂Ψ∗(α) 6= ∅.
This is a consequence of the geometric version of Hahn-Banach’s theorem. It is the
reason why algebraic duality is considered here.

• Theorem 4.1 is general: U may be any vector space, Φ may be any [0,∞]-valued
convex function on U and V may be any subspace of U.

The main statement of our abstract result stated at Theorem 4.2 below, is a consequence
of this result.

Theorem 4.2. For any x ∈ X , S(x) is nonempty if and only if x stands in dom Λ∗.

The set of solutions S(x) is a convex σ(L′
γo , Lγo)-compact subset of L′

γo .

For any subgradient constraint x ∈ X , we have

S(x) = αx ∩ ∂Φ(ζ),∀ζ ∈ ∂Ψ∗(αx),

where for any x ∈ X , αx in V ∗ is defined by: 〈αx, 〈y, ϕ〉〉V ∗,V = 〈x, y〉X ,Y for all y ∈ Y.

The biconjugate of Ψ. As ζ ∈ ∂Ψ∗(α), and ∂Ψ∗(α) ⊂ dom Ψ where Ψ is the convex
conjugare of Ψ∗ for the duality (V ∗, V ∗∗), the dual parameters of interest stand in the

effective domain of Ψ. In ([17], Proposition 3.3), it is proved that, provided that the dual
equality (21) holds, for any ζ ∈ V ∗∗, we have

Ψ(ζ) =

{

Φ(ζ) if ζ ∈ V

+∞ otherwise
(22)
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where V is the σ(U∗∗, U∗)-closure of V.

The expression of Φ when γ is even. In the situation where γ is even, we have shown
in ([17], Lemma 2.1) that the effective domain of Φ is a subset of the topological bidual
L′′
γ of the Orlicz space Lγ. This will allow us to invoke convex duality results for integral

functionals on Orlicz spaces (see Proposition 7.2) to obtain the expression of Φ stated at
Proposition 4.3 below.

The appearence of Orlicz space structures is not an artefact. The topological structures
of Lγ, L

′
γ, and L′′

γ do not carry more information than the geometrical structures of U,

U∗ and U∗∗, that are needed to perform the convex duality giving rise to Φ∗ and Φ. In
fact, it is proved in [17] that, provided that γ is even, dom Φ∗ ⊂ L′

γ, dom Φ ⊂ L′′
γ and

the geometric interiors of these domains are their respective Orlicz-topological interiors.
This means that the relevent algebraic linear forms share some regularity property: they
are continuous with respect to some Orlicz topologies.

For any ζ in the algebraic dual space L′∗
γ of L′

γ, let us denote the restrictions

ζ1 = ζLγ∗
∈ L∗

γ∗ ζ2 = ζLs
γ
∈ Ls

γ
∗. (23)

If ζ1 is continuous on Lγ∗ , its decomposition into absolutely continuous and singular
components is ζ1 = ζa1 + ζs1 , with ζa1 ∈ Lγ and ζs1 ∈ Ls

γ∗ .

Proposition 4.3. Let us assume that γ is even. Then for any ζ ∈ U∗∗,

Φ(ζ) =

{

Φ(dζ
a
1

dR
) + sup{〈ζs1 , f〉; f,

∫

Ω
γ∗(f)dR < ∞}+ δ(ζ2 | D

σ

γ) if ζ ∈ L′′
γ

∞ otherwise

Moreover, D
σ

γ is norm bounded in Ls
γ
′ and δ∗(` | Dγ) < ∞ for all ` in Ls

γ, where Dγ is
the ‖ · ‖γ-closure of Dγ in Nγ.

How to compute Φ∗ when γ is not even. In this situation, let us consider the Young
functions

γ+(s) = γ(|s|) γ−(s) = γ(−|s|), s ∈ IR,

and the associated integral functionals Φ+ and Φ− defined on U = Lγo = Lγ+ ∩Lγ− where
γo = max(γ+, γ−) as in Section 2.

Let us recall that there is a natural order on the algebraic dual space E∗ of a Riesz vector
space E which is defined by: e∗ ≤ f ∗ if and only if 〈e∗, e〉 ≤ 〈f ∗, e〉 for any e ∈ E with
e ≥ 0. A linear form e∗ ∈ E∗ is said to be relatively bounded if for any f ∈ E, f ≥ 0,
we have sup

e ; |e|≤f

|〈e∗, e〉| < +∞. Although E∗ may not be a Riesz space in general, the

vector space: Eb, of all the relatively bounded linear forms on E is always a Riesz space.
In particular, the elements of Eb admit a decomposition in nonnegative and nonpositive
parts e∗ = e∗+ − e∗−.

We have proved in ([17], Proposition 4.4) the following result.

Proposition 4.4. For any ζ ∈ U∗∗, Φ(ζ) = Φ+(ζ+) + Φ−(ζ−) if ζ ∈ L′b
γo and Φ(ζ) = ∞

otherwise, where L′b
γo ⊂ U∗∗ stands for the subspace of relatively bounded linear forms on

L′
γo : ζ ∈ U∗∗ belongs to L′b

γo if its restriction to L′
γo ⊂ U∗ is relatively bounded.
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Remarks.

• Since the domains of Φ∗ (dom Φ∗ ⊂ L′
γo) and Φ consist of relatively bounded forms,

one can consider their decompositions into nonnegative and nonpositive parts.

• As Φ(ζ) only depends on the restriction of ζ ∈ U∗∗ to L′
γo ⊂ U∗ (see [17], Lemma

4.6), the above expression of Φ(ζ) is unambiguous.

Because of Theorem 4.2, one needs to compute the subdifferential ∂Φ(ζ).

Proposition 4.5. For any ` ∈ ∂Φ(ζ) with ζ ∈ dom Φ, we have ` ∈ Lb
γo and ζ ∈ L′b

γo . In
particular, ` and ζ admit positive and negative components.

Moreover, `+ ∈ ∂Φ+(ζ+) `− ∈ ∂Φ−(ζ−).

As γ+ and γ− are even functions, Propositions 4.3, 4.4 and 4.5 lead us to the complete
expression of Φ and of its subgradients.

Remarks. For the decomposition Φ(ζ) = Φ+(ζ+) + Φ−(ζ−) at Proposition 4.4 to hold,

it is necessary that γ(0) = 0. And for the decomposition `+ ∈ ∂Φ+(ζ+) `− ∈ ∂Φ−(ζ−) at
Proposition 4.5 to hold, it is necessary that in addition γ is nondecreasing on [0,∞) and
nonincreasing on (−∞, 0]. This is the reason why we have assumed that γ is normalized
as in (11).

5. The proofs

In this section, we give the proofs of Theorems 3.2, 3.4 and Proposition 3.5.

We shall use the notations ζ1, ζ
a
1 , ζ

s
1 and ζ2 introduced at (23). Let us introduce the

notations

Iγ(u) =

∫

Ω

γ(u) dR(= Φ(u)) Iγ∗ =

∫

Ω

γ∗(f) dR

for the integral functionals associated with γ and γ∗.

Proof of Theorem 3.2. Theorem 3.2 is a direct consequence of Theorem 4.2 and Propo-
sitions 5.2 and 5.3 below.

In this section, it is assumed that γ is even.

We shall need Lemma 5.1 to prove Proposition 5.2.

For any ` ∈ L∗
γ, ` belongs to ∂Φ(ζ) if and only if for all u ∈ Lγ, Φ(ζ + u)−Φ(ζ) ≥ 〈`, u〉.

By Proposition 4.3, for all u ∈ Lγ, ζ ∈ dom Φ, Φ(ζ + u)− Φ(ζ) = Iγ(ζ
a
1 + u)− Iγ(ζ

a
1 ) +

δ∗((ζ1 + u)s | dom Iγ∗)− δ∗(ζs1 | dom Iγ∗)+ δ(ζ2 + u | Dσ

γ)− δ(ζ2 | D
σ

γ). But (ζ1 + u)s = ζs1
for all u ∈ Lγ. Hence, the difference of δ

∗ vanishes. As Φ(ζ) < ∞, we have: δ(ζ2 | D
σ

γ) = 0.

It comes out that for all u ∈ Lγ, ζ ∈ dom Φ,

Φ(ζ + u)− Φ(ζ) = Iγ(ζ
a
1 + u)− Iγ(ζ

a
1 ) + δ(ζ2 + u | Dσ

γ). (24)

Lemma 5.1. Let ζ ∈ dom Φ be such that ∂Φ(ζ) is nonempty.

(a) We have 0 ≤
∫

Ω
ζa1γ

′(ζa1 ) dR < ∞ and 0 ≤
∫

Ω
γ∗ ◦ γ′(ζa1 ) dR < ∞. In particular,

∫

Ω
uγ′(ζa1 ) dR is meaningful for any u ∈ Lγ.
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(b) For any u ∈ Lγ such that ζa1+tou ∈ dom Iγ for some to > 0, we have: limt↓0
1
t
[Iγ(ζ

a
1+

tu)− Iγ(ζ
a
1 )] =

∫

Ω
uγ′(ζa1 ) dR.

Proof. (a) is ([18], Lemma 3.2), noting that its proof still holds when γ is not finite and
the restrictive assumption (3.1) in [18] is useless for this result.

(b) Let us introduce gt = [γ(ζa1 +tu)−γ(ζa1 )−tuγ′(ζa1 )]/t, t > 0. As γ is a convex function,
t 7→ gt is nondecreasing and limt↓0 gt = 0. The result follows from (a) and the dominated
convergence theorem.

With this lemma in hand, we are going to prove the following result.

Proposition 5.2. Let ζ ∈ dom Φ be such that ∂Φ(ζ) is nonempty. Then, ∂Φ(ζ) =
γ′(ζa1 ) ·R +K(ζa1 , ζ2).

Proof.
1. Let us show that ∂Φ(ζ) ⊂ γ′(ζa1 )·R+K(ζ). Let ` ∈ ∂Φ(ζ).We denote `′ = `−γ′(ζa1 )·R ∈
L′
γ. Then, by (24), for all t > 0 and u ∈ Lγ : 1

t
[Φ(ζ+tu)−Φ(ζ)] = 1

t
[Iγ(ζ

a
1 +tu)−Iγ(ζ

a
1 )]+

1
t
δ(ζ2+ tu | Dσ

γ) ≥ 1
t
〈`, tu〉 = 〈`, u〉 =

∫

Ω
uγ′(ζa1 ) dR+ 〈`′, u〉. But for any u ∈ Lγ such that

ζa1 +tou ∈ dom Iγ for some to > 0, we have by Lemma 5.1: limt→0
1
t
[Iγ(ζ

a
1 +tu)−Iγ(ζ

a
1 )] =

∫

Ω
uγ′(ζa1 ) dR. Therefore, lim inft→0

1
t
δ(ζ2 + tu | Dσ

γ) ≥ 〈`′, u〉. In particular, `′ satisfies

〈`′, u〉 ≤ 0 for all u ∈ Lγ such that ζa1 + u ∈ dom Iγ and ζ2 + Úu ∈ D
σ

γ . (25)

2. Let us prove the converse inclusion: ∂Φ(ζ) ⊃ γ′(ζa1 ) · R +K(ζ). Let ` = γ′(ζa1 ) · R + `′

where `′ satisfies (25). By (24), for any u ∈ Lγ such that ζa1 +u ∈ dom Iγ and ζ2+ Úu ∈ D
σ

γ ,

we have: Φ(ζ + u) − Φ(ζ) ≥
∫

Ω
uγ′(ζa1 ) dR ≥

∫

Ω
uγ′(ζa1 ) dR + 〈`′, u〉 = 〈`, u〉. The first

inequality is a consequence of Lemma 5.1, the second one follows from 〈`′, u〉 ≤ 0.

On the other hand, if u ∈ Lγ is such that ζa1+u 6∈ dom Iγ or ζ2+ Úu 6∈ D
σ

γ , then Φ(ζ+u) = ∞
and the above inequality is trivial. Therefore, for all u ∈ Lγ, Φ(ζ+u)−Φ(ζ) ≥ 〈`, u〉.

By (22), we have dom Ψ = V ∩ dom Φ with dom Φ ⊂ U∗∗ and V the σ(U∗∗, U∗)-closure
of V in U∗∗. For any ζ ∈ U∗∗, one writes ζ ∈ L′′

γ to signify that the restriction to L′
γ of ζ

stands in L′′
γ. More, we have: for all ζ, ξ ∈ U∗∗, if ζ and ξ match on L′

γ, then Φ(ζ) = Φ(ξ).

Therefore, we can identify any element of dom Φ with its restriction to L′
γ : dom Φ ⊂ L′′

γ.

As Ψ is the “restrictionÔ of Φ to V , we also have: for all ζ, ξ ∈ U∗∗, if ζ and ξ match on

L′
γ, then Ψ(ζ) = Ψ(ξ). Hence, one can identify dom Ψ with dom Φ∩ ˜V ⊂ L′′

γ, where ˜V is

the σ(L′′
γ, L

′
γ)-closure of V in L′′

γ. It is clear that for any ζ ∈ dom Φ, ζa1 ∈ dom Iγ ⊂ Lγ

and ζ2 ∈ D
σ

γ ⊂ Ls
γ. Taking these identifications into account, we have shown the following

Proposition 5.3. For all ζ ∈ U∗∗, we have: ζ ∈ dom Ψ and ζs1 = 0 if and only if

ζ1 ∈ dom Iγ, ζ2 ∈ D
σ

γ and for all ε > 0, K ≥ 1, f1, . . . , fK ∈ Lγ∗ , `1, . . . , `K ∈ Ls
γ, there

exists v ∈ V such that
∑

k≤K |
∫

Ω
(v − ζ1)fk dR|+ |〈`k, (v − ζ2)〉| ≤ ε.

In ([18], Lemma 3.1), it is proved that ζ1 can be written as ζ1 = 〈z1, ϕ〉 for some z1 ∈ X ∗.
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Remark. In the case of finitely many constraints, we have V = V . Therefore, ζ1 = ζ2 = v
for some v in V.

Proof of Theorem 3.4. Theorem 3.4 is a direct consequence of Theorem 4.2, Proposi-
tions 4.4 and 4.5, for the abstract approach; and of Theorems 3.2 and Theorem 5.5 (stated

below), for the application in function spaces. The statement that the ˜̀’s are singular, is
proved at Lemma 5.6 below.

Theorem 5.5 is proved in [18]. We recall it for the convenience of the reader. We first
need a definition.

Definition 5.4. Let z1+∞(n) be a force field. Its infinite component: ∞(n), determines
the measurable subsets S, T+ and T− (see (17)). Its finite component z1 is a linear form
on X .

Under the assumption that γ is even and γ∗(γ′(∞)) < ∞, z1 + ∞(n) is said to be an
admissible dual parameter, if the following properties are satisfied.

1. 〈z1, ϕ〉 is a measurable function whose support is included in S.
2.

∫

S γ(〈z1, ϕ〉) dR < ∞ and
∫

S γ
∗ ◦ γ′(〈z1, ϕ〉) dR < ∞

3. for any j ∈ J , there exists α > 0 such that
∫

∩i<j{ni=0} γ(α〈n
j, ϕ〉) dR < ∞

4. R(T+) < ∞ and R(T−) < ∞
5. for all ε > 0, K ≥ 1, fk ∈ Lγ∗ , k ≤ K, there exists y ∈ Y such that

∫

Ω
γ(〈y, ϕ〉) dR <

∞ and for all k ≤ K, |
∫

S(〈z1, ϕ〉 − 〈y, ϕ〉)fk dR| ≤ ε

With this definition in hand, we can state the following result.

Theorem 5.5. (γ is an even function). Let us assume that γ∗(γ′(∞)) < ∞.

Let x be any admissible constraint. One can associate with it an admissible dual parameter
z̄1 = z1 +∞(n), in the sense of Definition 5.4, such that

x =

∫

Ω

ϕγ′(〈z̄1, ϕ〉) dR (26)

Moreover, the set of minimizers is

S(x) = {γ′(〈z̄1, ϕ〉) ·R} (27)

Conversely, for any admissible force field z̄1, x being defined by (26), we have Λ∗(x) < ∞
and S(x) is given by (27).

Furthermore, any admissible constraint is interior if and only if the force field is finite
R-a.e..

Proof. See ([18], Theorems 4.4 and 4.5).

If x stands in the relative geometric interior of the effective domain of Λ∗, z̄1 = z1 has no
infinite component. If it stands on the geometric boundary of the effective domain of Λ∗,
the field of ordered collections of outward normal vector (n) characterizes the minimal
face of the boundary on which x stands. Note that x is in the relative geometric interior
of this face and z1 characterizes x in this face. For more details, see ([18], Section 4).
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Proof of Proposition 3.5. The last statement of Proposition 3.5 is Lemma 5.6. Its
first and second statements are respectively Proposition 5.10 and 5.12, that we are going
to prove. Lemmas 5.7, 5.9 and Corollary 5.8 are preliminary results for the proof of
Proposition 5.10; Lemma 5.11 is a preliminary result for the proof of Proposition 5.12.

Lemma 5.6. The function γ∗ is stricly convex at infinity if and only if γ is steep.

If γ is even and steep, for any ζ ∈ dom Φ such that ∂Φ(ζ) is nonempty, we have: K(ζ) ⊂
Ls
γ.

Proof. The first statement is easy.

Suppose that there exists k ∈ K(ζ) such that k is absolutely continuous and different from
zero. Because of Proposition 5.2, for all t ≥ 0, `t = γ′(ζa1 ) ·R+ tk is absolutely continuous

and belongs to ∂Φ(ζ). With (12), we obtain: Φ∗(`t) =
∫

Ω
γ∗(γ′(ζa1 )+t dk

dR
) dR < ∞, ∀t ≥ 0.

On the other hand, `0, `t ∈ ∂Φ(ζ) implies that Φ∗(`t) = Φ∗(`0) + 〈ζ, `t − `0〉 = Φ∗(`0) +
t〈ζ, k〉, ∀t ≥ 0. These two expressions of Φ∗(`t) imply that γ∗ is affine at infinity.

Let us go on with some considerations about the gauge function of Dγ. As the geometric

and topological closures of Dγ are equal, the gauge functions of Dγ and Dγ are equal.

We have: pDγ
(u) = inf{λ > 0 ; u/λ ∈ Dγ}, for any u ∈ Lγ. As the ‖ · ‖γ-interior of Dγ

is nonempty, pDγ
(u) is finite for all u ∈ Lγ. Note that pDγ

(u) ≤ 1 ⇔
∫

Ω
γ(u/λ) dR <

∞,∀λ > 1 ⇔ u ∈ Dγ.

We derive a description of K1(u), which is stated at Proposition 5.10 below.

Lemma 5.7. Let u ∈ Dγ, u ≥ 0. For all h ∈ Lγ, h ≥ 0, there exists to > 0 which only

depends on h such that u− toh belongs to Dγ.

Proof. For any t > 0, λ > 1,
∫

Ω
γ(u−th

λ
) dR ≤

∫

Ω
γ( (u−th)+

λ
) dR +

∫

Ω
γ((u − th)−) dR ≤

∫

Ω
γ(u/λ) dR +

∫

Ω
γ(th) dR. But

∫

Ω
γ(u/λ) dR < ∞ and

∫

Ω
γ(toh) dR < ∞ for to > 0

small enough. Therefore, for all λ > 1,
∫

Ω
γ(u−toh

λ
) dR < ∞. That is pDγ

(u − toh) ≤ 1,
which is the desired result.

Corollary 5.8. For any u ∈ Dγ and ` ∈ L′
γ, we have: (u ≥ 0 and ` ∈ K1(u)) ⇒ ` ≥ 0.

Proof. For all h ∈ Lγ, h ≥ 0, with Lemma 5.7, we have: u− toh ∈ Dγ. As ` ∈ K1(u), we
get 〈`,−toh〉 ≤ 0. Hence, 〈`, h〉 ≥ 0.

Lemma 5.9. Let u ∈ Dγ and w ∈ Lγ be such that u+ w ∈ Dγ, then: u+ w+ ∈ Dγ.

Proof. For all λ > 1, we have:
∫

Ω
γ(u/λ) dR < ∞,

∫

Ω
γ(u+w

λ
) dR < ∞ and

∫

{w≥0} γ(
u+w+

λ
) dR =

∫

{w≥0} γ(
u+w
λ

) dR ≤
∫

Ω
γ(u+w

λ
) dR. Hence,

∫

Ω
γ(u+w+

λ
) dR =

∫

{w≥0} γ(
u+w+

λ
) dR +

∫

{w<0} γ(
u+w+

λ
) dR =

∫

{w≥0} γ(
u+w+

λ
) dR +

∫

{w<0} γ(u/λ) dR ≤
∫

Ω
γ(u+w

λ
) dR +

∫

Ω
γ(u/λ) dR < ∞. That is pDγ

(u + w+) ≤ 1 which is the desired re-
sult.

Proposition 5.10. Let u ∈ Dγ, u ≥ 0. Then, ` ∈ K1(u) if and only if ` ≥ 0 and for all

h ∈ Lγ, (h ≥ 0 and ∃t > 0, u+ th ∈ Dγ) ⇒ 〈`, h〉 = 0.
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Proof. - Necessary condition. Let ` ∈ K1(u). We have: u + th ∈ Dγ ⇒ 〈`, th〉 ≤ 0 ⇒
〈`, h〉 ≤ 0. As ` ≥ 0 (Corollary 5.8) and h ≥ 0, we also obtain 〈`, h〉 ≥ 0, which proves
〈`, h〉 = 0.

- Sufficient condition. Let w be such that u + w ∈ Dγ. Because of Lemma 5.9, we have

u+w+ ∈ Dγ. Together with our assumption, this yields 〈`, w+〉 = 0. Therefore, as ` ≥ 0 :
〈`, w〉 = 〈`, w+〉 − 〈`, w−〉 = −〈`, w−〉 ≤ 0. Hence, ` ∈ K1(u).

We derive a description of K2(ξ), which is stated at Proposition 5.12 below.

Recall that Dγ is the ‖ · ‖γ-closure of Eγ := { Úu ∈ Nγ ; u ∈ Dγ} in Nγ. It is a convex set.
Indeed, Eγ is the image of the convex set Dγ by the canonical projection u 7→ Úu. As the

‖ · ‖γ-interior of Dγ is nonempty, the gauge functions of Eγ and Dγ are equal. This gauge

function is pDγ
(v) = inf{λ > 0 ; v/λ ∈ Dγ} = infu∈v,u∈Lγ inf{λ > 0 ;

∫

Ω
γ(u/λ) dR <

∞}, v ∈ Nγ. It is finite for all v ∈ Nγ.

From now on, any equivalence class v ∈ Nγ is identified with one of its element v ∈ Lγ.

Lemma 5.11. Let us denote D
+

γ = {v ∈ Dγ ; v ≥ 0} ⊂ Nγ and D
σ+

γ = {ξ ∈ D
σ

γ ; ξ ≥
0} ⊂ Ls′

γ . The set D
+

γ is σ(Ls′
γ , L

s
γ)-dense in D

σ+

γ .

Proof. (Ad absurdum). Let ξ ∈ D
σ+

γ be isolated from the closed convex set D
+

γ . By

Hahn-Banach’s theorem, there exists `o ∈ Ls
γ which separates ξ from D

+

γ : ∀v ∈ D
+

γ ,

〈`o, v〉 ≤ α < 〈`o, ξ〉. Since for all v ≥ 0, 〈`+o , v〉 = sup{〈`o, w〉 ; 0 ≤ w ≤ v}, we have:
supv∈Dγ

〈`+o , v〉 = sup
v∈D+

γ
〈`o, v〉 ≤ α < 〈`o, ξ〉 = 〈`+o , ξ〉 − 〈`−o , ξ〉 ≤ 〈`+o , ξ〉. This is a

contradiction, since ξ ∈ D
σ

γ and `+o ∈ Ls
γ.

Proposition 5.12. Let ξ ∈ D
σ

γ , ξ ≥ 0. Then, ` ∈ K2(ξ) if and only if ` ≥ 0 and for all

h ∈ Nγ, (h ≥ 0 and ∃t > 0, ξ + th ∈ D
σ

γ) ⇒ 〈`, h〉 = 0.

Proof. The analogues of Lemma 5.7, Corollary 5.8, Lemma 5.9 and Proposition 5.10 hold
mutatis mutandi for (K2(ξ), Dγ, Nγ) instead of (K1(u),Dγ, Lγ). Let us call them Lemma
5.7’,. . . Thanks to Lemmas 5.7’ and 5.11’, we obtain the following extension of Lemma
5.7’: Let ξ ∈ D

σ

γ , ξ ≥ 0, for all h ∈ Nγ, h ≥ 0, there exists to > 0 such that ξ − toh ∈ D
σ

γ .

As in Corollary 5.8’, it follows that ` ∈ K2(ξ), whenever ` ≥ 0.

As Dγ is dense in D
σ

γ , by Lemma 5.9’, we obtain the following extension of Lemma 5.9’:

Let ξ ∈ D
σ

γ and w ∈ Nγ be such that ξ + w ∈ D
σ

γ , then, ξ + w+/2 ∈ D
σ

γ . One considers
w/2 rather than w to insure the existence of a generalized sequence (vα) which converges

towards ξ with vα ∈ Dγ and vα + w/2 ∈ Dγ. One completes the proof of the proposition
as in Proposition 5.10’.

6. Examples

For the sake of clarity, we present easy examples of entropy maximisation. Let R be
a probability measure on Ω. As already noticed at Section 2, entropy corresponds to
γ(s) = es−s−1. Let γo(s) = e|s|−|s|−1 and ρ∗(t) = t log t− t+1 with dom ρ∗ = [0,∞).
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We are interested in the minimisation of the extended relative entropy, defined for all
k ∈ L∗

γo , by

I(k) =

{
∫

Ω
ρ∗(dk

a

dR
) dR + sup{〈ks, u〉;u,

∫

Ω
eu dR < ∞} if ` ∈ L′

γo

+∞ otherwise

In the case where 〈k, 1〉 = 1, we obtain
∫

Ω
ρ∗(dk

a

dR
) dR =

∫

Ω
log(dk

a

dR
) dka that is the relative

entropy of ka with respect to R. Our problem is

minimize I(k) subject to 〈k, 1〉 = 1 and 〈k, θ〉 = c (P1)

where θ belongs to Lγo . This means that there exists α > 0 such that
∫

Ω
eα|θ| dR < ∞.

Considering ` = k −R, (P1) becomes

minimize Φ∗(`) subject to 〈`, 1〉 = 0 and 〈`, θ〉 = a := c−
∫

Ω

θ dR (P2)

where Φ∗ is associated with γ∗(t) = (t+1) log(t+1)−t with dom γ∗ = [−1,∞), the convex
conjugate of γ(s) = es−s−1. Let us take the constraint function ϕ = (1, θ) : Ω → X = IR2.
With x = (0, a), an easy computation leads us to

Λ∗(0, a) = sup
y∈IR

{yc− log

∫

Ω

eyθ dR} := Γ∗(c)

which is the convex conjugate of the convex function Γ(y) = log
∫

Ω
eyθ dR.

To specify our example, we take Ω = IR and R(dω) = 1
σ
√
2π

exp(− ω2

2σ2 ) dω : the centered

normal distribution with variance σ2, (σ > 0). We are going to consider the constraint
functions θ(ω) = ω, θ(ω) = ω2 and θ(ω) = ω2 − |ω|.
In these three cases, the domain of Γ∗ is open. This implies that there is no infinite
component entering into the representation of the minimizers of (P1). By Theorem 3.4
with k = `+R, the minimizers k∗ of (P1) can be written as

k∗ = Py + ˜̀ (28)

where Py := exp(yθ−Γ(y)) ·R (which is a probability measure) and ˜̀belongs to the cone
K((yθ)+, (yθ)+). The admissibility condition for y is (see Definition 3.3.2)

∫

Ω

(yθ)+e
(yθ)+ dR < ∞. (29)

As the constraint is finite dimensional, the cone of the ˜̀’s has the form K(u, u), see (15).

When c is an internal value of dom Γ∗, we denote by y(c) the unique solution to the
equation

Γ′(y) =

∫

Ω

θ dPy = c. (30)

This solution is unique since Γ is strictly convex, because Γ′′(y) = VarPy(θ) > 0.

The case θ(ω) = ω. In this case dom Γ∗ = IR, so that (P1) has a solution for each c ∈ IR.

Since θ belongs to Mγo , no singular component enters into (28), i.e.: ˜̀= 0; this has been
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proved in [18]. One recovers this result, noticing that θ is internal to Dγ. Therefore, for
all c ∈ IR,

k∗ = Py(c).

Since y(c) = Γ∗′(c) = c/σ2, k∗ is the normal distribution with variance σ2 and mean c.

The case θ(ω) = ω2. In this case dom Γ∗ = (0,∞), so that (P1) has a solution for each
c > 0. This time, θ belongs to Lγo , but not to Mγo . The admissible y’s (see (29)) are

y ∈ (−∞, yo) with yo = 1/σ2.

Since for each y < yo, yθ is internal to Dγ, k∗ has no singular component. Therefore

k∗ = Py(c).

The case θ(ω) = ω2 − |ω|. In this case dom Γ∗ = (0,∞), so that (P1) has a solution for
each c > 0. Again, θ belongs to Lγo , but not to Mγo . The admissible y’s (see (29)) are

y ∈ (−∞, yo] with yo = 1/σ2.

Let us set co =
∫

Ω
θ dPyo which is finite and solution to y(co) = yo. Then, for all 0 < c < co,

we have k∗ = Py(c) as before, since y(c) < yo and yθ is internal to Dγ for all y < yo.

For each c ≥ co, we have k∗ = Pyo + ˜̀ where Pyo(dω) = e−yo|ω|

Z(yo)
dω (Z(yo) = 2/yo is the

normalizing constant) and ˜̀ belongs to Ls
γo is such that: ˜̀ ≥ 0, for each h ∈ Lγo(R) ∩

Lγo(Pyo), 〈˜̀, h〉 = 0 (as a consequence of Proposition 3.5) and 〈˜̀, θ〉 = c− co.

An infinite-dimensional constraint. We keep the previous setting where R is the
normal distribution on IR. Let us take the moment function θ in Mγo . We denote

βo(ω) = yo(ω
2 − |ω|)

the “criticalÔ moment function of the previous example. Let us consider the following
k∗ ∈ L′

γo :
k∗ = Py(c) + ks

∗, where ks
∗ ∈ K2(βo). (31)

We have already seen thatK2(βo) is not reduced to {0}. By Theorem 3.4, k∗ is a minimizer
of I(k) subject to the constraints:

〈k, 1〉 = 1, 〈k, θ〉 = c, 〈k, βn〉 =
∫

βn dPy(c) + 〈ks
∗, βo〉,∀n ≥ 1

with βn := 1I{|βo|≥n}βo, n ≥ 1. To prove this, it is sufficient to check that k∗ − R has
the form (19) for an admissible dual parameter (z1, ζ2) in the sense of Definition 3.3.
Notice that γo = γ+. Let us take ϕ = (1, θ, β1, β2, . . . ), with X and Y both equal to the
space of numerical sequences with finitely many nonzero terms so that (6) holds. (31)
corresponds to some 〈z1, ϕ〉 = y1+y2θ and to ζ2 = βo. But, for all n ≥ 1, we have βo = βn

in Ls′
γo , since, by the orthogonality property of Proposition 7.3, we have for all `s ∈ Ls

γo ,

〈βo − βn, `
s〉 = 〈1I{|βo|<n}βo, `

s〉 = 0 as 1I{|βo|<n}βo is bounded. Therefore,

〈βo, `
s〉 = 〈βn, `

s〉,∀n ≥ 1 (32)

Consequently, the sequence vn = y1 + y2θ + βn ∈ V tends to (〈z1, ϕ〉, ζ2) in the sense of
Definition 3.3.6, since for all f ∈ Lγ∗

o
, limn→∞〈f, βn〉 = 0 by dominated convergence and

for all `s ∈ Ls
γo , 〈vn, `

s〉 = 〈β, `s〉, for all n ≥ 1, because of (32) and y1 + y2θ is assumed
to be in Mγo so that 〈y1 + y2θ, `

s〉 = 0.
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7. Appendix

7.1. Duality in Orlicz spaces.

The function γ : IR → [0,+∞] is called a Young function if it is convex, even and satisfies
γ(0) = 0, lims→∞ γ(s) = +∞ and there exists so > 0 such that 0 ≤ γ(so) < ∞.

Let Ω be an arbitrary set, A be a σ-field of subsets of Ω and let R be a nonnegative
σ-finite measure on A. In this section, all the numerical functions on Ω are A-measurable
and R-almost everywhere equal functions are identified.

The Orlicz space associated with γ is defined by: Lγ := {u : Ω → IR ; ‖u‖γ < +∞}
with ‖u‖γ = inf

{

β > 0 ;
∫

Ω
γ
(

|u(ω)|
β

)

R(dω) ≤ 1
}

. The function ‖ · ‖γ is a norm (the

Luxemburg norm) and

Lγ = {u : Ω → IR ;∃λo > 0,

∫

Ω

γ(λou) dR < ∞}.

A subspace of interest is

Mγ := {u : Ω → IR ;∀λ > 0,

∫

Ω

γ(λu) dR < ∞}.

Of course: Mγ ⊂ Lγ. The function γ is said to satisfy the ∆2-condition if

there exist C > 0, so ≥ 0 such that ∀s ≥ so, γ(2s) ≤ Cγ(s) (33)

If so = 0, the ∆2-condition is said to be global. When R is bounded, in order that
Mγ = Lγ, it is enough that γ satisfies the ∆2-condition. When R is unbounded, this
equality still holds if the ∆2-condition is global.

Note that if γ(s) = ∞ for some s > 0, Mγ reduces to the null space. If in addition R is
bounded, Lγ is L∞.

On the other hand, when γ is a finite function, Mγ contains all the bounded functions.

Duality in Orlicz spaces is intimately linked with the convex conjugacy. The convex
conjugate γ∗ of γ is also a Young function so that one may consider the Orlicz space Lγ∗ .

A continuous linear form ` ∈ L′
γ is said to be singular if for all u ∈ Lγ, there exists a

nonincreasing sequence of measurable sets (An) such that R(∩nAn) = 0 and for all n ≥ 1,
〈`, u1IΩ\An〉 = 0. Let us denote Ls

γ the subspace of L′
γ of all singular forms.

Theorem 7.1. (Representation of L′
γ). Let γ be any Young function. Any ` ∈ L′

γ is
uniquely decomposed as

` = `a + `s (34)

with `a in Lγ∗ · R and `s in Ls
γ (the space of all continuous Lγ∗-singular forms on Lγ).

This means that L′
γ is the direct sum L′

γ = (Lγ∗ ·R)⊕ Ls
γ.

If γ satisfies the ∆2-condition L′
γ = Lγ∗ ·R, so that Ls

γ reduces to the null vector space.

In the decomposition (34), `a is called the absolutely continuous part of ` while `s is its
singular part.
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Proof. For a proof of this result, see ([15], Theorems 6.4 and 7.2bis), or for an almost
complete result in this direction, see ([16], Theorem 2.2).

We denote Iγ(f) =
∫

Ω
γ(f) dR ∈ [0,∞] and Iγ∗(f) =

∫

Ω
γ∗(f) dR ∈ [0,∞]. Let A be a

subset of a vector space X in duality with Y. The indicator function of A is δ(x | A) =
{

0 if x ∈ A

∞ if x 6∈ A
, x ∈ X and its support function is δ∗(y | A) = supx∈X{〈x, y〉 − δ(x |

A)} = supx∈A〈x, y〉, y ∈ Y.

Proposition 7.2. Let I∗γ be the convex conjugate of Iγ for the duality (Lγ, L
′
γ). For any

` ∈ L′
γ, I

∗
γ(`) = Iγ∗(d`

a

dR
) + δ∗(`s | dom Iγ) where ` = `a + `s is the decomposition (34).

Proof. This result is ([16], Thm 2.6) when γ is a finite Young function, it is ([24], Thm
1) when Lγ = L∞. For the general case, see ([13], Thm 3.2).

Proposition 7.3. Let us assume that γ is finite. Then, ` ∈ L′
γ is singular if and only if

〈`, u〉 = 0, for all u in Mγ.

Proof. This result is ([13], Cor 4.5).

7.2. The proofs of Theorems 4.1 and 4.2.

Theorem 4.2 is a direct consequence of Theorem 4.1. The only thing to be proved is
the dual equality (21) that is assumed in Theorem 4.1. But, this dual equality has been
derived at ([19], Theorem 3.3).

Now, let us prove Theorem 4.1. We begin with a preliminary result.

Lemma 7.4.

(a) For any α ∈ V ∗,Ψ∗(α) ≤ inf{Φ∗(`) ; ` ∈ α}
(b) For any α ∈ V ∗,Ψ∗(α) = ∞ ⇒ S(α) = ∅
(c) For any ` ∈ U∗,Ψ∗( Ú̀) = Φ∗(`) < ∞ ⇒ ` ∈ S( Ú̀)
(d) For any α ∈ V ∗ such that Ψ∗(α) = inf{Φ∗(`) ; ` ∈ α} < ∞ and ∂Ψ∗(α) 6= ∅, we

have
S(α) ⊂ ∂Φ(ζ), ∀ζ ∈ ∂Ψ∗(α)

(e) For all ζ ∈ V , ` ∈ U∗, ` ∈ ∂Φ(ζ) ⇒ Ψ∗( Ú̀) = Φ∗(`) < ∞

Proof of Theorem 4.1. Let us admit the lemma for a while. As S(α) ⊂ α, (d) leads

us to: S(α) ⊂ α ∩ ∂Φ(ζ) for all ζ ∈ ∂Ψ∗(α).

Let us prove the converse inclusion. As ζ ∈ ∂Ψ∗(α) ⇒ Ψ(ζ) < ∞ ⇒ ζ ∈ V (see (22))

and ` ∈ α ⇔ Ú̀ = α, with (e) and (c) one obtains that for any ` ∈ U∗, ζ ∈ ∂Ψ∗(α) :

` ∈ α ∩ ∂Φ(ζ) ⇒ Ψ∗(α) = Φ∗(`) < ∞ ⇒ ` ∈ S(α).

Proof of Lemma 7.4. Proof of (a). For any ` ∈ α, we have: Ψ∗(α) = supv∈V {〈α, v〉 −
Ψ(v)} = supv∈V {〈`, v〉 − Φ(v)} ≤ supu∈U{〈`, u〉 − Φ(u)} = Φ∗(`), from which it follows
that Ψ∗(α) ≤ inf`∈α Φ

∗(`).

(b) and (c) are direct consequences of (a).
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Proof of (d). Let us begin noting that any ζ ∈ ∂Ψ∗(α) belongs to dom Ψ and therefore

to V . As a consequence, Ψ(ζ) = Φ(ζ) (see (22)) and 〈ζ, α〉 = 〈ζ, `〉 for all ` ∈ α. Indeed,

let (vα) be a generalized sequence in V converging to ζ ∈ V for σ(V ∗∗, V ∗). Then, 〈ζ, α〉 =
limα〈vα, α〉 = limα〈vα, `〉 for any ` ∈ α.

Let ` stand in S(α). As Ψ∗(α) = inf{Φ∗(`) ; ` ∈ α} < ∞, we have Φ∗(`) = Ψ∗(α). Then,

for any ζ ∈ ∂Ψ∗(α), we get Φ∗(`) = Ψ∗(α) = 〈ζ, α〉 − Ψ(ζ) = 〈ζ, `〉 − Φ(ζ). This implies

that ` ∈ ∂Φ(ζ), which is the desired result.

Proof of (e). For any ζ ∈ V , ` ∈ U∗, ` ∈ ∂Φ(ζ) ⇒ ∀u ∈ U,Φ(ζ + u) ≥ Φ(ζ) + 〈`, u〉 ⇒
∀v ∈ V,Φ(ζ + v) ≥ Φ(ζ) + 〈`, v〉 ⇒ ∀v ∈ V,Ψ(ζ + v) ≥ Ψ(ζ) + 〈 Ú̀, v〉 since ζ ∈ V and

ζ+v ∈ V . This means that Ú̀ ∈ ∂Ψ(ζ). Therefore,∞ > Ψ∗( Ú̀) = 〈ζ, Ú̀〉−Ψ(ζ) = 〈ζ, `〉−Φ(ζ)

(since ζ ∈ V ) and because ` ∈ ∂Φ(ζ), one gets Ψ∗( Ú̀) = 〈ζ, `〉 − Φ(ζ) = Φ∗(`) < ∞ which
is the desired result.

7.3. The proof of Proposition 4.3.

It is supposed that γ is even. The main reason for considering as a first step the case
where γ is even, is provided by the proof of Lemma 7.6 below. The key result of this
subsection is the following lemma.

Lemma 7.5.

(a) Suppose that there exists a norm ‖ · ‖ on U such that sup{Φ(u) ; ‖u‖ ≤ r} ≤ 1, for
some r > 0. Then, Φ is ‖ · ‖-continuous on ridom Φ and dom Φ∗ ⊂ U ′, where U ′ is
the topological dual space of (U, ‖ · ‖).

(b) If in addition, 0 < inf{Φ(u) ; ‖u‖ = to} < ∞ for some to > 0, Φ∗ is ‖·‖∗-continuous
on ridom Φ∗ and dom Φ ⊂ U ′′, where ‖ · ‖∗ is the dual norm on U ′ and U ′′ is the
topological bidual space of (U, ‖ · ‖).

Proof. See ([17], Lemma 2.1).

We are going to consider the two cases where the property

‖uo‖γ > 1 Φ(uo) < ∞ for some uo ∈ Lγ (35)

holds or fails.

Lemma 7.6. Let us assume that γ is even. If (35) holds, then there exists to > 0
such that 0 < inf{Φ(u) ; u ∈ Lγ, ‖u‖γ = t} < ∞.

Proof. Take to = ‖uo‖γ > 1. For any u ∈ Lγ, ‖u‖γ = to ⇒ ∀0 < a < to,
∫

Ω
γ(u/a) dR ≥

1 ⇒ Φ(u) ≥ 1 (with a = 1). Therefore, 1 ≤ inf{Φ(u) ; ‖u‖γ = to} ≤ Φ(uo) < ∞.

Lemma 7.7. Let assume that γ is even.

(a) Φ is ‖ · ‖γ-continuous on ridom Φ.

(b) dom Φ∗ ⊂ L′
γ

(c) If (35) holds, Φ∗ is ‖ · ‖∗γ-continuous on ridom Φ∗

(d) If (35) holds, dom Φ ⊂ L′′
γ, where for any ζ ∈ U∗∗, ζ ∈ L′′

γ means that ζL′
γ
∈ L′′

γ.
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Proof. To prove (a) and (b) it is enough to check that ‖ · ‖γ satisfies the assumption of
Lemma 7.5.(a). With r = 1

2
, for any u ∈ Lγ, ‖u‖γ ≤ 1

2
⇒ ∀β > 1

2
,
∫

Ω
γ(u/β) dR ≤ 1 ⇒

Φ(u) ≤ 1 (with β = 1).

Proof of (c) and (d). By Lemma 7.6, the assumption of Lemma 7.5.(b) is satisfied for
‖ · ‖γ. This completes the proof of the lemma.

Lemma 7.8. Let us assume that γ is even. If (35) fails, then Lγ = L∞ and dom Φ ⊂
{u ∈ L∞ ; ‖u‖γ ≤ 1}.

Proof. Since (35) fails, for all u ∈ Lγ, we have: Φ(u) < ∞ ⇒ ‖u‖γ ≤ 1 ⇒ ∀a <
1,
∫

Ω
γ(au) dR ≤ 1 ⇒ Φ(u) = lima↑1Φ(au) ≤ 1 (monotone convergence). Hence,

Φ(Lγ) ⊂ [0, 1] ∪ {∞}. (36)

Suppose that: sup dom γ := a+ = +∞. Let A ∈ A such that 0 < R(A) < ∞ (R is σ-finite
and non-zero) and n ≥ 1, let us take un = n1IA. Then, Φ(un) = γ(n)R(A) < ∞, ∀n ≥ 1
and limn→∞Φ(un) = ∞. This contradicts (36) and proves that a+ < ∞.

Let us suppose that R(Ω) = ∞ and that there exists ao > 0 such that 0 < γ(ao) < ∞.
Taking up = ao1IΩp where (Ωp) is R-localizing, we obtain: Φ(up) = γ(ao)R(Ωp) < ∞,
∀p ≥ 1 and

limp→∞Φ(up) = +∞, which contradicts (36). Therefore, if (35) fails, we have 0 < a+ < ∞
and [R(Ω) < ∞ or γ = δ(· | [−a+, a+])]. But, [0 < a+ < ∞ and R(Ω) < ∞] ⇒ Lγ = L∞
and [0 < a+ < ∞ and γ = δ(· | [−a+, a+])] ⇒ Lγ = L∞, which is the desired result.

We have Φ(u) = Φ1(u) + Φ2( Úu), u ∈ Lγ where Φ1(u) = Iγ(u), u ∈ Lγ and Φ2( Úu) = δ( Úu |
Dγ), Úu ∈ Nγ being the equivalence class of u ∈ Lγ. Their convex conjugates with respect
to the dualities (Lγ, Lγ∗) and (Nγ, L

s
γ) are Φ∗

1(`) = Iγ∗(`), ` ∈ Lγ∗ and Φ∗
2(`) = δ∗(` |

Dγ), ` ∈ Ls
γ. Proposition 7.2 states that: Φ∗(`) = Φ∗

1(`
a) + Φ∗

2(`
s), ` ∈ L′

γ.

Proof of Proposition 4.3. As dom Φ∗ ⊂ L′
γ (by Lemma 7.7.(b)), for any ζ ∈ U∗∗,

Φ(ζ) = sup`∈U∗{〈ζ, `〉 − Φ∗(`)} = sup`∈L′
γ
{〈ζ, `〉 − Φ∗(`)}. Thanks to the decomposition

L′
γ = Lγ∗ ⊕ Ls

γ (see Theorem 7.1) and Proposition 7.2, for any ζ = (ζ1, ζ2) ∈ L′∗
γ =

L∗
γ∗ ⊕ Ls

γ
∗ we have: Φ(ζ) = Φ1(ζ1) + Φ2(ζ2) with Φ1(ζ1) = supf1∈Lγ∗

{〈ζ1, f1〉 − Iγ∗(f1)}
and Φ2(ζ2) = sup`2∈Ls

γ
{〈ζ2, `2〉 − δ∗(`2 | dom Iγ)}.

(a) Let us first suppose that (35) holds. By Lemma 7.7.(d), dom Φ ⊂ L′′
γ. Hence, one

can apply Proposition 7.2 to Iγ∗ : Φ1(ζ1) = Iγ(
dζa1
dR

) + δ∗(ζs1 | dom Iγ∗), and by Lemma 7.9

below (applied with X = Nγ, Y = Ls
γ and Z = Ls′

γ ) : Φ2(ζ2) = δ(ζ2 | D
σ

γ).

As Lemma 7.7.(c) holds, Φ∗
2 is bounded above on a non empty ‖ · ‖∗γ-open ball. As Φ∗

2 is
positively homogeneous, we obtain that its domain is the whole space Ls

γ, which in turn

is equivalent to: D
σ

γ is σ(Ls′
γ , L

s
γ)-bounded, hence norm bounded in Ls′

γ (by the uniform
bound theorem).

(b) If (35) fails, by Lemma 7.8: Lγ = L∞ and {u ∈ L∞ ; ‖u‖∞ < a+} ⊂ dom Φ ⊂ {u ∈
L∞ ; ‖u‖∞ ≤ a+} with 0 < a+ = sup dom γ < ∞. More, Φ∗

1(`
a) = Iγ∗(d`

a

dR
),∀`a ∈ L1 and

Φ∗
2(`

s) = δ∗(`s | Dγ),∀`s ∈ Ls
∞. Applying Lemma 7.5.(a) with Φ∗

1 = Iγ∗ and ‖ · ‖ = ‖ · ‖1,
we obtain: dom Φ1 ⊂ L′

1 = L∞ and by Proposition 7.2: Φ1(ζ1) = Iγ(ζ1),∀ζ1 ∈ L∞.
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We have Lγ = Nγ = L∞ with Dγ a ‖ · ‖∞-bounded convex set with a non empty interior.
Therefore, Φ∗

2 is a norm which is equivalent to the dual norm ‖ · ‖∗∞ of L′
∞, and dom Φ∗

2 =
Ls
γ.

It follows that the condition of Lemma 7.5.(a) is fulfilled with Φ∗
2 and ‖ · ‖∗∞. Therefore,

ζ2 ∈ dom Φ2 implies that ` ∈ L′
∞ 7→ 〈ζ2, `s〉 ∈ IR belongs to L′′

∞. One concludes using

Lemma 7.9 with X = L∞, Y = Ls
∞, Z = Ls′

∞, which states that Φ2(ζ2) = δ(ζ2 | Dσ

γ) for
all ζ2 ∈ Ls′

∞.

Lemma 7.9. Let (X, Y ) and (Y, Z) two dual pairs such that X ⊂ Z and Y separates Z.
Let A be a subset of X and coA be its σ(Z, Y )-closed convex hull in Z.

Then, for any z ∈ Z, δ(z | A) := supy∈Y {〈y, z〉 − δ∗(y | A)} = δ(z | coA).

Proof. Let z ∈ Z, δ(z | A) = supy∈Y {〈y, z〉 − supx∈A〈x, y〉} = supy∈Y infx∈A〈z − x, y〉.
With y = 0, it comes out that δ(z | A) ≥ 0.

If there exists yo ∈ Y such that infx∈A〈z − x, yo〉 > 0, with y = λyo and λ → +∞, it

comes out that δ(z | A) = +∞. Otherwise, we have

∀y ∈ Y, sup
x∈A

〈x− z, y〉 ≥ 0 (37)

which implies: δ(z | A) ≤ 0, hence: δ(z | A) = 0.

Now, let us show that (37) is equivalent to z ∈ coA. By linearity of x 7→ 〈x, y〉, and then by
σ(Z, Y )-continuity of z′ 7→ 〈z′, y〉 ∈ IR, we obtain: supx∈A〈x−z, y〉 = supx∈coA〈x−z, y〉 =
supz′∈coA〈z′ − z, y〉. Therefore, non (37) ⇔ ∃yo ∈ Y, supz′∈coA〈z′ − z, yo〉 < 0 ⇔ ∃yo ∈
Y, supz′∈coA〈z′, yo〉 < 〈z, yo〉 ⇔ z 6∈ coA by Hahn-Banach theorem.

7.4. The proof of Proposition 4.5.

The first statement comes from dom Φ∗ ⊂ L′
γo ⊂ Lb

γo and dom Φ ⊂ L′b
γo .

Let us prove the second statement. Since 〈`+, ζ+〉 ≤ Φ∗
+(`+) + Φ+(ζ+) and 〈`−, ζ−〉 ≤

Φ∗
−(`−) + Φ−(ζ−), we have 〈`, ζ〉 = 〈`+ − `−, ζ+ − ζ−〉 = 〈`+, ζ+〉 + 〈`−, ζ−〉 − [〈`+, ζ−〉 +

〈`−, ζ+〉] ≤ 〈`+, ζ+〉 + 〈`−, ζ−〉 ≤ Φ∗
+(`+) + Φ∗

−(`−) + Φ+(ζ+) + Φ−(ζ−) = Φ∗(`) + Φ(ζ) =
〈`, ζ〉. Hence, 〈`+, ζ−〉 = 〈`−, ζ+〉 = 0.

Suppose that 〈`+, ζ+〉 < Φ∗
+(`+) + Φ+(ζ+). Then, 〈`, ζ〉 = 〈`+, ζ+〉+ 〈`−, ζ−〉 < Φ∗

+(`+) +

Φ+(ζ+) + Φ∗
−(`−) + Φ−(ζ−) = Φ∗(`) + Φ(ζ) = 〈`, ζ〉, which is impossible. Therefore,

〈`+, ζ+〉 = Φ∗
+(`+) + Φ+(ζ+), that is `+ ∈ ∂Φ+(ζ+) (and similarly for the negative index).
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Inst. Henri Poincaré 26 (1990) 567–596.

[12] A. Dembo, O. Zeitouni: Large Deviations Techniques and Applications, Springer-Verlag
(1998).

[13] A. Fougères, E. Giner: Applications de la décomposition d’un espace d’Orlicz ..., Séminaire
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[17] C. Léonard: Convex conjugates of integral functionals, Acta Math. Hungar. 93(4) (2001)
253–280.
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