
Journal of Convex Analysis

Volume 10 (2003), No. 1, 211–227

Directional Derivative of a Class of
Set-Valued Mappings and its Application∗

Zun-Quan Xia
CORA, Department of Applied Mathematics,

Dalian University of Technology, Dalian, 116024, China
zqxiazhh@dlut.edu.cn, zqxia@mail.dlptt.ln.cn

Ming-Zheng Wang
CORA, Department of Applied Mathematics,

Dalian University of Technology, Dalian, 116024, China
sxxyh@dlut.edu.cn

Li-Wei Zhang
Institute of CMSEC, Chinese Academy Sciences, P.O. Box 2719, Beijing, 100080;

State-Key Laboratory of SAFIE; CORA, Department of Applied Mathematics,
Dalian University of Technology, Dalian, 116024, China

sxxyh@dlut.edu.cn

Received October 18, 2000
Revised manuscript received December 30, 2001
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1. Introduction

In the last thirty years there are many publications dealing with differentiability of set-
valued mappings (multifunctions), see for instance, Tyurin (1965), Banks and Jacobs
(1970), Hogan (1973), Huard (1979), Aubin and Frankowska (1990), Percherskaya (1982,
1986), Minchenko and Volosevich (2000) .

Let G : Ω → L(<m) be a set-valued mapping, where Ω ⊂ <n is an open set and L(<m)
is the set of nonempty convex compact subsets in <m. We denote by ρH(S1, S2) the
Hausdorff distance of sets S1 and S2, and by δ∗( · |S ) the support function of a convex
set S.

The results presented in this paper is grounded on the space of pairs of convex sets
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with the operations of addition and scalar multiplication and on a corresponding quotient
space defined by an equivalence relationship of pairs of convex sets, and the basic concepts
can be referred to references, for instance, Hörmander (1954), Banks and Jacobs (1970),
Demyanov and Rubinov (1983), and Pallaschke and Urbański (2000). Some main points
that will be used later on are listed below.

In L(<m), the algebraic operations of addition and multiplication by a nonnegative real
number are defined in a natural way,

A+B = { z | z = a+ b, a ∈ A, b ∈ B }
cA = { c a | a ∈ A }, (c > 0).

These operations possess usual properties, i.e., associativity, commutativity and distribu-
tivity. Consider the set K2 defined as follows

K2 = L(<m)× L(<m) = { (A, B ) |A ∈ L(<m), B ∈ L(<m) }

The operations of addition and scalar multiplication in K2 are defined by

(A1, B1 ) + (A2, B2 ) = (A1 + A2, B1 +B2 )

α(A, B ) =

{

(αA, αB ) if α > 0
( |α|B, |α|A ) if α < 0,

(1)

where (Ai, Bi ) ∈ K2, i = 1, 2, and (A, B ) ∈ K2. A partial ordering ’¿’ in K2 is
defined by

(A1, B1) ¿ (A2, B2) if and only if A1 + B2 ⊇ A2 + B1

for (Ai, Bi) ∈ K2, i = 1, 2. The equivalence relation induced by ’¿’, denoted by ’∼’,
(see for instance, Hörmander (1954)), is defined by

(A1, B1) ∼ (A2, B2) if and only if A1 + B2 = A2 + B1.

We define K1 = K2/ ∼ and [ ·, · ] denotes its representative (element). The operations
of addition and scalar multiplication in K1 are the same substantially as (1), i.e., by

[A1, B1 ] + [A2, B2 ] = [A1 + A2, B1 +B2 ]

α[A, B ] =

{

[αA, αB ] if α > 0
[ |α|B, |α|A ] if α < 0,

where [Ai, Bi ] ∈ K1, i = 1, 2, [A, B ] ∈ K1.

A kind of directional differentiability for set-valued mappings based on the Hausdorff
distance (see for instance, Tyurin (1965), Banks & Jacobs (1970) and Pecherskaya (1982,
1986)), which will be used in this paper, is given by the following definition.

Definition 1.1. A set-valued mapping G is said to be directionally differentiable at
x ∈ Ω in a direction v ∈ <n, if there exists a pair of nonempty compact convex sets,
[G+

x (v), G
−
x (v) ], such that for a sufficiently small positive number α,

ρH(G(x+ αv) + αG−
x (v), G(x) + αG+

x (v)) = ox,v(α) (2)

is valid, where ox,v(α)/α
α↓0−→ 0, G+

x (v), G
−
x (v) ∈ L(<m). The pair [G+

x (v), G
−
x (v) ] is

called a directional derivative of G at x in v.
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The next definition is alternative one equivalent to the definition above.

Definition 1.2. A set-valued mapping G is said to be differentiable at x in a direction
v, if for x ∈ Ω, v ∈ <n and a sufficiently small positive number α, there exists a pair of
nonempty convex compact sets, [G+

x (v), G
−
x (v) ], such that the limit

lim
α↓0

δ∗(· | G(x+ αv))− δ∗(· | G(x))

α
= δ∗(· | G+

x (v) )− δ∗(· | G−
x (v) ) (3)

exists. The pair [G+
x (v), G

−
x (v) ] is called the directional derivative of a set-valued mapping

G at x in the direction v.

The differentiability of the set-valued mapping F (x) defined by

F (x) := {z | Az ≤ x} (4)

was investigated by Percherskaya (1982, 1986). The linear programming (LP)

{

min cT z
s.t. Az ≤ h(x)

(5)

where A is an n × m matrix, n > m and h : Ω → <n is a vector function. Let ϕ(x) =
min{ cT z |Az ≤ h(x) }, S(x) = { z |Az ≤ h(x), cT z ≤ ϕ(x) }. It follows from Klatte
(1987) that S is Lipschitz continuous, i.e., there exists γ > 0, such that for a sufficiently
small positive number α > 0, x ∈ Ω, and v ∈ Ω, we have that

ρH(S(x), S(x+ αv)) ≤ γ‖h(x+ αv)− h(x) ‖. (6)

There are some papers dealing with the topic about estimation to γ, see for instance Cook
(1986), Li (1993, 1994), Mangasarian (1987), Robinson (1973). A bound to γ due to Li
(1994) is smaller than or equal to the one given by Mangasarian and Shiau (1987). A new
bound of γ, obtained by using differential results of the set-valued mapping S(x) given
above, will be given in this paper. It will be shown that the new result is smaller than
others under some assumptions.

This paper is organized as follows. In Section 2, the differentiability of the set-valued
mapping G(x) := {z | Az ≤ h(x)} will be given, where h(·) is directional differentiable at
x in the common sense. Based on a perturbation to linear programming (5) by h(x+αv),
a new bound to γ, is presented in Section 3.

2. Directional derivative for a class of set-valued mappings

Consider a class of set-valued mappings being of the form

G(x) := { z | Az ≤ h(x)}, (7)

where A is an n × m matrix, n > m, h : Ω → <n is a vector function in the open set
Ω ⊂ <n.

Let ai be a column vector composed of elements of the i-th row vector in A, where
i = 1, 2, · · · , n. Without loss of generality, we may assume that ‖ai‖ = 1, where ‖ · ‖
denotes the Euclidean norm.

The following assumptions will be used later on.
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AM1 h : Ω → <n is directionally differentiable at x in a direction v.

AM2 G(x) is bounded and nondegenerate in the sense of all extremal points. i.e., At any
extremal point z ∈ G(x), the set of vectors { aj | j ∈ J(z)} are linearly independent
where J(z) = { j | aTj z = hj(x)}.

AM3 G(x) does not contain unnecessary polyhedral constraints for every x ∈ domG(x) =
{x ∈ Ω |G(x) 6= ∅ }, i.e., every ai is a normal vector to some (m-1)-dimensional face
of G(x).

It is clear that the set-valued mapping G defined by formula (7) is a closed convex set at
every point. If AM2 is satisfied , then G(x) is bounded. Consequently, G(x) is a compact
convex set.

Let B(x, u) = { z ∈ G(x) | δ∗(u | G(x)) = 〈u, z〉 }. If z ∈ B(x, u), let Ju(z) = { i |
〈ai, z〉 = hi(x), i = 1, 2, · · · , n}. Without loss of generality, we may assume that Ju(z) =
{1, 2, 3, · · · , s}.
The following Lemma is a direct consequence of [Lemma 2.5, 4].

Lemma 2.1. Let G(x) be defined by formula (7). If AM1 and AM2 are satisfied, then
the set-valued mapping G ∈ L(<m) is locally bounded at x. £

Define

G+
x (v) = {g | Ag ≤ h′

+(x; v) +Nx,ve} (8)

G−
x (v) = {g | Ag ≤ h′

−(x; v) +Nx,ve}, (9)

where Nx,v is sufficiently large positive number depending on x, v,

e = (1, 1, · · · , 1)T ∈ <n

[h′
+(x; v)]

i =











[h′(x; v)]i if [h′(x; v)]i > 0

0 otherwise

i ∈ {1, 2, · · · , n}

[h′
−(x; v)]

i =











−[h′(x; v)]i if [h′(x; v)]i < 0

0 otherwise

i ∈ {1, 2, · · · , n}.

Lemma 2.2. For any fixed x ∈ Ω, if AM1− AM3 hold, then there exists a positive
number N0

x,v such that G+
x (v) and G−

x (v) defined by (8) and (9), respectively, are bounded
and nondegenerate polyhedrals, and they do not contain unnecessary constraints for Nx,v ≥
N0

x,v.

Proof. Let x ∈ Ω, v ∈ <n, and PN = F (Ne) if N > 0 where e = (1, 1, · · · , 1)T ∈ <m.
One has from (4) that

PN = NF (e)

= {Nz|Az ≤ e}.
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It follows from AM1-AM2 that F (x) is bounded and nondegenerate, on domF = {x ∈
Ω|F (x) 6= ∅}, where F is defined by (4). The fact that F (·) does not contain unnecessary
polyhedral constraints on domF comes directly from AM3 and G(x) = F (x) when h(x)
is taken as x. As a result, one has that PN is bounded and doesn’t contain unnecessary
polyhedral constraints. Since it is assumed, at the beginning of this section, that ‖ai‖ = 1,
i = 1, 2, · · · , n, it follows that Bm(N) is the largest ball inscribed in PN and Nai is a point,
on H(PN , ai) = {Nz|aTi z = 1} which is a facet of PN , tangent to Bm(N), where Bm(N)
is the m−dimensional ball with the origin as the center and N as the radius.

According to (8) and (9) and (4), one has that

G+
x (v) = F (h′

+(x; v) +Nx,ve)

G−
x (v) = F (h′

−(x; v) +Nx,ve).

We denote by Bi
m−1(1) the unit ball of the complementary subspace spanned by ai ∈ <m.

Since H(G+
x (v), ai) and [h′

+(x; v)]
i are known, Nx,v can be obtained by the following

equation

([h′
+(x; v)]

i +Nx,v)ai +Bi
m−1(1) ⊂ H(G+

x (v), ai), i = 1, 2, · · · , n.

Then it follows that

[([h′
+(x, v)]

i +Nx,v)ai + bi]
Taj ≤ [h′

+(x; v)]
j +Nx,v i = 1, 2, · · · , n, (10)

where bj ∈ Bi
m−1(1). From the system of inequalities, (10), we have that

N i
x,v ≥ max

1≤j≤n
max

b∈Bi
m−1

aTi aj[h
′
+(x; v)]

i − [h′
+(x; v)]

j − bTaj

1− aTi aj
, j 6= i.

Similarly,

N̄ i
x,v ≥ max

1≤j≤n
max

b∈Bi
m−1

aTi aj[h
′
−(x; v)]

i − [h′
−(x; v)]

j − bTaj
1− aTi aj

, j 6= i.

Take N0
x,v = max{max1≤i≤nN

i
x,v , max1≤i≤n N̄

i
x,v, 0}. Therefore, formula (10) is always

valid for Nx,v ≥ N0
x,v.

Lemma 2.3. Assume that { ai | i = 1, 2, · · · , s} ⊂ <m, s ≤ m, are linearly independent,
then the general solution of the system of equations

〈ai, y〉 = bi, i = 1, 2, · · · , s

can be represented as
y = (AĀ−1)b+ y′,

where A= (a1, a2, · · ·, as), Ā= ATA, b= (b1, b2, · · ·, bs)T , y′ ∈ [span{ai| i = 1, 2, · · ·, s}]⊥.
£

Lemma 2.4. Let TG(x+αv)(u) = {y ∈ G(x + αv) | δ∗(u|G(x + αv)) = 〈u, y〉}. Then for
α > 0 small enough, there exists y′ ∈ TG(x+αv)(u) satisfying the following system:

( System I )
〈ai, z̄〉 = hi(x+ αv), i ∈ Ju(z)
〈aj, z̄〉 ≤ hj(x+ αv), j ∈ {1, 2, · · · ,m} \ Ju(z).
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Proof. Proceeding by contradiction. Suppose that no element of TG(x+αv)(u) satisfies the
system I.

For any solution z̄ of the system I, we have that δ∗(u|G(x + αv)) > 〈u, z̄〉. By Lemma
2.3, z̄ can be formulated in z̄ = (AJu(z)Ā

−1
Ju(z)

)h̄(x + αv) + z′, where z′ ∈ [span{ai|i ∈
Ju(z)}]⊥ and h̄(x + αv) = (h1(x + αv), h2(x + αv), · · · , hs(x + αv)). Then one has that
δ∗(u|G(x + αv)) > 〈u, (AJu(z)Ā

−1
Ju(z)

)h̄(x+ αv)〉. By the Mean Value Theorem, we have
that

h̄(x+ αv) = h̄(x) + α

∫ 1

0

h̄′(x+ αtv; v)dt, (11)

where 0 ≤ t ≤ 1. It is clear that δ∗(u|G(x)) = 〈u, (AJu(z)Ā
−1
Ju(z)

)h̄(x)〉 in terms of defini-

tions of B(x, u) and Ju(z) and Lemma 2.3. Thus one obtains that

δ∗(u | G(x+ αv)) > 〈u, (AJu(z)Ā
−1
Ju(z)

)(h̄(x) + α

∫ 1

0

h̄′(x+ αtv; v)dt)〉

= 〈u, (AJu(z)Ā
−1
Ju(z)

)h̄(x)〉+ α〈u, (AJu(z)Ā
−1
Ju(z)

)

∫ 1

0

h̄′(x+ αtv; v)dt〉.

in other words,

δ∗(u|G(x+ αv))− δ∗(u|G(x)) > α〈u, (AJu(z)Ā
−1
Ju(z)

)

∫ 1

0

h̄′(x+ αtv; v)dt〉. (12)

On the other hand, for any y ∈ TG(x+αv)(u), there exists k ∈ Ju(z) such that 〈ak, y〉 <

hk(x + αv). Let
∫ 1

0
h̄′(x+ αtv; v)dt = (f1(α, x, v), f2(α, x, v), · · · , fs(α, x, v))T . It follows

from formula (11) that 〈ak, y〉 < hk(x) + αfk(α, x, v). Since {aj|j ∈ Ju(z)} are linearly
independent, there exists p ∈ <m such that 〈ai, p〉 = fi(α, x, v), i ∈ Ju(z). One has that
〈ak, y − αp〉 < hk(x) and hence 〈ak, y − αp− z〉 < 0. Since 〈aj, y〉 ≤ hj(x + αv), j ∈
Ju(z), it follows that 〈aj, y − αp− z〉 ≤ 0, j ∈ Ju(z), i.e., y − αp− z ∈ KG(x)(z), where
KG(x)(z) denotes the tangent cone of G(x) at z. Thus, one has 〈u, y − αp− z〉 ≤ 0.
Furthermore, 〈u, y〉 − 〈u, z〉 ≤ α〈u, p〉. In consequence, one has that

δ∗(u|G(x+ αv))− δ∗(u|G(x)) ≤ α〈u, (AJu(z)Ā
−1
Ju(z)

)

∫ 1

0

h̄′(x+ αtv; v)dt〉. (13)

It contradicts with the fact that formula (12) and formula (13) hold simultaneously. The
proof is completed.

Lemma 2.5. Let TG+
x (v)(u) = {g+ ∈ G+

x (v) | δ∗(u|G+
x (v)) = 〈u, g+〉}, then there exists

g′+ ∈ TG+
x (v)(u) which satisfies the following system:

( System II )
〈ai, g〉 = [h′

+(x; v) ]
i +Nx,v, i ∈ Ju(z)

〈aj, g〉 ≤ [h′
+(x; v) ]

j +Nx,v j ∈ {1, 2, · · · ,m} \ Ju(z).

Proof. Proceeding by the contradiction. Assume that no element of TG+
x (v)(u) satisfies

the system II.
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For any solution g of the system II, it follows that δ∗(u|G+
x (v)) > 〈u, g〉. we know from

Lemma 2.3 that g = (AJu(z)Ā
−1
Ju(z)

)[h̄′
+(x; v) +Nx,vē] + g′, where

g′ ∈ [span{ai|i ∈ Ju(z)}]⊥

[h̄′
+(x; v)]

i =











[h′(x; v)]i if [h′(x; v)]i > 0

0 otherwise

i ∈ Ju(z)

ē = (1, 1, · · · , 1)T ∈ <s.

Consequently, one has

δ∗(u|G+
x (v)) > 〈u, (AJu(z)Ā

−1
Ju(z)

)[h̄′
+(x; v) +Nx,vē]〉. (14)

On the other hand, For any g ∈ TG+
x (v)(u), there exists k ∈ Ju(z) such that the inequality

〈ak, g+〉 < [h′
+(x; v)]

k + Nx,v holds. Since {ai|i ∈ Ju(z)} are linearly independent, there
exists p ∈ <m such that 〈ai, p〉 = hi(x) − [h′

+(x; v)]
i − Nx,v, i ∈ Ju(z). Then one has

that 〈ak, g′+ + p〉 < hk(x). Thus, one has that 〈ai, g′+ + p− z〉 ≤ 0, i ∈ Ju(z), i.e.,
g′+ + p− z ∈ KG(x)(z), where KG(x)(z) denotes the tangent cone of G(x) at z. Thus,
〈u, g′+ + p− z〉 ≤ 0, i.e., 〈u, g′+〉 ≤ 〈u, z〉 − 〈u, p〉. It follows that

δ∗(u|G+
x (v)) ≤ 〈u, (AJu(z)Ā

−1
Ju(z)

)[h̄′
+(x; v) +Nx,vē]〉. (15)

It contradicts with the fact that formula (14) and formula (15) hold simultaneously. The
proof is completed.

The following lemma can be proved in a way similar to the proof of Lemma 2.5.

Lemma 2.6. Let TG−
x (v)(u) = {g− ∈ G−

x (v) | δ∗(u|G−
x (v)) = 〈u, g−〉}, then there exists

g′− ∈ TG−
x (v)(u) which satisfies the following system:

( System III )
〈ai, g〉 = [h′

−(x; v)]
i +Nx,v, i ∈ Ju(z)

〈aj, g〉 ≤ [h′
−(x; v)]

j +Nx,v, j ∈ {1, 2, · · · ,m} \ Ju(z).

£

Lemma 2.7. Let N0
x,v be the same as in Lemma 2.2, ∀N1

x,v ≥ N0
x,v, ∀N2

x,v ≥ N0
x,v. Then

one has that

[G(h′
+(x, v) +N1

x,ve), G(h′
−(x; v) +N1

x,ve)] ∼ [G(h′
+(x; v) +N2

x,ve), G(h′
−(x; v) +N2

x,ve)].

Proof. Take u ∈ S. We can obtain from Lemma 2.3, Lemma 2.5 and Lemma 2.6 that

δ∗(u|G(h′
+(x, v) +N1

x,ve)) = 〈u, (AJu(z)Ā
−1
Ju(z)

)[h̄′
+(x; v) +N1

x,vē]〉,

δ∗(u|G(h′
−(x, v) +N1

x,ve)) = 〈u, (AJu(z)Ā
−1
Ju(z)

)[h̄′
−(x; v) +N1

x,vē]〉,

δ∗(u|G(h′
+(x, v) +N2

x,ve)) = 〈u, (AJu(z)Ā
−1
Ju(z)

)[h̄′
+(x; v) +N2

x,vē]〉,

δ∗(u|G(h′
−(x, v) +N2

x,ve)) = 〈u, (AJu(z)Ā
−1
Ju(z)

)[h̄′
−(x; v) +N2

x,vē]〉.
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Then

δ∗(u|G(h′
+(x, v) +N1

x,ve))− δ∗(u|G(h′
−(x, v) +N1

x,ve)) = 〈u, (AJu(z)Ā
−1
Ju(z)

)h̄′(x; v)〉,

δ∗(u|G(h′
+(x, v) +N2

x,ve))− δ∗(u|G(h′
−(x, v) +N2

x,ve)) = 〈u, (AJu(z)Ā
−1
Ju(z)

)h̄′(x; v)〉.

Let

A = G(h′
+(x, v) +N1

x,ve), B = G(h′
−(x, v) +N1

x,ve),

C = G(h′
+(x, v) +N2

x,ve), D = G(h′
−(x, v) +N2

x,ve).

Then, one has that

ρH(A+D,B + C) = max
u∈S

|δ∗(u|A) + δ∗(u|D)− [δ∗(u|B) + δ∗(u|C)]|

= max
u∈S

|[δ∗(u|A)− δ∗(u|B)]− [δ∗(u|C)− δ∗(u|D)]|

= 0,

i.e., [A, B] ∼ [C, D]. The proof is completed.

Theorem 2.8. [15] Let A,D ∈ L(<m). Then

ρH(A,D) =| δ∗(· | A)− δ∗(· | D) |C(S), (16)

where C(S) is a space of all functions with a uniform norm which are continuous. £

According to (2) and (16), we have

max
u∈S

| δ∗(u | G(x+ αv) + αG−
x (v))− δ∗(u | G(x) + αG+

x (v)) |= ox,v(α), (17)

where ox,v(α)/α
α↓0−→ 0. By Minkowski duality, see [11], (17) can be formulated in

| δ∗(u | G(x+ αv))− δ∗(u | G(x))− α(δ∗(u | G+
x (v))− δ∗(u | G−

x (v))) |= ox,u(α), (18)

where ox,u(α)/α
α↓0−→ 0, in which the limit is uniform with respect to u.

Theorem 2.9. Suppose the set-valued mapping G(x) is defined by formula (7). If AM1−
AM3 are satisfied, then the set-valued mapping G is directionally differentiable at x in
a direction v. The pair [G+

x (v), G
−
x (v)] defined by formula (8) and formula (9) is the

directional derivative of G at x in v.

Proof. It is enough to prove that formula (18). For u ∈ S and α > 0 small enough,
consider equations

δ∗(u | G(x)) = 〈u, z〉, (19)

δ∗(u | G(x+ αv)) = 〈u, y′〉, (20)

δ∗(u | G+
x (v)) = 〈u, g′+〉, (21)

δ∗(u | G−
x (v)) = 〈u, g′−〉. (22)
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From Lemmas (2.4)-(2.6), one has that z, y′, g′+, and g′− in formulae (19)—(22) are solu-
tions of the following four systems

〈ai, z〉 − hi(x) = 0, i ∈ Ju(z), (23)

〈ai, z̄〉 − hi(x+ αv) = 0, i ∈ Ju(z), (24)

〈ai, g〉 − [h′
+(x; v)]

i −N = 0, i ∈ Ju(z), (25)

〈ai, ḡ〉 − [h′
−(x; v)]

i −N = 0, i ∈ Ju(z) (26)

respectively.

In what follows, we only discuss equation (21) (the others can be similar to be discussed).
Since {ai | i ∈ J(z)} are linearly independent, every solution of equation (25) can be
represented as

g = (AJu(z)Ā
−1
Ju(z)

)[h̄′
+(x; v) +Nx,vē] + g′,

where g′ ∈ [span{ai|i ∈ Ju(z)}]⊥, ĀJu(z) = AT
Ju(z)

AJu(z). Consequently, one has that

δ∗(u|G+
x (v)) = 〈u, g′+〉

= 〈u,AJu(z)Ā
−1
Ju(z)

(h̄′
+(x; v) +Nx,vē)〉

= 〈(AJu(z)Ā
−1
Ju(z)

)Tu, h̄′
+(x; v) +Nx,vē〉.

Similarly, one has that

δ∗(u|G−
x (v)) = 〈(AJu(z)Ā

−1
Ju(z)

)Tu, h̄′
−(x; v) +Nx,vē〉,

δ∗(u|G(x)) = 〈(AJu(z)Ā
−1
Ju(z)

)Tu, h̄(x)〉,

δ∗(u|G(x+ αv)) = 〈(AJu(z)Ā
−1
Ju(z)

)Tu, h̄(x+ αv)〉.

Let |Ju(z)| denote the number of elements Ju(z). Then |Ju(z)| ≤ rank(A). Suppose
rank(A) = |I|, then one has that

|δ∗(u|G(x+ αv))− δ∗(u|G(x))− α[δ∗(u|G+
x (v))− δ∗(u|G−

x (v))]|
= |〈(AJu(z)Ā

−1
Ju(z)

)Tu, h̄(x+ αv)− h̄(x)− α[h̄′
+(x; v)− h̄′

−(x; v)]〉|

= |〈(AJu(z)Ā
−1
Ju(z)

)Tu, õx,v(α)〉|

≤ ‖(AJu(z)Ā
−1
Ju(z)

)Tu‖ · ‖õx,v(α)‖

≤ max
I∈F

‖A+
I ‖ · ‖u‖ · ‖õx,v(α)‖,

where F = {I | |I| = rank(A) = rank(AI)}. It follows that

max
u∈S

|δ∗(u|G(x+ αv))− δ∗(u|G(x))− α[δ∗(u|G+
x (v))− δ∗(u|G−

x (v))]| = ox,v(α),

where ox,v(α)
α

α↓0−→ 0 (uniformly with respect to u).

Corollary 2.10. Let G be defined by formula (7). If AM1−AM3 are satisfied, and h(x)
is differentiable, then G is directional differentiable at x in a direction v. It’s directional
derivative [G+

x (v), G
−
x (v)] is defined by the following form

G+
x (v) = {g | Ag ≤ [∇h(x)v]+ +Ne},

G−
x (v) = {g | Ag ≤ [∇h(x)v]− +Ne}.
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where e and N are defined by the way that is the same as defined in Theorem 2.9.

[∇h(x)v]i+ =











[∇h(x)v]i if [∇h(x)v]i > 0

0 otherwise

i ∈ {1, 2, · · · , n},

[∇h(x)v]i− =











−[∇h(x)v]i if [∇h(x)v]i < 0

0 otherwise

i ∈ {1, 2, · · · , n}.

Proof. It can be directly obtained from Theorem 2.9.

3. Application to linear programming

In this section, we analyse the stability of the set of optimal solutions for a perturbed
linear programming, using results obtained in the last section. Consider the following
linear programming problem

{

min cT z
s.t. Az ≤ h(x),

(27)

where A is an n ×m matrix, n > m, c is a m dimensional vector, and h : Ω → <n is a
vector function. Define

G(x) = {z | Az ≤ h(x)},
ϕ(x) = min{cT z | z ∈ G(x)},
S(x) = {z ∈ G(x) | ϕ(x) = cT z}.

Consider the perturbed linear programming

{

min cT z
s.t. Az ≤ h(x+ αv).

(28)

Define

G(x+ αv) = {z | Az ≤ h(x+ αv)},
ϕ(x+ αv) = min{cT z | z ∈ G(x+ αv)},
S(x+ αv) = {z ∈ G(x+ αv) | ϕ(x+ αv) = cT z}.

The following assumption will be required in the rest of this section.

AM4 The set S(x) is not a singleton.

Under the assumption AM4, we can immediately obtain the following lemmas.

Lemma 3.1. The following results hold:

(i) The solution set S(x) is a polyhedra, and it is a face of the polyhedra G(x).

(ii) There exist vectors ai, i ∈ I, satisfying aTi z = hi(x) for any i ∈ I and z ∈ S(x) such
that S(x) = { z |AT

I z = hI(x), A
T
Ī
z ≤ hĪ(x)} where I ⊂ {1, 2, · · · , n}, |I| < m, and

Ī = {1, 2, · · · , n} \ I.
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For example, consider the problem:























min z1 + 2z2
s.t. −3z1 − z2 ≤ −6 + x

−z1 − 2z2 ≤ −4 + x
z1 ≤ 5 + x
z2 ≤ 7 + x.

The solution set S(x) = {(z1, z2) | − z1 − 2z2 = −4 + x, −3z1 − z2 ≤ −6 + x, z1 ≤
5 + x, z2 ≤ 7 + x} is a polyhedra , and it is a face of G(x) for a fixed x.

Without loss of generality, we assume that I = {1, 2, · · · , p}. Let z = (z̄T , wT )T where
z̄ ∈ <p and w ∈ <m−p, AT

I = (AT
IBA

T
IN) where AIB ∈ <p×p and AIN ∈ <(m−p)×p, and

AT
Ī
= A\AI . Then the set S(x) becomes

S(x) = {(z̄T , wT )T |AT
Ī (

−AT
IBA

T
IN

Im−p
)w ≤ hĪ(x)− AT

Ī (
A−T

IB hI(x)

0
),

z̄ = A−T
IB hI(x)− A−T

IB AT
INw}.

Define

Q(x) = {z|Hw ≤ f(x)},
Q(x+ αv) = {z|Hw ≤ f(x+ αv)},

where f(x) = hĪ(x)−AT
Ī
(
A−T

IB hI(x)

0
), f(x+ αv) = hĪ(x+ αv)−AT

Ī
(
A−T

IB hI(x+ αv)

0
),

H = AT
Ī
(
−AT

IBA
T
IN

Im−p
).

Lemma 3.2. If z is an extremal point of the set G(x), then the point w satisfying z1 =

(
A−T

IB hI(x)

0
) + (

−A−T
IB AT

IN

Im−p
)w must be an extremal point of Q(x).

According to AM2, there exist an index set J̃ satisfying |J̃ | = m. Without loss of
generality, we assume that J̃ = {1, 2, · · · ,m}, then there exists z ∈ G(x) such that
aTi z = hi(x), i = 1, 2, · · · ,m.

Lemma 3.3. The collection of {(−AINA
−1
IB Im−p)ai}mi=p+1 is linearly independent.

Proof. Let

λp+1(−AINA
−1
IB Im−p)ap+1 + · · ·+ λm(−AINA

−1
IB Im−p)am = 0. (29)

All we done are to prove that λ = (λp+1, λp+2, · · · , λm)
T = 0. In fact, (29) is translated

into

(−AINA
−1
IB Im−p)(ap+1, ap+2, · · · , am)







λp+1
...
λm





 = 0. (30)
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Let (ap+1, · · · , am)T = (ÃT
ĪB
, ÃT

ĪN
)T , then (30) becomes

(ÃĪN − AINA
−1
IBÃĪB)λ = 0.

According to AM2, one has from Linear Algebra that the matrix ÃĪN − AINA
−1
IBÃĪB is

nonsigular. Hence, λ = 0.

Lemma 3.4. If AM1 ∼ AM4 are satisfied, then

(i) Q(x) is bounded and nondegenerated, i.e., At any extremal point w ∈ Q(x), the
collection of {Hj|j ∈ J(w)}, where J(w) = {j|HT

j w = fj(x)}, are linearly indepen-
dent.

(ii) Q(x) does not contain unnecessary polyhedral constraints for any x ∈ domQ(x).

(iii) f : Ω → <n+1 is differentiable at x in a direction v.

Proof. It is clear from AM1 ∼ AM4 and Lemma 3.2–3.3.

Let B(x, r) = {w|〈r, w〉 = δ∗(r|Q((x))} for r ∈ S̄ ⊂ <n−p where S̄ is the unit ball in <n−p.
If w ∈ B(x, r), then we define Jr(z) = {j|〈Hj, w〉 = fj(x), j = 1, 2, · · · , n − p} where

Hj = (−AINA
−1
IB Im−p)ap+j, fj(x) = hp+j(x)− aTp+j(

A−T
IB hI(x)

0
) for j = 1, 2, · · · , n− p.

Without loss of generality, assume that Jr(w) = {1, 2, · · · , q}.
Define

BJr(w) = (−AINA
−1
IB Im−p)(ap+1, ap+2, · · · , ap+q),

B̄Jr(w) = BT
Jr(w)BJr(w).

Theorem 3.5. If AM1 ∼ AM4 are satisfied, and a linear programming is given by
formula (27), then

ρH(S(x+ αv), S(x) ) ≤ γ ‖h(x+ αv)− h(x) ‖,

where

γ = max
u∈S

max
Jr(w)∈F(x,r)

‖ (AI AJr(w))
+u ‖,

F(x, r) = { Jr(w) | Jr(w) = { i | 〈Hi, w〉 = fi(x), w ∈ B(x, r) } },
r = ‖(−AINA

−1
IB Im−p)u‖−1(−AINA

−1
IB Im−p)u.
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Proof. We have from Theorem 2.8 that

ρH(S(x+ αv), S(x))

= ρH((
A−T

IB hI(x+ αv)

0
) + (

−A−T
IB AT

IN

Im−p
)Q(x+ αv), (

A−T
IB hI(x)

0
)

+(
−A−T

IB AT
IN

Im−p
)Q(x))

= max
u∈S

| δ∗(u|( A−T
IB hI(x+ αv)

0
) + (

−A−T
IB AT

IN

Im−p
)Q(x+ αv)))

−δ∗(u|( A−T
IB hI(x)

0
) + (

−A−T
IB AT

IN

Im−p
)Q(x)) |

= max
u∈S

‖ 〈u, ( A−T
IB (hI(x+ αv)− hI(x))

0
)〉+ δ∗((−AINA

−1
IB Im−p)u |Q(x+ αv))

−δ∗((−AINA
−1
IB Im−p)u |Q(x)) ‖.

It follows from Lemma 3.4 and Theorem 2.9 that the set-valued mappingQ is differentiable
at x in a direction v, and

Q+
x (v) = { g |Hg ≤ f ′

+(x; v) +Nx,ve },
Q−

x (v) = { g |Hg ≤ f ′
−(x; v) +Nx,ve },

where

[f ′
+(x; v)]

i =











[f ′(x; v)]i if [f ′(x; v)]i > 0

0 otherwise

i ∈ {1, 2, · · · , n− p},

[f ′
−(x; v)]

i =











−[f ′(x; v)]i if [f ′(x; v)]i < 0

0 otherwise

i ∈ {1, 2, · · · , n− p}.

For r = ‖(−AINA
−1
IB Im−p)u‖−1(−AINA

−1
IB Im−p)u ∈ S̄ and w ∈ B(x, r), following the

proof line in Theorem 2.9, we obtain that

δ∗(r|Q+
x (v)) = 〈(BJr(w)B̄

−1
Jr(w))

T r, f̄ ′
+(x; v) +Nx,vē〉,

δ∗(r|Q−
x (v)) = 〈(BJr(w)B̄

−1
Jr(w))

T r, f̄ ′
−(x; v) +Nx,vē〉,
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where

[f̄ ′
+(x; v)]

i =











[f ′(x; v)]i if [f ′(x; v)]i > 0

0 otherwise

i ∈ Jr(w),

[f̄ ′
−(x; v)]

i =











−[f ′(x; v)]i if [f ′(x; v)]i < 0

0 otherwise

i ∈ Jr(w).

ē = (1, 1, · · · , 1) ∈ <|Jr(w)|, |Jr(w)| denotes the number of elements of the index set
Jr(w). Then δ∗(r|Q+

x (v))− δ∗(r|Q−
x (v)) = 〈P (r), f ′(x; v)〉, where P (r) = [r(BJr(w)B̄

−1
Jr(w)),

0, · · · , 0]T . By Taylor expansion, we have that

δ∗(r|Q(x+ αv)) = δ∗(r|Q(x)) + α[δ∗(r|Q+
x (v))− δ∗(r|Q−

x (v))] + ox,v,r(α),

f̄(x+ αv) = f̄(x) + αf̄ ′(x; v) + ōx,v(α),

f(x+ αv) = f(x) + αf ′(x; v) + ox,v(α).

Following the line of proof in Theorem 2.9, one has that

δ∗(r|Q(x+ αv))− δ∗(r|Q(x))− α[δ∗(r|Q+
x (v))− δ∗(r|Q−

x (v))]

= 〈(BJr(w)B̄
−1
Jr(w))

T r, ōx,v(α)〉

= 〈P (r), ox,v(α)〉.

Therefore, one obtains that

α[δ∗(r|Q+
x (v))− δ∗(r|Q−

x (v))] + ox,v,r(α)

= 〈P (r), αf ′(x; v) + ox,v(α)〉
= 〈P (u), f(x+ αv)− f(x)〉

= P (r)T (−AT
ĪN(

A−T
IB

0
) Im−p)(h(x+ αv)− h(x)).

Let AT
Ī
= (

ÃT
ĪB

ÃT
ĪN

ÝAT
ĪB

ÝAT
ĪN

). Computing

P (r)T (−AT
ĪN(

A−T
IB

0
) Im−p)

= ‖(−AINA
−1
IB Im−p)u‖−1u(

−A−T
IB AT

IN

Im−p
)(ÃĪN − AINA

−1
IBÃĪB)

·[(ÃT
ĪN − ÃT

ĪBA
−T
IB AT

IN)(ÃĪN − AINA
−1
IBÃĪB)]

−1(−ÃT
ĪBA

−T
IB Iq 0q×(n−p−q))
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leads to

α[δ∗(r|Q+
x (v))− δ∗(r|Q−

x (v))] + ox,v,r(α)

= ‖(−AINA
−1
IB Im−p)u‖−1u(

−A−T
IB AT

IN

Im−p
)(ÃĪN − AINA

−1
IBÃĪB)

·[(ÃT
ĪN − ÃT

ĪBA
−T
IB AT

IN)(ÃĪN − AINA
−1
IBÃĪB)]

−1(−ÃT
ĪBA

−T
IB Iq 0q×(n−p−q))

·(h(x+ αv)− h(x)).

Consequently, we have the following inequality

δ∗(r|Q(x+ αv))− δ∗(r|Q(x))

= α[δ∗(r|Q+
x (v))− δ∗(r|Q−

x (v))] + ox,v,r(α)

= ‖(−AINA
−1
IB Im−p)u‖−1uT (

−A−T
IB AT

IN

Im−p
)(ÃĪN − AINA

−1
IBÃĪB)

·[(ÃT
ĪN − ÃT

ĪBA
−T
IB AT

IN)(ÃĪN − AINA
−1
IBÃĪB)]

−1(−ÃT
ĪBA

−T
IB Iq 0q×(n−p−q))

·(h(x+ αv)− h(x)).

Then one has that

ρH(S(x+ αv), S(x))

= max
u∈S

‖ 〈u, ( A−T
IB (hI(x+ αv)− hI(x))

0
)〉+ uT (

−A−T
IB AT

IN

Im−p
)(ÃĪN − AINA

−1
IBÃĪB)

·[(ÃT
ĪN − ÃT

ĪBA
−T
IB AT

IN)(ÃĪN − AINA
−1
IBÃĪB)]

−1(−ÃT
ĪBA

−T
IB Iq 0q×(n−p−q))

·(h(x+ αv)− h(x)) ‖
= max

u∈S
‖[(AI AJr(w))

+u]T (h(x+ αv)− h(x))‖

≤ max
u∈S

‖(AI AJr(w))
+u‖ · ‖(h(x+ αv)− h(x))‖

≤ max
u∈S

max
Jr(w)∈F(x, r)

‖(AI AJr(w))
+u‖ · ‖(h(x+ αv)− h(x))‖.

Lemma 3.6. [6] Let A = (a1, a2, · · · , am) ∈ <n×m, n ≥ m, be a column partitioned
matrix, and Ar = (a1, a2, · · · , ar). Then for r = 1, 2, · · · ,m− 1, it follows that

σ1(Ar+1) ≥ σ1(Ar) ≥ . . . ≥ σr(Ar+1) ≥ σr(Ar) ≥ σr+1(Ar+1).

£

Remark 3.7. A result, due to Li (1994), is similar to Theorem 3.5 (but stated without
equality constraints Cx = d) if the feasible set is nonempty bounded (this assumption is
relaxed in Li (1994)). The assumptions of the feasible set in this section is stronger than
ones of Li (1994). However, the Lipschitz constant given here is smaller than or equal
to the one, γ2,2(A, ∅), due to Li (1994) under the assumptions given in this paper. The
relationship between the two Lipschitz constants is formulated in the following. £
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Theorem 3.8. γ ≤ γ2,2(A, ∅).

Proof. Let ‖(AI AJu(w))
+u‖ = maxJr(w)∈F(x, r) ‖(AI AJr(w))

+u‖. One has

γ = max
u∈S

max
Jr(w)∈F(x,r)

‖ (AI AJr(w))
+u ‖

= max
u∈S

‖(AI AJu(w))
+u‖

≤ max
u∈S

‖(AI AJu(w))
+‖.

Let ‖(AI AJ1(w))
+‖ = maxu∈S ‖(AI AJu(w))

+‖. From the definition of J(z) and assump-
tions, we know that |I|+ |J1(w)| ≤ rank(A). Take K ⊂ {1, 2, · · · , n} \ {J1(w) + I} such
that J̄ = K ∪J1(w)∪ I and rank(AJ) = rank(A). Let σp be the smallest singular value of
(AI AJ1(z)), σq the smallest singular value of AJ̄ . From Lemma 3.6, we have that σp ≥ σq.

Then σ−1
p ≤ σ−1

q . Furthermore, ‖(AI AJ1(w))
+‖ ≤ ‖A+

J̄
‖. Let F = {Ĩ|rankA = |Ĩ|}. In

consequence, we have that

γ = max
u∈S

max
Jr(w)∈F(x,r)

‖ (AI AJr(w))
+u ‖

= max
u∈S

‖(AI AJu(w))
+u‖

≤ ‖(AI AJ1(w))
+‖

≤ ‖A+
J̄
‖

≤ max
Ĩ∈F

‖A+
I ‖

= γ2,2(A, ∅).
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