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Calculating the directional derivative of a class of the set-valued mappings G(z) = {z]| Az < h(z)}, in
the sense of Tyurin (1965) and Banks & Jacobs (1970) is presented that can be viewed as an extension
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one, due to Li (1994).
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1. Introduction

In the last thirty years there are many publications dealing with differentiability of set-
valued mappings (multifunctions), see for instance, Tyurin (1965), Banks and Jacobs
(1970), Hogan (1973), Huard (1979), Aubin and Frankowska (1990), Percherskaya (1982,
1986), Minchenko and Volosevich (2000) .

Let G : Q — L(R™) be a set-valued mapping, where  C R" is an open set and L(R™)
is the set of nonempty convex compact subsets in . We denote by pg(S1, S2) the
Hausdorff distance of sets S; and Sy, and by 6*(-|S) the support function of a convex
set S.

The results presented in this paper is grounded on the space of pairs of convex sets
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with the operations of addition and scalar multiplication and on a corresponding quotient
space defined by an equivalence relationship of pairs of convex sets, and the basic concepts
can be referred to references, for instance, Hérmander (1954), Banks and Jacobs (1970),
Demyanov and Rubinov (1983), and Pallaschke and Urbariski (2000). Some main points
that will be used later on are listed below.

In L(R™), the algebraic operations of addition and multiplication by a nonnegative real
number are defined in a natural way,

A+B = {z|z=a+bac A be B}
cA = {cala€e A}, (c>0).

These operations possess usual properties, i.e., associativity, commutativity and distribu-
tivity. Consider the set K? defined as follows

K*=L®R™) x LR™) ={(A, B)|A€ LR™),B¢c L(R™)}
The operations of addition and scalar multiplication in K2 are defined by

(AhBl)—'—(AQ, BQ)I(A1+A2, Bl+BQ>
_ [ (a4, aB) if a>0 (1)
O‘(A’B>—{ (|a|B, [a]4)  if a<o0,

where (A;, B;) € K%, i = 1,2, and (A, B) € K2 A partial ordering "= in K? is
defined by
(Al, Bl) - (AQ, BQ) if and Ol’lly if A1 + BQ 2 AQ + B1

for (A;, B;) € K%, i = 1, 2. The equivalence relation induced by ">’, denoted by '~
(see for instance, Hérmander (1954)), is defined by
(Al, Bl) ~ (A27 Bg) if and only if A1 + B2 = A2 + Bl.

We define K; = K2/ ~ and [-, -] denotes its representative (element). The operations
of addition and scalar multiplication in K are the same substantially as (1), i.e., by

[ A1, Bi]+ [ Ay, By] =[A1 + Ay, B + By
[ [aA, aB] if a>0
O‘[A’B]{ [alB, [a]A]  if a <0,
Where[AZ-, Bl]€K1,2:1,2,[A,B]€K1

A kind of directional differentiability for set-valued mappings based on the Hausdorff
distance (see for instance, Tyurin (1965), Banks & Jacobs (1970) and Pecherskaya (1982,
1986)), which will be used in this paper, is given by the following definition.

Definition 1.1. A set-valued mapping G is said to be directionally differentiable at
x €  in a direction v € R”, if there exists a pair of nonempty compact convex sets,
[GF(v), G (v)], such that for a sufficiently small positive number «,

pr(G(z + av) + oG (v), G(x) + aG (v)) = 040 () (2)
is valid, where o,,(a)/a 2 0, G+ (v),G5(v) € L(R™). The pair [G(v), G (v)] is
called a directional derivative of G at z in v.
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The next definition is alternative one equivalent to the definition above.

Definition 1.2. A set-valued mapping G is said to be differentiable at z in a direction
v, if for x € Q, v € R™ and a sufficiently small positive number «, there exists a pair of
nonempty convex compact sets, [G}(v), G (v)], such that the limit

L 8] Gl +av) = 8°( | G(x)

al0 «

=0"( | GI(v)) = 0"(- | G (v)) (3)

exists. The pair [G] (v), G, (v)]is called the directional derivative of a set-valued mapping
G at z in the direction v.

The differentiability of the set-valued mapping F'(x) defined by
F(z) :={z]| Az <z} (4)
was investigated by Percherskaya (1982,1986). The linear programming (LP)

{ Zntm ilzzg h(z) (5)

where A is an n X m matrix, n > m and h : Q — R" is a vector function. Let p(z) =
min{c’z| Az < h(z)}, S(z) ={z2]A4z < h(z), 'z < p(x)}. It follows from Klatte
(1987) that S is Lipschitz continuous, i.e., there exists v > 0, such that for a sufficiently
small positive number o > 0, x € €2, and v € (), we have that

pr(S(x), 5(x + av)) < vl h(z + av) — h(z) |. (6)

There are some papers dealing with the topic about estimation to v, see for instance Cook
(1986), Li (1993, 1994), Mangasarian (1987), Robinson (1973). A bound to v due to Li
(1994) is smaller than or equal to the one given by Mangasarian and Shiau (1987). A new
bound of v, obtained by using differential results of the set-valued mapping S(x) given
above, will be given in this paper. It will be shown that the new result is smaller than
others under some assumptions.

This paper is organized as follows. In Section 2, the differentiability of the set-valued
mapping G(x) := {z | Az < h(x)} will be given, where h(-) is directional differentiable at
x in the common sense. Based on a perturbation to linear programming (5) by h(z 4+ av),
a new bound to -, is presented in Section 3.

2. Directional derivative for a class of set-valued mappings
Consider a class of set-valued mappings being of the form

Gz):={z | Az < h(x)}, (7)
where A is an n X m matrix, n > m, h : 2 — R" is a vector function in the open set
QcC R

Let a; be a column vector composed of elements of the i-th row vector in A, where
i =1,2,---,n. Without loss of generality, we may assume that ||a;|| = 1, where || - ||
denotes the Euclidean norm.

The following assumptions will be used later on.
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AM1 h:Q — R"is directionally differentiable at x in a direction v.

AM2 G(z) is bounded and nondegenerate in the sense of all extremal points. i.e., At any
extremal point z € G(z), the set of vectors {a;|j € J(z)} are linearly independent
where J(z) = {j|aj z = h(x)}.

AM3 G(x) does not contain unnecessary polyhedral constraints for every x € domG(x) =
{x € Q|G(x) #0D}, ie., every a; is a normal vector to some (m-1)-dimensional face

of G(x).

It is clear that the set-valued mapping G defined by formula (7) is a closed convex set at
every point. If AM?2 is satisfied , then G(z) is bounded. Consequently, G(z) is a compact
convex set.

Let B(z,u) = {z € G(z) | 6" (u | G(z)) = (u,2) }. If z € B(z,u), let J,(2) = {i |
(a;,z) = hi(x), 1=1,2,---,n}. Without loss of generality, we may assume that J,(z) =
{1,2,3,-- s}

The following Lemma is a direct consequence of [Lemma 2.5, 4].

Lemma 2.1. Let G(x) be defined by formula (7). If AM1 and AM2 are satisfied, then

the set-valued mapping G € L(R™) is locally bounded at x. O
Define
Gr(v) = {g|Ag <R (z;v) + None} (8)
G,(v) = {g]Ag <h_(z;v) + Ny.e}, (9)

where N, , is sufficiently large positive number depending on z, v,

e=(1,1,---, )T eR"

| (A (x;0)]F if [W (z;0))] >0
[, (25 0)]" = ief{1,2,-,n}

0 otherwise

[ @ i R () <0
(W (z;0)]" = i€f{1,2,- ,n}h

0 otherwise

Lemma 2.2.  For any fized x € Q, if AM1 — AM3 hold, then there exists a positive
number N, such that G (v) and G (v) defined by (8) and (9), respectively, are bounded

and nondegenerate polyhedrals, and they do not contain unnecessary constraints for Ny, >
NO

Proof. Let x € Q, v € R", and Py = F(Ne) if N > 0 where e = (1,1,---,1)T € R™.
One has from (4) that

Pv = NF(e)
= {Nz|Az <e}.



Z.-Q. Xia, M.-Z. Wang, L.-W. Zhang / Directional Derivative of a Class of ... 215

It follows from AM1-AM2 that F(z) is bounded and nondegenerate, on dom F' = {x €
Q| F(x) # (0}, where F' is defined by (4). The fact that F'(-) does not contain unnecessary
polyhedral constraints on domF comes directly from AM3 and G(z) = F(z) when h(x)
is taken as x. As a result, one has that Py is bounded and doesn’t contain unnecessary
polyhedral constraints. Since it is assumed, at the beginning of this section, that ||a;|| = 1,
i=1,2,--- n,it follows that B,,(NV) is the largest ball inscribed in Py and Na; is a point,
on H(Py,a;) = {Nz|alz = 1} which is a facet of Py, tangent to B,,(N), where B,,(N)
is the m—dimensional ball with the origin as the center and N as the radius.

According to (8) and (9) and (4), one has that
Gi(v) = F(h (x;v) + N,.e)
G,(v) = F(h (z;v)+ Np.e).

T

We denote by B’ (1) the unit ball of the complementary subspace spanned by a; € R™.
Since H(G}(v),a;) and [h/ (x;v)]" are known, N,, can be obtained by the following
equation

([W (x;0)]" + Nyw)a; + Bl 1 (1) € H(GE(v), a;), i=1,2,---,n.
Then it follows that

[([W (2, 0)] + Npw)ai + b)) a; < [B (2;0)) + Ny i=1,2, -+, n, (10)
where b; € B!, _,(1). From the system of inequalities, (10), we have that

aj a;[y (; v)] — [I (@5 0)]” — ba;

N! > max max | 1.
BT 1<j<neni, 1 —afla; A
Similarly,
T / i ' ] T
_ ala;lh (x;v)]" — | (z:0))] — bt a;
N::;,v > max max — 10 (w3 v) [T_( )] ST

1<j<nbeBl, 1—aja;

Take N?, = max{maxi<j<, N, , maxi<i<, N ,,0}. Therefore, formula (10) is always

T, v x,v?

valid for Ny, > N? . O
Lemma 2.3. Assume that {a;|i=1,2,---,s} CR", s < m, are linearly independent,
then the general solution of the system of equations

<ai7y>:bi7 i:1727"'78
can be represented as B

y=(AAT)b+y,

where A= (ay,az,-++,as), A= ATA, b= (b1, by,---,bs)T, 3/ € [span{a;|i =1,2,---,s}]*.
O

Lemma 2.4. Let Tgpian)(u) = {y € Gz 4+ aw) | 6*(u|G(x + av)) = (u,y)}. Then for
a > 0 small enough, there exists y' € T (urav)(u) satisfying the following system:

(a;, z) = hi(x 4+ av), i € Jyu(2)

(System I) (a;, 2) < hj(z +av), j€{1,2,-- m}\ Ju(2).
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Proof. Proceeding by contradiction. Suppose that no element of Tt (;1q0)(u) satisfies the
system [.

For any solution z of the system I, we have that §*(u|G(x + av)) > (u, Z). By Lemma
2.3, z can be formulated in z = (AJM(Z)A;j(z))h(x + av) + 2/, where 2/ € [span{aq;|i €

Ju(z)}* and h(z + av) = (hy(x + av), he(z + aw), -+, hy(z + aw)). Then one has that
3 (u|G(z + aw)) > (u, (AJH(Z)AEUI(Z))h(x + av)). By the Mean Value Theorem, we have
that

h(z + av) = h(x) + a /01 B (z + atv;v)dt, (11)

where 0 < ¢t < 1. It is clear that 6*(u|G(z)) = (u, (AJM(Z)AE(Z))B(x» in terms of defini-
tions of B(z,u) and J,(z) and Lemma 2.3. Thus one obtains that

1
3 (u| Gl +av)) > (u,(As@ A7 L) (A(z) + a/ B (z + atv;v)dt))
0
1
= (u, (AJu(z)A;ul(z))h(x» + a(u, (AJu(z)A;:(z))/O W(x + atv;v)dt).

in other words,
— 1 —
WG +av)) 5 WG > alu (Ano Az, [ Fla+amsad). (12
0

On the other hand, for any y € Tg(atav)(u), there exists k& € J,(2) such that (ag,y) <
hi(z + av). Let fol B (z + atv;v)dt = (fi(a, z,v), fola,2,0), -, fs(a, 2,0))T. Tt follows
from formula (11) that (ax,y) < hg(x) + afi(a,z,v). Since {a;|j € Ju(2)} are linearly
independent, there exists p € R™ such that (a;,p) = fi(a, z,v), i € J,(2). One has that
(ag,y — ap) < hi(x) and hence (ay,y —ap —z) < 0. Since (a;,y) < hj(x + av), j €
Ju(2), it follows that (a;,y —ap —2) <0, j € Ju(2),ie,y—ap—2z € Kgu(2), where
K¢(2)(2) denotes the tangent cone of G(x) at z. Thus, one has (u,y —ap —z) < 0.
Furthermore, (u,y) — (u, z) < a(u,p). In consequence, one has that

5 (ulG(x + av)) — 8" (ulG()) < afu, (A, A7) / H(e+atvo)dt).  (13)

It contradicts with the fact that formula (12) and formula (13) hold simultaneously. The
proof is completed. [

Lemma 2.5. Let .Tai(v)(u) = {g4 € Gj(v)|5*(u|Gi(v)) = (u,g4)}, then there exists
q, € Tt ) (u) which satisfies the following system:

(ai, 9) = [P (@;0) " + Ny, 1€ Jyu(2)
<Sy8tem ]I) <aja§> S [h/—i-(x;v)]j—’—Nx,v ] 6{1727"' ’m}\‘]u(z)

Proof. Proceeding by the contradiction. Assume that no element of T+, (u) satisfies
the system II.
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For any solution g of the system II, it follows that 0*(u|G} (v)) > (u,g). we know from
Lemma 2.3 that g = (AJH(Z)A;ul(Z))[h’JF(x; v) + N, €] + ¢, where

g € [span{a;|i € J,(2)}]*

i | (A (x;0)]" i [W(z;0)] >0

(B!, (x;0)]" = i € Ju(z)
0 otherwise

e=(1,1,---, )T e ®*.
Consequently, one has
0" (ul G (v) > (u, (Ag, (5 A7) [ (23 0) + Noe]). (14)

On the other hand, For any g € T+, (u), there exists k € J,(2) such that the inequality

(ak, 9+) < W (z;v)]* + N,, holds. Since {a;|i € J,(z)} are linearly independent, there
exists p € R™ such that (a;,p) = hi(z) — [W.(2;0)]" = Ny, @ € Ju(2). Then one has
that (ak, ¢, +p) < he(xz). Thus, one has that (a;, ¢ +p—2) < 0, i € J,(2), ie,
g, +p—2 € Kgu)(z), where Kg)(2) denotes the tangent cone of G(z) at z. Thus,
(u, g, +p—2) <0, ie, (u,g,) < (u,z) — (u,p). It follows that

5 (ul G (0)) < (1, (A, A5 ) (50) + N8, (15)

It contradicts with the fact that formula (14) and formula (15) hold simultaneously. The
proof is completed. O]

The following lemma can be proved in a way similar to the proof of Lemma 2.5.

Lemma 2.6. Let Ty, (u) = {g9- € G, (v)[6"(u|G; (v)) = (u,g-)}, then there exists
9 € T, (u) which satisfies the following system:

(W (z;0)]" + Np, i € Ju(2)

<CL¢, >
( System 111 ) ' 9 (z;0) 4+ Ny, G €{1,2,--- ,m}\ Ju(2).

i

Lemma 2.7. Let N}, be the same as in Lemma 2.2, VN, , > N, VNZ , > N . Then
one has that

(G, (2, 0) + NL€), GH(2:0) + N} )] ~ (GO, (250) + N2 €, GUHL(:0) + N2, €]

Proof. Take u € S. We can obtain from Lemma 2.3, Lemma 2.5 and Lemma 2.6 that

0" (ul (W (z,0) + N2 e)) = (u, (A, AS )R, (w;0) + N, e)),
8 (ulG(M.(w,0) + Ni,e)) = (u,(As A5 )R (x;0) + N} @),
0 (u|G(Hy (w,0) + N2 €)= (u, (As A )R (@5 0) + N7 @),
8 (ulG(M(w,0) + N2 ,€)) = (u, (As A7) (;0) + N7 €)).
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Then
0" (ul G (W, (z,v) + Ny e)) — 0" (uG (R (w,v) + Ny @) = (u, (AsA7 )W (:v),
5 (WG, (2,0) + N2,0)) — 8" (ulG(H.(2,0) + N2,0)) = {u, (Agyy A5 (5 0)).
Let

A=GW, (z,v) + N, e), B=G(h (v,0) + Ny ,e),
C =GN (z,v)+ Nive), D = G(h (z,v) + Nive).

Then, one has that
pu(A+D,B+C) = max[6"(u[A) + 6" (u|D) — [0"(u| B) + 6" (u|C)]]
= max|[[0"(u[A) = 8" (u[B)] — [07(u|C) — 6" (u| D]]]
= 0,
i.e., [A, B] ~ [C, D]. The proof is completed. O]
Theorem 2.8. [15] Let A, D € L(R™). Then
pu(A, D) =[6°(- | A) = 6°(- | D) los), (16)

where C(S) is a space of all functions with a uniform norm which are continuous. ([l

According to (2) and (16), we have

max | §"(u | G(z + av) + G, (v)) = 8"(u | G(z) + aG (v)) |= 0p0(a),  (17)

where o, ,(a)/a 2% 0. By Minkowski duality, see [11], (17) can be formulated in

[ 0%(u| Gz + av)) = 0" (u | G(x)) = (6" (u | G5 (v)) = " (u | G, (v))) |= 0zula), (18)

where 0, ,(a)/c olb, 0, in which the limit is uniform with respect to u.

Theorem 2.9. Suppose the set-valued mapping G(x) is defined by formula (7). If AM1—
AM3 are satisfied, then the set-valued mapping G is directionally differentiable at x in
a direction v. The pair [G}(v), G, (v)] defined by formula (8) and formula (9) is the

directional deriwvative of G at x in v.

Proof. It is enough to prove that formula (18). For v € S and a > 0 small enough,
consider equations

0" (u | G(x)) = (u, 2), (19)
0 (u | Gz + av)) = (u,y'), (20)
0" (u | G (v) = (u. g4), (21)
0" (u | G (v) = (u, g_). (22)
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From Lemmas (2.4)-(2.6), one has that z, ¥/, ¢, and ¢’ in formulae (19)—(22) are solu-
tions of the following four systems

) —hi(x) =0, i€ J,(z2), (
) —hi(z+av) =0, i€ J,(2), (24
aiag> - [h;_(l"U)]l —N=0, 1€ JU<Z>7 (
a;,g) — [A (x;0)]"' = N =0, i€ J,(z2) (

8
w

respectively.

In what follows, we only discuss equation (21) (the others can be similar to be discussed).
Since {a; | ¢ € J(z)} are linearly independent, every solution of equation (25) can be
represented as

9= (AnA7 )R (z0) + N, @l + ¢,
where ¢’ € [span{a;|i € J,(2)}]*, Aj. o) = Ai(z)A Ju(z)- Consequently, one has that
0" (ulGy (v)) = (u,g})

= (u, Ay, A, (W (230) + Noe))

= ((AJH(Z)AJU(Z)) u, b, (z;0) + Ny 8).
Similarly, one has that

0 (ulG, (v) = ((An@As ) w b (250) + Nywe),
0 (ulG(x)) = ((An A7) u h(z)),
0" (ulG(z + av)) = ((As,A] (Z)) u, h(z + av)).

Let |J,(z)| denote the number of elements J,(z). Then |J,(z)| < rank(A). Suppose
rank(A) = |I|, then one has that

5 (0l Gl + aw)) — 5" (ulG(@) — ald* (]G () — 8" (ulG5 (v))]

(A z)A () h(z 4+ av) = h(x) — ol (x;0) — B (2;0)])]

= (A () 0n0(@)))]

< ||(AJu Ju(z))TUH N0z ()]

< max [ A7[] - [lull - |6z (@)1,

where F = {I ||I| = rank(A) = rank(A;)}. It follows that
max 6" (u|G(z + av)) — 6" (u|G(x)) — 8" (u|GZ (v)) = 6" (u|GZ (V)] = oru(@),

0z,0(a)
o

where 0 (uniformly with respect to u). O

Corollary 2.10. Let G be defined by formula (7). If AM1— AM3 are satisfied, and h(x)
1s differentiable, then G is directional differentiable at x in a direction v. It’s directional
derivative |G} (v), G, (v)] is defined by the following form

Gi(v) = {g|Ag < [Vh(z)v]. + Ne},

G, (v) = {g|Ag <[Vh(z)v]- + Ne}.

T
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where e and N are defined by the way that is the same as defined in Theorem 2.9.

| ([Vh(z)o] if [Vh(z)v]' > 0
[Vh(z)v], = ie{l,2,--- n},
L0 otherwise
(—[Vh(z)v] if [Vh(z)v])' <0
[Vh(z)v]" = ie{l,2,--- n}.
0 otherwise

Proof. It can be directly obtained from Theorem 2.9.

3. Application to linear programming

In this section, we analyse the stability of the set of optimal solutions for a perturbed
linear programming, using results obtained in the last section. Consider the following
linear programming problem
- T
min ¢z (27)
st. Az < h(x),

where A is an n X m matrix, n > m, ¢ is a m dimensional vector, and h : @ — R" is a
vector function. Define

G(r) = {z]Az < h(2)},
o(r) = min{c’'z |z e G(z)},
S(z) = {z€G(z)|p(r)=c"z}.

Consider the perturbed linear programming

min !z
{ st. Az < h(z + av). (28)
Define
G(z + av) {z | Az < h(z + av)},
o +av) = min{c’z|z¢c Gz +aw)},
S(x+av) = {z€G(x+av)]|p@+av)=c"z}.

The following assumption will be required in the rest of this section.

AM4 The set S(z) is not a singleton.

Under the assumption AM4, we can immediately obtain the following lemmas.
Lemma 3.1. The following results hold:

(i)
(i)

The solution set S(x) is a polyhedra, and it is a face of the polyhedra G(x).

There exist vectors a;,i € I, satisfying al z = hi(x) for anyi € I and z € S(x) such
that S(z) = {z| ATz = hi(x), ATz < hy(x)} where I C {1,2,--- ,n}, |I| <m, and
I={1,2,--- ,n}\ I
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For example, consider the problem:

min 2z + 22
st. -3z —2m<-6+zx
—21 — 220 < -4+
71 <b+4ux
22§7+£IZ‘.

The solution set S(z) = {(z1,22)] — 21 — 220 = =4+, =321 — 20 < =6+, z; <
5+ x, 22 <T7+a}is apolyhedra , and it is a face of G(z) for a fixed x.

Without loss of generality, we assume that I = {1,2,---,p}. Let z = (z7,w")T where
z e R and w € NP, AT = (AT, AL where A;p € RP%P and Ay € RMP)*P | and

= A\A;. Then the set S(x) becomes
—AlpAly

Ly

< y(a) — AF e

EZA;ghI( ) — ugA NW}

S(x) = {(z", w")"AL(

Define

Qz) = {z[Hw < f(2)},
Qzr+av) = {z|Hw < f(x + av)},

Afg hi(2) Apg hi(z + av)

where f(z) = hi(z) — A}—F( 0 ), f(z 4+ av) = hi(x + av) — AIT( 0 ),
—AlpAlx
H = AL( I ).

Lemma 3.2. If z is an extremal point of the set G(x), then the point w satisfying z, =
Apg ha(2) ~Ajp Aly
( )+ (
0 Iy

Yw must be an extremal point of Q(x).

According to AM2, there exist an index set J satisfying \j | = m. Without loss of
generality, we assume that J = {1,2,---,m}, then there exists z € G(z) such that
alz=hi(x),i=1,2,---,m

Lemma 3.3. The collection of {(—AnArg  Im—p)ai}i, .y is linearly independent.

Proof. Let
Mot (mAINATE Tmp)aps + -+ An(—AINATE Tnp)am = 0. (29)
All we done are to prove that A = (A\py1, A\pra, -+, Am)? = 0. In fact, (29) is translated
into
Ap+1
(_AINAI_J.Elf L—p)(pi1, Gpya, - 5 am) : =0. (30)

Am
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Let (apy1,--,am)" = (AL

B’ A?N>T; then (30) becomes

(Apy — AInAT AN = 0.

According to AM2, one has from Linear Algebra that the matrix A7y — AINAI_]%/L*B is
nonsigular. Hence, A = 0. [l

Lemma 3.4. If AM1 ~ AMA4 are satisfied, then

(i) Q(z) is bounded and nondegenerated, i.e., At any extremal point w € Q(x), the
collection of {H;|j € J(w)}, where J(w) = {j|H w = f;(x)}, are linearly indepen-
dent.

(ii) Q(z) does not contain unnecessary polyhedral constraints for any x € dom@(x).
(iii) f:Q — R s differentiable at x in a direction v.

Proof. It is clear from AM1 ~ AM4 and Lemma 3.2-3.3. OJ

Let B(x,r) = {w|{r,w) = 6*(r|Q((x))} forr € S C R*~P Where S is the unit ball in R"P.
If we B(x,r), then we define J.(z) = {j|[(H;,w) = f;j(x),j = 1,2,--- ,n — p} where

_ AT h( )
H; = <_AINA1Elz Lonp)apij, fi(x) = hpyj(z) — agﬂ( IBOI

Without loss of generality, assume that J,.(w) = {1,2,--- ,q}.
Define

Yforj=1,2,--- ,n—p.

Brw = <_AINAI_é [m—p)(ap+1>ap+2a s 7ap+q)v

Biw) = B wBiw):

Theorem 3.5. If AM1 ~ AM4 are satisfied, and a linear programming is given by
formula (27), then

pu(S(r+av), S(z)) < v h(z + av) — h(z) ||,
where

= A A w * Y
VTN | (A A

f(l‘,?“) = {JT(w) | ‘]T(w) = {Z | <Hi7w> = fZ(ZL’), w e B(ZL’,T‘) } }7
ro= (=AwAg Lupull T (—AmwAr Lnp)u.
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Proof. We have from Theorem 2.8 that

pu(S(x + av), S(z))

A phi(z + av)

= (B ) (TN (e w1
T ()
oy AThile taw) | —ATEAT,
= max |5l (T 06+ a)
5l g ) (TN o)) |
= mae | G, (8 PEF 0TI A AT L )ul QU av)

—0"((—AivAzp  Im—p)u| Q) |l

It follows from Lemma 3.4 and Theorem 2.9 that the set-valued mapping @ is differentiable
at z in a direction v, and

Qr(v) = {glHg < fi(x;0) + Nype },
Q. (v) = {glHg < fl(z;v) + Nype },

where

([f/(;0)]" 3 [f/(;0)]" > 0

{f—/i-(a:?U)]l: i6{1727"'7n_p}7
0 otherwise
(—[f'(z;0)]" i [f (3 0)] < 0

[f,—(x;v)]i: iE{l,Q,---,n—p}.
0 otherwise

For r = |[(=AinAr s Lnp)ul| Y(=AnvA;s Lnp)u € S and w € B(z,r), following the
proof line in Theorem 2.9, we obtain that
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where

 ((PEf ol >0

[fi(z;0)]" = i€ Jr(w),
0 otherwise
(—[/"(wo) i [f@ o) <0

[ (;0)]" = i€ J(w).
L0 otherwise

= (1,1,---,1) € R |J.(w)| denotes the number of elements of the index set

Jy(w). Then 6*(r|QF (v)) = *(r|Q; (v)) = (P(r), f'(z;v)), where P(r) = [r(By,w) B} (u)):
0,

.-+, 0]T. By Taylor expansion, we have that

F1Q+av) = 8(1Q@) + ald" (1QE (1)) = 8" (1@ ()] + om0,
flx+av) = f(z)+af(z;v)+ 0z0(),
flx+av) = flz)+af(z;v)+ 0z(0)

Following the line of proof in Theorem 2.9, one has that

07 (r|Qz + av)) — 5"(r|Q(x)) — af6™(r|Qz (v)) — 67(r|Q; (v))]
= (BB )" 1 0m0())
= (P(r), 0r0(a)).

Therefore, one obtains that

afo”(r|Qy (v) — 6" (r|Q; ()] + 0z r(a)
(P(r), af'(z;v) + 0r.0(a))
(P(u), f(x +av) = f(z))

AfT
= P(r)T(=ALy( 63) Lyn—p)(M(z + av) — h(z)).
AT AT
Let AT = ( .IF . IN'). Computing
AfB AI‘N
v v As
P(r) (_AI_N( 0 ) ]m—p)
_ _ — AT AT ~ s
= (=AmwA7z  Lnp)ull " u( [IB ™) Ay — AivArgA7s)
m—p

[(AITN - A?BAI_EA?NXAfN - AINAI_EI;ATB)]_I(_AIIBA;g Iy Ogx(n-p—q))
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leads to
ald*(r|Qy (v) = 6" (r|Q, ()] + 0z, (at)

—Ajp Aly
Inp
[(A%N - A%BAIEA}FNXAI_N - AINA;éAI_B)]il(_A%BAI_g Iy Ogx(n-p-q))

«(h(x + av) — h(zx)).

= [(—AvALs  In—p)ull ™ u( )(Ary — A A7 Arp)

Consequently, we have the following inequality

0" (r|Q(z + av)) — 6*(r|Q(x))
= afd"(r|Q7 (v)) = 5" (r|Q; (v))] + 02 (@)
~Afp Aly
Iy
[(AITN - AITBA;]_?A?N)(AI'N - AINA?)%AI'B)]A(_A[TBAI}? Iy Ogx(n-p-q))
«(h(x 4+ av) — h(x)).

= [(—AmvArp  Tnp)ul = u’( )(Ary — AivArsArp)

Then one has that

pu(S(z + av), S(z))

— max H <u, ( A]_B (h](ZE +OO”}) - h[(l’)) )) +UT<

ueS

—AZ AT = 13

IIB ™) Ay — AivArpAzs)
m—p
[(AITN - A?BA;EA?N)<AfN - AINAEAI_B)]A(_AIIBA;BT Iy Ogx(n-p—q))
(h(z + av) = h(z)) ||

max |[(Ar Ay, ) el (h(z + av) — b))

< max (A Ano) ull- (G + av) — h(z)|
< Ar A )Tl - ]|(B —h .
< max max (A As)ul (b +ae) - b))
]
Lemma 3.6. [6] Let A = (a1,a9, - ,ap,) € R, n > m, be a column partitioned
matriz, and A, = (a1, a9, -+ ,a,.). Then forr=1,2,--- m —1, it follows that
Ul(Ar+1) Z Ul(Ar) Z v Z ar<Ar+1) Z O-’I'(AT') Z UT+1(AT+1)-
O

Remark 3.7. A result, due to Li (1994), is similar to Theorem 3.5 (but stated without
equality constraints C'z = d) if the feasible set is nonempty bounded (this assumption is
relaxed in Li (1994)). The assumptions of the feasible set in this section is stronger than
ones of Li (1994). However, the Lipschitz constant given here is smaller than or equal
to the one, Y92(A,0), due to Li (1994) under the assumptions given in this paper. The
relationship between the two Lipschitz constants is formulated in the following. O
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Theorem 3.8. v < 722(A,0).

Proof. Let |[(A; Ay, w)tull = maxy, wyer@ (A Ajw)) ull. One has
= ma a A Aj)”
Y= max max (A Asw) 'l

— +
= max (A Al

< .
< Iggg”(fh Agyw) "l

Let |[(Ar  Aj)"|| = maxyes ||(Ar - Aj,w))T]|- From the definition of J(2) and assump-
tions, we know that |I] + |J;(w)| < rank(A). Take K C {1,2,--- ,n} \ {/i(w) + I} such
that J = K UJy(w)UI and rank(A;) = rank(A). Let o, be the smallest singular value of
(A1 Aj(2)), 0, the smallest singular value of A;. From Lemma 3.6, we have that o, > 0.

Then 0, < o, '. Furthermore, [|[(A; Ay w)"|l < [|AF]|. Let F = {IJrankA = |I|}. In
consequence, we have that

v max max || (A7 Ajw) u

uesS Jp(w)eF(z,r)

max|[|(Ar - Ag,) ol

< [[(Ar Azl
< |IAZ]]
< max || AT
IeF
= 72,2(147@)-

]
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