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1. Introduction

In recent few years, many authors have been interested to the construction of geometric,
arithmetic and harmonic operator and functional means, because of their many interest-
ing properties and applications.
Ando (Ref [3]) has constructed the geometric mean A(g)B of two positive operators A

and B: A (g)B = max{X :

(

A X
X B

)

≥ 0}.

This operator appears, for example, in the time invariant linear optimal regulator sys-
tem: Indeed, it is well known that, (Ref [1]), the particular algebraic Riccati equation,
XAX = B has one and only one symmetric positive solution given by X = A−1(g)B.
Very recently, Atteia and Räıssouli (Ref [1]), have constructed the geometric mean of two
convex functionals from a sequence of iterations descended from the sum and the infimal
convolution. This approach permitted the authors of [1] to deduce another definition of
the geometric operator mean which, of course, coincides with the given above one. More-
over, a physical illustration of the geometric mean as an equivalent resistor of an electrical
circuit with matrices elements is introduced in [1].
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In another part; Fujii (Ref [9]) has defined the arithmetico-geometric and arithmetico-
harmonic operator means from analogies with positive numbers: Let A1 = A, B1 = B,

An+1 = An(g)Bn (resp An+1 = An(h)Bn) and Bn+1 =
1

2
(An +Bn) for each n ≥ 1. Then,

the arithmetico-geometric mean A(ag)B (resp the arithmetico-harmonic mean A(ah)B)
of A and B is the same limit of An and Bn in the strong convergence. J. Fujii and M.
Fujii (Ref [8]) have shown that the operator means mentioned above are reduced to the
numerical means and A(ah)B = A(g)B was proved by Ando.
To extend the above notions from operators to convex functionals, Räıssouli and Cher-
gui (Ref [7] and [13]), have defined the arithmetico- geometric, arithmetico-harmonic
and geometrico-harmonic means in convex analysis. Also, they have proved that the
arithmetico-harmonic mean of two convex functionals coincides with their convex geo-
metric mean constructed in [1]. In particular; in the quadratical case they have obtained
again the previous operator means and their properties. Thus the theory of functional
means contains that of means for positive operators.
The purpose of this article is to show that stability of the above functional means will
be preserved under the necessary property of monotony. This study allows us to extend
some results given by J. Fujii and M. Fujii (Ref [8]) in the positive operators case.
This paper is divided into four parts:
Firstly, we begin by presenting some definitions and results of functional means recently
introduced by many authors.
In Section 3, we study the stability of the geometric functional mean when the seqences
of functionals are decreasing. We deduce the stability to the increasing case by using the
self-duality of the geometric operation mean.
Section 4 is devoted to the particular case of positively homogenuous functionals in finite
dimension. The hypothesis of monotony is not necessary to prove the stability, but only
in this case, since we prove that even if the functionals are defined in a finite dimension
space and are not positively homogenuous, or the condition of monotony is not satisfied,
the result cannot be obtained.
In Section 5, we apply the last properties to deduce that harmonic, arithmetic, arithmetico-
geometric, aritmetico-harmonic and geometrico-harmonic functional means are still stable.

2. Preliminary

Let X be a normed space (reflexive Banach when it is necessary), X∗ its topological dual,
and < ., . > the duality bracket between X and X∗ .

If we denote by IR
X
the space of all functions defined from X into IR = IR∪{+∞,−∞},

we can extend the structure of IR on IR by setting

∀ x ∈ IR, −∞ ≤ x ≤ +∞, (+∞) + x = +∞, 0 · (+∞) = +∞,

the space IR
X

is equipped with the partial ordering relation defined by

∀ f, g ∈ IR
X
, f ≤ g ⇐⇒ ∀x ∈ X f(x) ≤ g(x).

Given f : X → ˜IR = IR ∪ {+∞} a function, we denote by f ∗ the Fenchel-conjugate of f
defined by

f ∗(x∗) = sup
x∈X

{< x, x∗ > −f(x)}, for all x∗ ∈ X∗
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and by dom f, the effective domain of f , i.e.

dom f = {x ∈ X : f(x) < +∞} .

We denote by Γ0(X) the cone of closed (i.e. lower semi-continuous: l.s.c) convex function-
als from X into IR

⋃

{+∞} not identically equal to +∞.
f ∗∗ = (f ∗)∗ denotes the biconjugate of f , which coincides with the closure of f , i.e. the
lower semi continuous hull of f . Below, we write cl (f) instead of f ∗∗.

Let f ∈ Γ0(X) and α > 0 be a real, we define the functions α.f and f.α by

∀x ∈ X, (α.f) (x) = α · f (x) and (f.α) (x) = αf
(x

α

)

.

It is not hard to prove that (cf. Ref. [10]):

(α.f)∗ = f ∗.α and (f.α)∗ = α.f∗.

Let f, g : X → ˜IR, the infimal convolution of f and g, denoted by f£g, is defined by

f£g(x) = inf{f(y) + g(x− y), y ∈ X} for all x ∈ X.

It is well known that (f£g)∗ = f ∗ + g∗, (cf. Ref. [10]).

Given a nonempty subset A of X, ΨA denotes the indicator functional of A and Ψ∗
A the

support function of A. The closure of A, i.e. the smallest closed set containing A, will be
denoted by adhA, and its relative interior by riA (cf. Ref. [14]).
The following definition is an extension of the classical arithmetic and harmonic means
of operators:

Definition 2.1. Let f , g ∈ Γ0(X) such that dom f ∩ dom g 6= ∅, we define:

i) The arithmetic functional mean of f and g by

f(a)g =
1

2
f +

1

2
g

ii) The harmonic functional mean of f and g by

f(h)g =

(

1

2
f ∗ +

1

2
g∗
)∗

= cl(f£g).
1

2
.

Proposition 2.2. Let f, g ∈ Γ0(X) then dom (f(a)g) = dom f ∩ dom g and

dom (f(h)g) = dom cl(f£g).
1

2
= adh

(

1

2
dom f +

1

2
dom g

)

.

Proof. Immediate.

Suppose that f and g belong to Γ0(X), and define the following algorithm, (Ref. [1]):














fγn+1g = 1
2
{(fγng) + (fγ∗

ng)}
fγ∗

ng = (f ∗γng
∗)∗ for all n ∈ IN

fγ0g = 1
2
(f + g)

fγ∗
0g =

(

1
2
f ∗ + 1

2
g∗
)∗

.
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Proposition 2.3. (Ref. [1]).

i) ∀n ∈ IN, (fγng) ∈ Γ0(X) and (fγ∗
ng) ∈ Γ0(X).

ii) ∀n ∈ IN, fγ∗
ng ≤ fγng , fγn+1g ≤ fγng and fγ∗

n+1g ≥ fγ∗
ng.

iii) ∀n ∈ IN, 0 ≤ fγn+1g − fγ∗
n+1g ≤ 1

2
(fγn g − fγ∗

n g) .

Theorem 2.4. (Ref. [1]). Let f, g ∈ Γ0(X). Assume that dom f (a) g = dom f (h) g.

Then the sequences (fγng)n∈IN and (fγ∗
ng)n∈IN converge pointwise in IR to the same limit

f τ g ∈ Γ0(X), furthermore: dom (f τ g) = dom f (a) g = dom f ∩dom g, f τ g = g τ f
and (f τ g)∗ = f ∗τg∗.

Remark 2.5. The pointwise convergence of the sequence (fγn g)n is proved in [1] . The
coincident limit of (fγn g)n and (fγ∗

ng)n follows by using Proposition 2.3, iii).

Corollary 2.6. Assume that X is an Hilbert space. Let A and B be two symmetric
positive operators from X into X. Put that

fA(x) =
1

2
< Ax, x > and fB(x) =

1

2
< Bx, x > for all x ∈ X. Then we have

(fAτfB)(x) = fA(g)B(x) for all x ∈ X

where A(g)B is the geometric operator mean of A and B, (cf. [1] , [3]).

Definition 2.7. (Ref. [1]). f τ g is called the convex geometric functional mean of f and

g. In particular, if g = fσ = 1
2
‖.‖2, then f τ fσ, denoted by f [

1
2 ], is called the convex

square root functional of f.

Now, for f, g ∈ Γ0(X), we consider the sequences (fn)n∈IN and (gn)n∈IN defined as follows:

{

fn+1 = 1
2
(fn + gn)

gn+1 =
(

1
2
f ∗
n + 1

2
g∗n
)∗ where

{

f0 = f
g0 = g.

Let us notice that fn ∈ Γ0(X) and gn ∈ Γ0(X) for all n ≥ 0.

Theorem 2.8. and Definition 2.9 (Ref. [7] , [13]). Let f and g in Γ0(X) satisfying the
assumption of Theorem 2.4. Then (fn)n∈IN and (gn)n∈IN both converge pointwise to the
same convex functional f(a.h)g, and called the arithmetico-harmonic functional mean of
f and g. Furthermore, one has f(a.h)g = fτg.

Corollary 2.10. With the same hypotheses and notations as Corollary 2.6, we have

fA(a.h)fB = fA(a.h)B = fA(g)B

where A(a.h)B is the arithmetico-harmonic operator mean of A and B (cf [3], [8]) and
thus A(a.h)B = A(g)B.

Theorem 2.11. and Definition 2.12 (Ref. [7] , [13]). Let f , g ∈ Γ0(X) as in Theorem
2.4.
• The arithmetico-geometric functional mean of f and g, denoted by f(a.g)g, is defined
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as the pointwise limit of the algorithm:

{

fn+1 = 1
2
(fn + gn)

gn+1 = fn τ gn
with

{

f0 = f
g0 = g.

• The geometrico-harmonic functional mean of f and g, denoted f(g.h)g, is the pointwise
limit of the following algorithm

{

fn+1 = fn τ gn
gn+1 =

(

1
2
f ∗
n + 1

2
g∗n
)∗ where

{

f0 = f
g0 = g.

Moreover there hold

f(h)g ≤ f(g.h)g ≤ fτg = f(a.h)g ≤ f(a.g)g ≤ f(a)g.

Corollary 2.13. With the above notations, we have

fA(a.g)fB = fA(a.g)B and fA(g.h)fB = fA(g.h)B

where A(a.g)B (resp. A(g.h)B) is the arithmetico-geometric (resp. the geometrico-
harmonic) operator mean constructed in [9].

Below, we write lim
n→+∞

fn = f when (fn)n converges pointwise to f .

Definition 2.14. (Ref [2]). Let X be a reflexive Banach space. We say that the sequence

(fn)n defined in IR
X

is Mosco convergent to the functional f if:

i) For all x ∈ X, for all sequence (xn)nconverging in the weak topology to x one has
f(x) ≤ lim inf

n→+∞
fn (xn) .

ii) For all x ∈ X, there exits a sequence (xn)n converging in the strong topology to x
satisfying that, f(x) ≥ lim sup

n→+∞
fn (xn) .

In this case, we write f = M- lim fn
n→+∞

Theorem 2.15. (Ref. [2]). Let (fn)n∈IN be a sequence of closed convex proper function
from X a reflexive Banach space into ]−∞,+∞]. Then the following properties hold:

i) If the sequence (fn)n∈IN increases, then it Mosco-converges to f = sup
n∈IN

fn.

ii) If the sequence (fn)n∈IN decreases, then it Mosco-converges to

f = cl

(

inf
n∈IN

fn

)

.

3. Stability of the geometric operation mean

We will begin by the following proposition which simplify the assumption of convergence
of the geometric functionnal mean.

Proposition 3.1. Let X be a Banach space and f , g ∈ Γ0 (X) , then the following equiv-
alence holds

dom f (a) g = dom f (h) g ⇐⇒ dom f = dom g. (1)
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Proof. In Theorem 2.4, the hypothesis dom (f(a)g) = dom (f(h)g) which allows us the
convergence of the algorithm to a proper closed convex functional, is equivalent to the
following:

dom f ∩ dom g = dom (cl(f£g)) .
1

2
= adh(

1

2
dom f +

1

2
dom g) (2)

Remark that dom f = dom g implies immediately dom f (a) g = dom f (h) g. Now, we
shall prove that relation (2) implies that dom f = dom g.

Indeed, (2) gives successively

1

2
dom f +

1

2
dom g ⊂ dom g, (3)

and
1

2
dom f +

1

2
dom g ⊂ dom f, (4)

Let x ∈ dom f. The inclusion (3) yields:

∀y ∈ dom g ∃ y′ ∈ dom g such that
1

2
x+

1

2
y = y′.

If y′ ∈ dom g such that y = y′ then x = y ∈ dom g and dom f will be included in dom g.

Suppose now that for all y ∈ dom g there exists y′ ∈ dom g which is different from y

such that
1

2
x+

1

2
y = y′. So, dom g is infinite and we can construct a sequence (yn)n∈IN ∈

dom g as the following:



































1

2
x +

1

2
y0 = y1, y1 6= y0

1

2
x +

1

2
y1 = y2, y2 6= y1

...
...

...
...

...
1

2
x +

1

2
yn−1 = yn, yn 6= yn−1.

Multiplying each line i by
1

2n−i
and adding them, we find

1

2
x ×

(

1−
(

1
2

)n

1− 1
2

)

+
1

2n
y0 = yn. Letting n → +∞, we obtain yn → x. Since yn =

1

2
x +

1

2
yn−1 ∈ 1

2
dom f +

1

2
dom g, we deduce x ∈ adh

(

1

2
dom f +

1

2
dom g

)

which, combined

with (2) , implies that x ∈ dom f ∩ dom g, i.e x ∈ dom g.

Using the same way and relation (4) we can prove that dom g ⊂ dom f, and the result
follows.

Below, we assume that dom f = dom g.
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Lemma 3.2. Let X be a Banach space and f , g ∈ Γ0 (X). Assume that (fn)n∈IN and
(gn)n∈IN be two decreasing sequences in Γ0 (X) pointwise convergent to f and g respec-
tively. If dom f = dom g then there exists N ∈ IN such that fnτgn exists and

lim
p→+∞

fnγpgn = fnτgn for all n ≥ N.

Proof. By Proposition 3.1, we obtain the result if we verify that there exists N ∈ IN
such that dom fn = dom gn for all n ≥ N.

Indeed, (fn)n∈IN and (gn)n∈IN are two decreasing sequences, so
dom fn ⊂ dom f and dom gn ⊂ dom g. Knowing that (fn)n and (gn)n are pointwise conver-
gent to f and g respectively, then there exists N ∈ IN such that for all n ≥ N dom f ⊂
dom fn and dom g ⊂ dom gn, and the result follows immediately.

Theorem 3.3. Let X be a reflexive Banach space and f, g, (fn)n and (gn)n as in Lemma
3.2. For all x ∈ dom f , there holds

cl inf
n

fnτgn (x) = fτg (x) . (5)

Proof. Let us show first that the sequence (fnγpgn)n∈IN converges pointwise to fγpg for
all p ∈ IN.

It is obvious that fnγ0gn (x) =
1

2
fn(x) +

1

2
gn (x) which converges pointwise to fγ0g (x).

We have fnγ1gn (x) =
1

2
(fnγ0gn + fnγ

∗
0gn) (x) , with fnγ

∗
0gn = (f ∗

nγ0g
∗
n)

∗ .

The sequences (fn)n∈IN and (gn)n∈IN are decreasing; knowing that the pointwise and
the Mosco convergences are equivalent in the monotone case (Ref [2]), we deduce that
(fn)n∈IN and (gn)n∈IN are Mosco convergent to f and g respectively. We also know that
the Mosco convergence makes the Fenchel transformation bicontinuous from Γ0 (X) to
Γ0 (X) (Ref [2]) ; then M-lim

n→+∞
f ∗
n = f ∗ and M-lim

n→+∞
g∗n = g∗.

It is clear that the sequences (f ∗
n)n and (g∗n)n become increasing and so

lim
n→+∞

f ∗
n = f ∗ and lim

n→+∞
g∗n = g∗ which yields that lim

n→+∞
f ∗
nγ0g

∗
n = f ∗ γ0g

∗. Remarking

that the sequence (f ∗
nγ0g

∗
n)n remains increasing and its conjugate (f ∗

nγ0g
∗
n)

∗
n is a decreasing

one, we can deduce by using the same way that lim
n→+∞

(f ∗
nγ0g

∗
n)

∗ = (f ∗γ0g
∗)∗ which implies

that:

lim
n→+∞

fnγ1gn =
1

2
(fγ0g + fγ∗

0g) = fγ1g.

By induction, we show without difficulties that the sequences (fnγpgn)n and (f ∗
nγpg

∗
n)

∗
n

are decreasing. By Theorem 2.15, ii) and using the preceding properties we deduce the
following equality:

lim
n→+∞

fnγpgn = cl
(

inf
n

fnγpgn

)

= fγpg for all p ∈ IN. (6)

We now study the convergence of the sequence when depending on p.
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We remark that the sequences ( fγpg)p and ( fnγpgn)p are also decreasing when they

depend on p. Using Lemma 3.2, (fnγpgn)p will converge pointwise to fn τ gn, so we obtain
by Theorem 2.15, ii) again

cl

(

inf
p

fnγpgn

)

= fnτgn and cl

(

inf
p

fγpg

)

= fτg. (7)

According to relation (6) , we deduce that

cl inf
p
cl
(

inf
n

fnγpgn

)

= cl inf
p

fγpg = fτg.

Since cl inf
p
cl
(

inf
n

fnγpgn

)

= cl inf
p

inf
n

fnγpgn = cl
(

inf
n

fnτgn

)

, we obtain

cl
(

inf
n

fnτgn

)

= fτg.

This completes the proof of Theorem.

Corollary 3.4. Let X be a reflexive Banach space, f and g belong to Γ0 (X) . Assume
that (fn)n and (gn)n are increasing sequences in Γ0 (X), pointwise converging to f and g
respectively. If dom f ∗ = dom g∗, then for all x ∈ dom f , we have:

sup
n

fnτgn (x) = fτg (x) . (8)

Proof. The sequences (f ∗
n)n and (g∗n)n are decreasing and converge pointwise to f ∗ and

g∗ respectively. Using the previous results, one has
lim

n→+∞
f ∗
nτg

∗
n (x) = f ∗τg∗ (x) for all x ∈ dom f ∗. (f ∗

nτg
∗
n)n is a decreasing sequence and

the relation τ is self-dual in the sense of Fenchel duality, then for all x ∈ dom f , we obtain

lim
n→+∞

(fnτgn) (x) = lim
n→+∞

(f ∗
nτg

∗
n)

∗ (x) = (f ∗τg∗)∗ = f τ g (x) ,

and Corollary 3.4 is proved.

As a consequence of Theorem 3.3 and Corollary 3.4, we find again the following result [8]:

Corollary 3.5. Assume that X is an Hilbert space. Let (An)n and (Bn)n be two monotone
sequences of symmetric positive operators from X into X. If (An)n and (Bn)n converge
strongly to A and B respectively, then (An(g)Bn)n converges strongly to A(g)B.

Proof. For all x ∈ X, put that

fn(x) =
1

2
< Anx, x > and gn(x) =

1

2
< Bnx, x >

where < ., . > is the inner product of X.
It is clear that (An)n (resp. (Bn)n) is monotone if and only if (fn)n (resp. (gn)n) is also
monotone. Theorem 3.3 and Corollary 3.4, applied to (fn)n and (gn)n, give the desired
result.



A. El Biari, R. Ellaia, M. Räıssouli / Stability of Geometric and Harmonic ... 207

Proposition 3.6. Let X be a reflexive Banach space. f, g, (fn)n and (gn)n for all n ∈ IN
be defined as in Theorem 3.3 or in Corollary 3.4. Then there hold:

i) lim
n→+∞

f
[ 12 ]
n = f [

1
2 ] .

ii) Let S be an isomorphism defined from X into X then:

lim
n→+∞

(fnτgn) ◦ S = (fτg) ◦ S.

iii) Let (λn)n and (αn)n be two sequences of positive reals and having the same monotony
as (fn)n and (gn)n. If lim

n→+∞
λn.fn = λ.f and lim

n→+∞
αn.fn = α.f then

lim
n→+∞

(λnταn) .fn = (λτα) .f.

Proof.

i) Comes from the relation lim
n→+∞

fn τ
1

2
‖. ‖2= f τ

1

2
‖. ‖2 .

ii) Use the relation (fτg) ◦ S = (f ◦ S) τ (g ◦ S) , for the proof, the reader is referred to
[1] .

iii) One has (λ.f) τ (α.f) = (λ τ α) .f , from which the desired result follows.

4. Stability in the positively homogenuous (p.h) case

In this paragraph, we suppose that X = IRm, and we study the case when the stabil-
ity does not need the property of monotonicity. This case holds for example when the
geometric mean coincides with the infimal convolution.

Proposition 4.1. Let f and g be two positively homogenuous functionals (p.h) in
Γ0 (IR

m) . Then f τ g exists and equals to cl (f£g) . In particular, if
ri dom f ∗ ∩ ri dom g∗ 6=∅, then f τ g = f£g.

Proof. All (p.h) functional in Γ0 (IR
m) is a support function of a nonempty, closed

and convex set (Ref [14]). We can thus assume that there exist A and B closed convex
sets such that g (x) = Ψ∗

A (x) and f (x) = Ψ∗
B (x) , for all x ∈ X. Then fγ0g (x) =

Ψ∗
adh( 12A+ 1

2B)
(x) = Ψ∗

( 12A+ 1
2B)

(x) and fγ∗
0g (x) = Ψ∗

A∩B (x) , if we set that

Aγ0B = adh(1
2
A+ 1

2
B) and Aγ∗

0B = A ∩B.

We show by induction that

{

fγng (x) = Ψ∗
{(Aγn−1B)γ0((Aγ∗

n−1B))} (x)
fγ∗

ng (x) = Ψ∗
{(Aγn−1B)γ∗

0((Aγ∗
n−1B))} (x) .

Where from the preceding algorithm of functions, we deduce another algorithm of sets:











AγnB =
{

(Aγn−1B)γ0
(

(Aγ∗
n−1B)

)}

Aγ∗
nB =

{

(Aγn−1B)γ∗
0

(

(Aγ∗
n−1B)

)}

Aγ0B = adh(
1

2
A+

1

2
B) and Aγ∗

0B = A ∩B.
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(fγ∗
ng)n is an increasing sequence, thus A ∩B = Aγ∗

0B ⊂ Aγ∗
nB.

Aγ∗
1B = adh(

1

2
A+

1

2
B)∩A∩B ⊂ A∩B, we show by induction that Aγ∗

nB ⊂ A∩B for

all n ∈ IN, so
Aγ∗

nB = A ∩B for all n ∈ IN.

Substituting Aγ∗
nB by A ∩B in the algorithm of sets we obtain:

AγnB = adh

(

1

2n+1
(A+B) +

(

1− 1

2n+1

)

A ∩B

)

The sequence (AγnB)n∈IN converges to A ∩B. Thus
lim
n→∞

AγnB = lim
n→∞

Aγ∗
nB = A ∩ B, this implies that ΨAγnB converges pointwise to ΨA∩B.

The sequences (AγnB)n and (Aγ∗
nB)n are decreasing, so by using again the equivalence

between the pointwise convergence and the Mosco convergence in this case, we deduce
that
lim
n→∞

Ψ∗
(AγnB) (x) = lim

n→∞
fγng (x) = lim

n→∞
Ψ∗

(Aγ∗
nB) (x) = lim

n→∞
fγ∗

ng (x) = Ψ∗
A∩B (x), for all

x ∈ X.

The uniqueness of the limit of those sequences permits us to deduce that f τ g (x) =
Ψ∗

A∩B (x) = (ΨA +ΨB)
∗ (x) = (f ∗ + g∗)∗ (x) = cl (f£g) (x) .

In particular if ri dom f ∗ ∩ ri dom g∗ 6= ∅ then f τ g (x) = f£g (x). This concludes the
proof.

Corollary 4.2. Let f , g, (fn)n and (gn)n be convex (p.h) functionals defined from IRm

to IR. If (fn)n and (gn)n are pointwise converging to f and g respectively then

∀x ∈ X lim
n→+∞

fnτgn (x) = fτg (x) .

Proof. As in the preceding proposition, we set ∀x ∈ X, g (x) = Ψ∗
A (x) , f (x) =

Ψ∗
B (x) , gn (x) = Ψ∗

An
(x) and fn (x) = Ψ∗

Bn
(x) .

Since f, (fn)n, g and (gn)n ∈ Γ0 (IR
m) are finite elsewhere, thus we can assume that A,

B, An and Bn are compact sets for all n ∈ IN (Ref [11]). So, we can deduce the following
equivalence

lim
n→+∞

Ψ∗
An

(x) = Ψ∗
A (x) ⇐⇒ M- lim Ψ∗

An
(x) = Ψ∗

A (x) .
n→+∞ (9)

And a similar equivalence forBn andB holds. fnτgn (x)= Ψ∗
An∩Bn

(x)= (ΨAn +ΨBn)
∗ (x) .

If lim
n→+∞

Ψ∗
An

(x) = Ψ∗
A (x) and lim

n→+∞
Ψ∗

Bn
(x) = Ψ∗

B (x) then

M- lim ΨAn (x) = ΨA (x) and M- lim ΨBn (x) = ΨB (x) .
n→+∞ n→+∞

Using the stability theorem for the Mosco convergence (Ref [5]), one deduces that

M- lim (ΨAn +ΨBn) (x) = (ΨA +ΨB) (x) .
n→+∞ (10)

Since An ∩ Bn , for all n ∈ IN , and A ∩ B are compact sets; the relation (10) will be
equivalent to

lim
n→+∞

(ΨAn +ΨBn)
∗ (x) = (ΨA +ΨB)

∗ (x) .
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The desired result follows.

Remark 4.3. The stability for geometric mean is not verified in general case. If we take
the example where the sequences have not the same monotony; the result is not satisfied.

Indeed; let X = IR, fn (x) =
n

n+ 1

(

x2

2
− 1

)

and gn (x) =
1

n

(

x2

2
− 1

)

; (fn)n is an

increasing sequence and (gn)n is a decreasing one.

fn (x) converges to f (x) =
x2

2
− 1 and gn (x) converges to g (x) = 0.

fn τ gn (x) =
1√
n+ 1

(

x2

2
− 1

)

which converges to 0, but

f τ g (x) = −1

2
f ∗(0) = −1

2
(see [1]).

5. Stability for the (h) , (a) , (a.g) , (a.h) and (g.h) means

Proposition 5.1. Let X be a reflexive Banach space. f, g, (fp)p and (gp)p for all p ∈
IN be given functions satisfying the assumption of Theorem 3.3. If we denote by π one
of these functional means (h) , (a) , (a.g) , (a.h) and (g.h) then the sequence (fpπgp)p
converges pointwise to fπg.

Proof.
• If π = (h) and π = (a) the proof is immediate. If π = (a.h) , fτg coincides with fπg.

• If π = (a.g) we get

{

fn+1,p =
1

2
(fn,p + gn,p)

gn+1,p = fn,p τ gn,p
where

{

f0,p = fp
g0,p = gp.

{

f1,p =
1

2
(fp + gp)

g1,p = fp τ gp

(f1,p)p converges pointwise to f1 =
1

2
(f + g), and using Theorem 3.3 we obtain g1,p =

fp τ gp which converges pointwise to fτg = g1.

The sequences (fn,p)p∈IN and (gn,p)p∈IN are decreasing for all n ∈ IN. By induction, it
follows that lim

p→∞
fn,p = fn and lim

p→∞
gn,p = gn.

We deduce that

cl inf
n

inf
p

gn,p = cl inf
n
gn = fπg = lim

n→∞
fn.

• If π = (g.h) we set,







fn+1,p = fn,p τ gn,p

gn+1,p =

(

1

2
f ∗
n,p +

1

2
g∗n,p

)∗
where

{

f0 = fp
g0 = gp
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For n = 1 we get:






f1,p = fp τ gp

g1,p =

(

1

2
f ∗
p +

1

2
g∗p

)∗

.

According to Theorem 3.3, one deduces that (f1,p)p converges pointwise to f1 = f τ g and
using the property of equivalence between the pointwise and Mosco convergences in the

monotone case, we show that (g1,p)p converges pointwise to

(

1

2
f ∗ +

1

2
g∗
)∗

.

As in the previous case, we prove by induction that the sequences (fn,p)p∈IN and (gn,p)p∈IN
are decreasing for all n ∈ IN and converge pointwise to fn and gn respectively. We deduce
the desired result.

One can obtain the same result if f, g, (fp)p∈IN , and (gp)p∈IN verify the hypothesis of
Corollary 3.4.
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Moulay Ismäıl, Faculté des Sciences de Meknes, (1999).

[8] J. Fujii, M. Fujii: On geometric and harmonic means of positive operators, Math Japonica
24(2) (1979) 203–207.

[9] J. Fujii: Arithmetico-geometric mean of operators, Math Japonica 23 (1978) 667–669.

[10] J. B. Hiriart-Urruty, C. Lemarechal: Convex Analysis and Minimization Algorithms,
Grundlehren der Mathematischen Wissenschaften 305, 306, Springer-Verlag (1993).

[11] E. Idee: Minimisation d’une Fonction Quasi-Convexe Aléatoire: Application, Thèse Greno-
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