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Let Γ◦(H) denote the usual cone of lower semicontinuous convex functionals from a Hilbert H into

IR ∪ {+∞} not identically equal to +∞. In this paper we introduce a map L : Γ◦(H) → IR
H

(IR =
IR ∪ {−∞,+∞}) which extends the Logarithm from positive invertible operators to convex functionals.

Afterwards, we present a functional limited development of L(fσ + λf) where fσ :=
1

2
‖ . ‖2, f ∈ Γ◦(H)

and λ goes to 0+. The paper will be illustrated with some examples which justify the chosen terminology
and the importance of this work.
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1. Introduction

Recently, the extension of the means from positive real numbers to positive operators has
extensive several developments and applications [4], [5], [9]. Since calculations involving
operator-valued functions are feasible with large computers, many authors have used the
operator means in solving some scientific problems. Let a and b be two positive real

numbers and define a map φ by φ(a, b) = (
a+ b

2
,
√
ab). If φk denotes the k-th iterate

of φ, it is not hard to prove that there is a positive number M = M(a, b) such that
lim
k↑+∞

φk(a, b) = (M,M).The number M is called the "arithmetico-geometric mean of a

and b". An explicit form of M(a, b) is given by the following elliptic integral [9]:

(M(a, b))−1 =
2

π

∫ π
2

0

(

a2cos2θ + b2sin2θ
)− 1

2 dθ. (1)

The limit of the above iterative process (φk(a, b))k can be used to compute the integral
(1) which is of mathematical and physical interest.

The generalization of the preceding notions and results to positive linear operators is
sufficiently studied. More precisely, let σ = (σ1, σ2, ..., σm) ∈ IRm be a probability vector,
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i.e. σi > 0, 1 ≤ i ≤ m and
∑m

i=1 σi = 1, R. D. Nussbaum and J. E. Cohen [9] have
suggested that a reasonable analogue of

∏m
i=1 a

σi
i (ai positive numbers) is

exp

(

m
∑

i=1

σiLog(Ai)

)

, (2)

where Ai, 1 ≤ i ≤ m, are positive invertible operators, exp is the exponential of operator,
i.e. expA =

∑∞
n=0

An

n!
and Log is the logarithm of operator defined by ([9], page 253)

LogA =

∫ 1

0

I − ((1− t)I + tA)−1

t
dt, (3)

where I denotes the identity operator.
It will be an interesting attempt to extend the previous notions and results from positive
invertible operators to convex functionals. In this sense, M.Atteia and M.Räıssouli [1]
have recently introduced the "Convex Geometric Functional Mean" from an iterative
process that operates recursively on pairs (f, g) ∈ Γ◦(H) × Γ◦(H) where Γ◦(H) denotes
the cone of proper lower semicontinuous convex functionals defined on a real Hilbert space
H, with values in IR ∪ {+∞}. In particular, the functional "square root" R : Γ◦(IR

m) →

Γ◦(IR
m) was introduced in a way that for f(x) =

1

2
< Ax, x >, where A is a symmetric

positive matrix, [R(f)](x) =
1

2
<

√
Ax, x > where

√
A is the positive square root of A.

Very recently, M.Räıssouli and M.Chergui [11] have constructed the arithmetico-geometric

functional mean f
+
τg of two functions f, g ∈ Γ◦(H) as follows: f

+
τg = lim

k↑+∞
Φk(f, g)

where Φk denotes the k-th iterate of Φ defined by Φ(f, g) = (
f + g

2
, fτg), fτg is the

convex geometric functional mean of f and g constructed in [1]. An explicit form of f
+
τg

analogue to (1) is, for the moment, unknown. For this, the solution of the reverse problem
of the square root functional is very interesting, i.e. what should be the analogue of A2

for convex functionals. The standard definition of A2 comes from the product AB of two
operators A and B. The extension of this product from operators to convex functionals
is not obvious and appears to be interesting.
For positive invertible operators, another (equivalent) definition of A2 can be given by

A2 = lim
λ↓0

A− (λI + A−1)−1

λ
. (4)

In [10] the authors suggested that an analogue of the second member of (4) to f ∈ Γ◦(H)
is

lim
λ↓0

f − (λfσ + f ∗)∗

λ
, (5)

where f ∗ denotes the Fenchel-conjugate of f , i.e. f ∗(x∗) = sup
x∈H

{< x∗, x > −f(x)} and

fσ :=
1

2
‖.‖2 is the only self- conjugate function. They have established that the limit (5)

exists and

lim
λ↓0

f(x)− (λfσ + f ∗)∗(x)

λ
= fσ(pf (x)), (6)
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for all x ∈ int(dom f), where pf (x) = P∂f(x)(0) is the unique point projection from 0 to
the nonempty closed convex ∂f(x) subdifferential of f at x.

Another interesting problem is to extend formula (2) from operators to functionals. This
extension is important in order, for example, to explicit the geometric mean fτg of f
and g and secondly to define the geometric mean of three or more convex functionals.
More precisely, what should be the regular analogue of Logarithm and Exponential from
operators to functionals.

The fundamental goal of this work is to describe a reasonable analogue extension of the
Logarithm from the case that the variable is positive invertible operator to the case that
the variable is Γ◦(H)-functional.We suggest that a reasonable analogue of LogA given by
(3) to f ∈ Γ◦(H) is:

∀x ∈ H [L(f)](x) =
∫ 1

0

fσ(x)− ((1− t)fσ + tf)∗ (x)

t
dt. (7)

Using (7), we present some functional-valued properties of the map L analogous to that

of operator-valued Logarithm. Note that in particular the mapping L : Γ◦(H) −→ IR
H

is increasing, concave (with respect to the pointwise order on IR
H
) and satisfies that:

∀f ∈ Γ◦(H) L(f ∗) = −L(f).

In case f(x) =
1

2
< Ax, x > where A is a symmetric positive invertible linear operator

of H, we obtain [L(f)](x) = 1

2
< (LogA)x, x > with LogA is the Logarithm of A defined

by (3).
To determine how to obtain the solution of the reverse problem of the functional Logarithm
(i.e. the functional Exponential ) is not obvious and appears to be interesting.

This paper will be divided into three parts: We begin by recalling some basic results from
convex analysis that will be needed later. Secondly, we introduce the notion of functional
Logarithm and we study its elementary properties. This section will be completed by
illustrating the theoretical results with some examples. In the fourth section, we present

a second order functional limited development of L(fσ + λf) where fσ :=
1

2
‖ . ‖2, λ goes

to 0 (λ > 0) and f ∈ Γ◦(H). Some consequences and examples are given.

2. Background material and preliminary results

Let us recall some basic notions and results from convex analysis which are needed
throughout this paper. H will denote a real Hilbert space with inner product < ., . >
and its associated hilbertian norm ‖.‖.
Let IR = IR ∪ {−∞,+∞}, we prolong the structure of IR on IR by setting:
∀x ∈ IR, −∞ < x < +∞, +∞ + x = +∞, −∞ + x = −∞, +∞ + (−∞) = +∞,
0.(+∞) = +∞.

We can define a partial ordering on IR
H

by

f ≤ g ⇐⇒ ∀x ∈ H f(x) ≤ g(x).
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Consider a function f : H → IR, f ∗ denotes the Fenchel conjugate of f defined by the
formula

∀x∗ ∈ H f∗(x∗) := sup
x∈H

{< x∗, x > −f(x)}.

If f, g : H → IR are two given functionals, it is easy to see that if f ≤ g then g∗ ≤ f ∗.
The following inequality

∀α ∈]0, 1[ (αf + (1− α)g)∗ ≤ αf ∗ + (1− α)g∗, (8)

holds for every f, g ∈ IR
H
.

Denote dom f the effective domain of f defined by dom f := {x ∈ H ; f(x) ∈ IR}, and
Γ◦(H) the cone of lower semicontinuous convex functionals from H into IR ∪ {+∞} not
identically equal to +∞. We recall that if f ∈ Γ◦(H) then, f ∗ ∈ Γ◦(H) and f ∗∗ = f .
Let S be a subset of H, we denote by ΨS the indicator functional of S defined as follows:
ΨS(x) = 0 if x ∈ S and ΨS(x) = +∞ otherwise.
ΨS ∈ Γ◦(H) if and only if S is a nonempty closed convex subset of H.
In particular, if B = B(0, 1) is the closed unit ball of center 0, then Ψ∗

B = ‖.‖ and
‖.‖∗ = ΨB.

We set below fσ :=
1

2
‖ . ‖2 the only self-conjugate functional defined on H. It is easy to

see the following results:

∀f ∈ IR
H

f − f ∗ ≤ (2f − 2fσ) (9)

∀a > 0 (afσ)
∗ =

1

a
fσ. (10)

(fσ +ΨS)
∗ = fσ −

1

2
d2S, (11)

where S is a nonempty closed convex subset of H and dS is defined by dS(x) :=
inf
y∈S

‖x− y‖.

We recall that, ([2], page 66) for all real λ > 0 and f ∈ Γ◦(H), the functional (λfσ + f)∗

is finite everywhere and for all x ∈ H there holds

(λfσ + f)∗(x) = inf
y∈H

{f ∗(y) +
1

2λ
‖y − x‖2}, (12)

moreover the application x → (λfσ + f)∗(x) from H into IR is Frechet-differentiable.

Let f : H → ˜IR = IR ∪ {+∞}, we say that p is a subgradient of f at the point x if
x ∈ dom f and:

f(y) ≥ f(x)+ < y − x, p >, for all y ∈ H.

The subdifferential of f at x is defined by:

∂f(x) := {p ∈ H; ∀y ∈ H f(y) ≥ f(x)+ < y − x, p >}.

Let us denote by int(dom f) the topological interior of dom f , we recall that if f ∈ Γ◦(H)
and int(dom f) is nonempty then, for all x ∈ int(dom f), f is continuous at x and
∂f(x) 6= ∅.
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3. Functional Logarithm in convex analysis

This section is devoted to introduce the functional Logarithm L : Γ◦(H) → IR
H
together

with its elementary properties. First, we state the following theorem which will be needed
in the sequel.

Theorem 3.1. For all f ∈ Γ◦(H) and all λ > 0, the following formula holds

λ(λfσ + f ∗)∗ + (fσ + λf)∗ = fσ

Remark 3.2. Theorem 3.1 is proved in ([8], page 284) for λ = 1 and ([7], page XIII-6),
([10], Theorem 3.1) for λ > 0. This result can be written under the following "convex"

form (take λ =
1− t

t
):

∀f ∈ Γ◦(H) ∀t ∈]0, 1[ (1− t) ((1− t)fσ + tf∗)∗ + t (tfσ + (1− t)f)∗ = fσ (13)

Let f ∈ Γ◦(H) be a fixed functional, the mapping: t → ((1 − t)fσ + tf)∗ is derivable on
]0, 1[, (cf. [10], Corollary 3.1) hence continuous on ]0, 1[ and consequently we introduce
the following definition:

Definition 3.3. The mapping L : Γ◦(H) → IR
H

defined by

∀x ∈ H [L(f)](x) =
∫ 1

0

fσ(x)− ((1− t)fσ + tf)∗ (x)

t
dt, (14)

is called the Functional Logarithm in the sense of Convex Analysis.

Remark 3.4. The denomination "Functional Logarithm in the sense of Convex Analy-
sis" will be justified by Examples 3.13 and 4.4 below and the properties of L discussed
throughout the paper.

Proposition 3.5. Relation (14) is equivalent to the following one

∀x ∈ H [L(f)](x) = 1

2

∫ 1

0

1

t
{((1− t)fσ + tf∗)∗ − ((1− t)fσ + tf)∗} (x)dt (15)

Proof. According to relation (14), we have for all x ∈ H

[L(f)](x) = 1

2

∫ 1

0

{

(
fσ
t
− ((1− t)fσ + tf)∗

t
) + (

fσ
t
− ((1− t)fσ + tf)∗

t
)

}

(x)dt

By a simple variable change (s = 1− t), it is easy to see that

[L(f)](x) = 1

2

∫ 1

0

{

(
fσ

1− t
− (tfσ + (1− t)f)∗

1− t
) + (

fσ
t
− ((1− t)fσ + tf)∗

t
)

}

(x)dt

=
1

2

∫ 1

0

1

t

{

fσ − t (tfσ + (1− t)f)∗

1− t
− ((1− t)fσ + tf)∗

}

(x)dt,

and with (13), the desired result follows.
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Proposition 3.6. The map L : Γ◦(H) → IR
H

satisfies the following properties:

(i) L(0) = −Ψ{0} and ∀f ∈ Γ◦(H) ∀α ∈ IR L(f + α) = L(f) + α.

(ii) L(fσ) = 0 and ∀a > 0 L(afσ) = (Loga)fσ.

(iii) ∀f ∈ Γ◦(H), L(f ∗) = −L(f).

Proof. (i) It is immediate from the definition of L.
(ii) Relation L(fσ) = 0 is obvious. Let us show that L(afσ) = (Loga)fσ, for all a > 0.
To simplify the writing below, we omit the x in relations (14) and (15), so by (14) and
(10), we have successively

L(afσ) =
∫ 1

0

fσ − ((1− t)fσ + tafσ)
∗

t
dt =

∫ 1

0

fσ − ((1− t+ ta)fσ)
∗

t
dt

=

∫ 1

0

{

1

t

(

1− 1

1− t+ ta

)}

fσdt =

∫ 1

0

{

a− 1

1 + t(a− 1)

}

fσdt

= [Log(1 + t(a− 1))]10 fσ = (Loga)fσ.

(iii) Let f ∈ Γ◦(H), then f ∗∗ = f and by (15) one has

L(f ∗) =
1

2

∫ 1

0

((1− t)fσ + tf)∗ − ((1− t)fσ + tf∗)∗

t
dt,

since, for all f ∈ Γ◦(H), the mapping t → ((1 − t)fσ + tf)∗ is with finite values1 then

L(f ∗) = −1

2

∫ 1

0

((1− t)fσ + tf∗)∗ − ((1− t)fσ + tf)∗

t
dt =−L(f).

Proposition 3.7. With respect to the pointwise ordering on IR
H
, the map L is:

(i) Increasing: ∀f, g ∈ Γ◦(H); if f ≥ g then L(f) ≥ L(g).
(ii) Concave: ∀f, g ∈ Γ◦(H), ∀α ∈]0, 1[, L (αf + (1− α)g) ≥ αL(f) + (1− α)L(g).

Proof. (i) Let f, g ∈ Γ◦(H) such that f ≥ g, we derive for all t ∈]0, 1[

− ((1− t)fσ + tf)∗ ≥ − ((1− t)fσ + tg)∗.

Using (14) we deduce L(f) ≥ L(g), so L is increasing.

(ii) Show that L is concave: Let f, g ∈ Γ◦(H), and α ∈]0, 1[, we can write

(1− t)fσ + t (αf + (1− α)g) = α[(1− t)fσ + tf ] + (1− α)[(1− t)fσ + tg].

Then according to inequality (8), we deduce that

((1− t)fσ + t(αf + (1− α)g))∗ ≤ α ((1− t)fσ + tf)∗ + (1− α) ((1− t)fσ + tg)∗,

from which we observe that

fσ − ((1− t)fσ + t(αf + (1− α)g))∗ ≥
≥ α [fσ − ((1− t)fσ + tf)∗] + (1− α) [fσ − ((1− t)fσ + tg)∗] ,

1Note that if f, g : H → IR the equality f − g = −(g − f) is not always true.
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and by relation (14), finally

L(αf + (1− α)g) ≥ αL(f) + (1− α)L(g),

which completes the proof.

Proposition 3.8. For all f in Γ◦(H), the following formula holds

fσ − f ∗ ≤ L(f) ≤ f − fσ (16)

Proof. Using (14), combined with (8), we get that

L(f) =
∫ 1

0

fσ − ((1− t)fσ + tf)∗

t
dt ≥

∫ 1

0

fσ − ((1− t)fσ + tf∗)

t
dt,

and simplifying we obtain L(f) ≥ fσ − f ∗, for all f ∈ Γ◦(H).
Replace f by f ∗ in the latter inequality to obtain, with Proposition 2.2, (iii), L(f) ≤
f − fσ. The proof is complete.

From the above proposition, it is easy to see the following remarks.

Remark 3.9. (i) If dom f = dom f∗ = H then domL(f) = H.

(ii) For all f ∈ Γ◦(H), L(f) is not identically equal to +∞ (resp. −∞).

Remark 3.10. The integral

∫ 1

0

fσ(x)− ((1− t)fσ + tf)∗ (x)

t
dt converges to a finite

real number for every x ∈ dom f ∩ dom f∗. In particular, if dom f = dom f∗ = H then
the above integral converges for all x ∈ H.

Corollary 3.11. Let f ∈ Γ◦(H), then one has

(i) L(f) = 0 ⇐⇒ f = fσ.

(ii) L(f) ≥ 0 ⇐⇒ f ≥ fσ ( resp. L(f) ≤ 0 ⇐⇒ f ≤ fσ).

Proof. It follows immediately from (16).

Corollary 3.12. Let (fn)n∈IN be defined recursively by

∀n ≥ 0 fn+1 =
1

2
fn +

1

2
f ∗
n, (17)

with f◦ ∈ Γ◦(H). Then (fn)n∈IN converges pointwise to fσ on dom f◦ ∩ dom f∗
◦ .

Proof. Since f◦ ∈ Γ◦(H) then, by induction, we deduce that fn ∈ Γ◦(H) for all n ∈ IN .
On the other hand, L is concave so

∀n ∈ IN L(fn+1) ≥
1

2
L(fn) +

1

2
L(f ∗

n),

and according to Proposition 3.6, (iii) and the structure of IR , we get

∀n ∈ IN L(fn+1) ≥
1

2
L(fn)−

1

2
L(fn) ≥ 0,
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and by Corollary 3.11, we deduce that

∀n ∈ IN fn+1 ≥ fσ and ∀n ∈ IN f∗
n+1 ≤ fσ.

Using these previous inequalities, relation (17) yields

∀n ∈ IN∗ 0 ≤ fn+1 − fσ =
1

2
(fn − fσ) +

1

2
(f ∗

n − fσ) ≤
1

2
(fn − fσ),

which implies that

∀n ∈ IN∗ 0 ≤ fn − fσ ≤ 1

2n−1
(f1 − fσ).

If x ∈ dom f1 = dom f◦ ∩ dom f∗
◦ then lim

n

1

2n−1
(f1 − fσ)(x) = 0,

from which the desired result follows.

We now end this section by illustrating our theoretical results with three examples.
We begin by an example which explains that the functional Logarithm introduced above
contains that of positive invertible operators.

Example 3.13. 1. Let H = IR and ∀x ∈ IR f(x) =
1

2
ax2 (a > 0),

due to Proposition 3.6, (ii) we have

∀x ∈ IR [L(f)](x) = 1

2
(Loga)x2.

2. More generally, let H = IRn be the usual n-dimensional Euclidean space and f given
by:

∀x ∈ IRn, f(x) =
1

2
< Ax, x > where A is a symmetric positive definite matrix of order

n.

In this case, we recall that ([2], page 38) f ∗ is given by

∀x ∈ IRn f ∗(x) =
1

2
< A−1x, x >.

Using the fact that, for all t ∈]0, 1[, the matrix (1 − t)I + tA is also symmetric positive
definite, then

we obtain for all x ∈ IRn,

((1− t)fσ + tf)∗ (x) =
1

2
< ((1− t)I + tA)−1 x, x >,

and relation (14) implies that

∀x ∈ IRn [L(f)](x) =
∫ 1

0

1

2
<

I − ((1− t)I + tA)−1

t
x, x > dt.

By (3) and the bilinearity of < ., . >, we deduce that

∀x ∈ IRn [L(f)](x) = 1

2
< (LogA)x, x > .
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If P is an invertible n× n matrix such that

A = P−1











λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λp











P , with λi > 0 ( i = 1, 2, ....p) the eigenvalues of A,

then ∀x ∈ IRn [L(f)](x) = 1

2
< (LogA)x, x >,

where LogA = P−1











Logλ1 0 · · · 0
0 Logλ2 · · · 0
...

...
. . .

...
0 0 · · · Logλp











P .

3. The above example for finite-dimensional Hilbert spaces works, by the same argument,

for general Hilbert spaces: Let fA(x) =
1

2
< Ax, x >, for all x ∈ H, be the quadratic

form associated to the symmetric positive invertible operator A then L(fA) = fLogA where
LogA is the Logarithm of A defined by (3).

Relation (iii) of Proposition 3.6, L(f ∗) = −L(f), can be interesting in order, for example,
to compute L(f) when f ∗ has a simple expression (as f). The next example explains this
situation.

Example 3.14. Let us consider the space H = Mn of symmetric square matrices of
order n equipped with its usual inner product < A,B >= TraceAB.
The variance of a given matrix A ∈ Mn is defined by:

(var)(A) =
1

n
< A,A > −

(

TraceA

n

)2

.

It is easy to see that the functional var : Mn −→ IR is convex and hence var ∈ Γ◦(Mn).
The conjugate (var)∗ : Mn −→ IR ∪ {+∞} of var is given by ([13], page 161):

(var)∗(B) =
n

2
fσ(B) + ΨT (B) =

{ n

2
fσ(B) if TraceB = 0

+∞ otherwise

where T := {A ∈ Mn; TraceA = 0} is a closed subspace of Mn.

So,we begin by computing L((var)∗).
By virtue of (11) and an elementary manipulation, we get that

((1− t)fσ + t(var)∗)∗ =
(

(1− t+
n

2
t)fσ +ΨT

)∗
=

1

1− t+ n
2
t

(

fσ −
1

2
d2T

)

.

Using formula (14) combined with a simple computation, we obtain

L(var)(A) = −L((var)∗)(A) = −(Log
n

2
).fσ(A)−ΨT (A) =

{

−(Log
n

2
).fσ(A) if A ∈ T

−∞ otherwise
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Example 3.15. 1. Let S be a nonempty closed convex subset of H and f = ΨS the
indicator function of S.
By (11) and a routine transformation, we have

((1− t)fσ + tΨS)
∗ = ((1− t)fσ +ΨS)

∗ =
1

1− t

(

fσ −
1

2
(d(1−t)S)

2

)

,

which, with relation (14), yields

L(ΨS) =

∫ 1

0

{

− 1

1− t
fσ +

1

2

1

t(1− t)
(d(1−t)S)

2

}

dt,

or equivalently (by a variable change s = 1− t)

L(ΨS) =
1

2

∫ 1

0

1

t(1− t)

(

(dtS)
2 − fσ

)

dt. (18)

In particular, if S = B = B(0, 1), the united ball, Proposition 3.6, (iii) and relation (18)
give (since Ψ∗

B = ‖.‖):

L(‖.‖) = 1

2

∫ 1

0

1

t(1− t)

(

fσ − (dtB)
2
)

dt.

2. With the above notations, assume that S is a closed subspace of H and f = ΨS. It
is known ([12], pages 40, 50) that f ∗ = ΨS⊥ where S⊥ = {x∗ ∈ H; < x∗, x >= 0} is the
orthogonal of S.
Taking λ = 1 and f = ΨS, Theorem 3.1 combined with (11) yields the celebrate identity
d2S + d2

S⊥ = ‖.‖2, and relation (18) gives (since tS = S)

L(ΨS) =
1

4

∫ 1

0

1

t(1− t)
(d2S − d2S⊥)dt,

which becomes in a different way

[L(ΨS)](x) =







−∞ if dS(x) > dS⊥(x)
0 if dS(x) = dS⊥(x)
+∞ if dS(x) < dS⊥(x)

or equivalently
L(ΨS) = ΨS+ −ΨS− ,

where S+ = {x ∈ H; dS(x) ≥ dS⊥(x)} and S− = {x ∈ H; dS(x) ≤ dS⊥(x)}.

4. Functional limited developments (F.L.D) of L(fσ + λf)

We preserve the same notations as previous. In this section, we shall give a second order
development of L(fσ + λf), λ → 0+, which extends that of operators: Log(I + λA) =

λA− 1

2
λ2A2 + λ2θλ(A), with θλ(A) tends to 0 as λ. We begin by recalling the following

lemma.
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Lemma 4.1. ([10]) Let f ∈ Γ◦(H), then for all x ∈ dom f one has

(fσ + λf)∗(x) = fσ(x)− λf(x) + λ(θλ(f))(x), (19)

where θλ(f) tends pointwise to 0 when λ goes to 0+.
If moreover int(dom f) is nonempty, the functional limited development (FLD2):

(fσ + λf)∗(x) = fσ(x)− λf(x) + λ2fσ(pf (x)) + λ2(θλ(f))(x), (20)

holds for all x ∈ int(dom f), where lim
λ↓0

θλ(f) = 0 for the pointwise convergence and

pf (x) = P∂f(x)(0) is the unique point projection from 0 to the nonempty closed convex
∂f(x).

By applying the above lemma, we will prove the following theorem:

Theorem 4.2. Let f ∈ Γ◦(H), for each x ∈ dom f we have

[L(fσ + λf)](x) = λf(x) + λ(θλ(f))(x), (21)

where θλ(f) tends pointwise to 0 when λ → 0+.
If moreover int(dom f) is nonempty, the following development

[L(fσ + λf)](x) = λf(x)− 1

2
λ2fσ(pf (x)) + λ2(θλ(f))(x), (22)

holds for every x ∈ int(dom f), where lim
λ↓0

θλ(f) = 0 in the pointwise convergence and

pf (x) = P∂f(x)(0) is the unique point projection from 0 to the nonempty closed convex
∂f(x).

Proof. Note that, first, the θλ(f) in (19) and (20) (resp. (21) and (22)) is not the same
but only to simplify the writing below. For the same reason we omit the x in all relation
and we write θ instead of θλ(f). Let us prove (21). According to Proposition 3.8, one has

fσ − (fσ + λf)∗ ≤ L(fσ + λf) ≤ λf,

and using (19), we get
λf + λθλ(f) ≤ L(fσ + λf) ≤ λf,

which implies (21).

We now prove (22). From relation (14), it follows

L(fσ + λf) =

∫ 1

0

{

fσ
t
− (fσ + λtf)∗

t

}

dt.

By virtue of (20), we obtain

L(fσ + λf) =

∫ 1

0

{

fσ
t
− fσ − λtf + λ2t2fσ(pf ) + λ2t2θ(t)

t

}

dt

=

∫ 1

0

{

λf − λ2tfσ(pf )− λ2tθ(t)
}

dt

= λf − λ2

2
fσ(pf )− λ2

∫ 1

0

tθ(t)dt. (23)
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On the other hand, by combining Theorem 3.1 and relation (20), we infer that

λt(λtfσ + f ∗)∗ = λtf − λ2t2fσ(pf )− λ2t2θ(t),

from which we deduce

∀x ∈ int(dom f) [θλ(f)(t)](x) := [θ(t)](x) =
f(x)− (λtfσ + f ∗)∗(x)

λt
− fσ(pf (x)). (24)

To complete the proof we need the next lemma.

Lemma 4.3. (θλ(f))λ converges uniformly (with respect to t) to 0 when λ tends to 0+,
i.e.

∀x ∈ int(dom f) lim
λ↓0

sup
t∈]0,1[

|[θλ(f)(t)](x)| = 0.

Proof of Lemma 4.3. For each x ∈ int(dom f), recall that we have ∂f(x) 6= ∅. Let
x∗ ∈ ∂f(x) then, by definition, f(x)− f(y) ≤ < x∗, x− y > for all y ∈ H.
Cauchy-Schwartz’s inequality implies that, for all y ∈ H and 0 < t < 1,

f(x)− f(y) ≤ 1

λt
‖λtx∗‖‖x− y‖,

and by Young’s inequality

f(x)− f(y) ≤ λt

2
‖x∗‖2 + 1

2λt
‖y − x‖2,

which obviously yields

f(x)− f(y)− 1

2λt
‖y − x‖2 ≤ λt

2
‖x∗‖2.

If we take the supremum for all y ∈ H, this previous inequality gives

sup
y∈H

{f(x)− f(y)− 1

2λt
‖y − x‖2 } ≤ λt

2
‖x∗‖2,

or equivalently

f(x)− inf
y∈H

{f(y) + 1

2λt
‖y − x‖2} ≤ λt

2
‖x∗‖2.

Thanks to relation (12), we conclude that

∀x∗ ∈ ∂f(x) f(x)− (λtfσ + f ∗)∗(x) ≤ λt

2
‖x∗‖2. (25)

Further, it is well known that, ([10], Lemma 3.2)

lim
λ↓0

∇fλ(x) = lim
λ↓0

∇(λfσ + f ∗)∗(x) = pf (x) ∈ ∂f(x). (26)

If we take x∗ = pf (x) in (25) we obtain

f(x)− (λtfσ + f ∗)∗(x)

λt
≤ fσ(pf (x)). (27)



M. Räıssouli, H. Bouziane / Functional Logarithm in the Sense of Convex Analysis 241

Moreover, we know that ([10], Theorem 3.1)

fσ((∇fλt(x))) ≤
f(x)− (λtfσ + f ∗)∗(x)

λt
,

which, with (27), gives

fσ((∇fλt(x)))− fσ(pf (x)) ≤
f(x)− (λtfσ + f ∗)∗(x)

λt
− fσ(pf (x)) ≤ 0,

and therefore
∣

∣

∣

∣

f(x)− (λtfσ + f ∗)∗(x)

λt
− fσ(pf (x))

∣

∣

∣

∣

≤ fσ(pf (x))− fσ(∇fλt(x)). (28)

Recalling that ([3], page II.10) (‖∇fλ‖)λ is decreasing, it becomes for all t ∈]0, 1[, and
λ > 0

‖∇fλ‖ ≤ ‖∇fλt‖ and thus −fσ(∇fλt) ≤ −fσ(∇fλ).

It follows that
∣

∣

∣

∣

f(x)− (λtfσ + f ∗)∗(x)

λt
− fσ(pf (x))

∣

∣

∣

∣

≤ fσ(pf (x))− fσ(∇fλ(x)),

and

sup
t∈]0,1[

∣

∣

∣

∣

f(x)− (λtfσ + f ∗)∗(x)

λt
− fσ(pf (x))

∣

∣

∣

∣

≤ fσ(pf (x))− fσ(∇fλ(x)). (29)

In (29) use (24) to write

∀x ∈ int(dom f) sup
t∈]0,1[

|[θλ(f)(t)](x)| ≤ fσ(pf (x))− fσ(∇fλ(x)). (30)

By virtue of relation (26) and the continuity of fσ, the second member of (30) tends to 0
as λ. The proof of Lemma 4.3 is complete.

To end the proof of Theorem 4.2, we can write by virtue of Lemma 4.3:

lim
λ↓0

∫ 1

0

t(θλ(f))(t)dt =

∫ 1

0

lim
λ↓0

t(θλ(f))(t)dt =

∫ 1

0

t lim
λ↓0

(θλ(f))(t)dt = 0,

which, with (23), gives the desired result.

We now illustrate Theorem 4.2 with the next example.

Example 4.4. 1. Let H = IR and ∀x ∈ IR f(x) =
1

2
ax2 (a > 0).

Theorem 4.2 and Example 3.13, 1- give the following classical result:

Log(1 + λa) = λa− 1

2
λ2a2 + λ2θλ(a), where θλ(a) tends to 0 when λ → 0.

2. More generally, let A be a symmetric positive matrix of order n, and consider the
functional

∀x ∈ IRn f(x) := fA(x) =
1

2
< Ax, x > .
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Since f is convex and (GÝateaux) differentiable then ∂f(x) = {∇f(x)},

A is symmetric gives ∂f(x) = {Ax} and fσ(pf (x)) =
1

2
‖Ax‖2 = 1

2
< A2x, x >.

According to Theorem 4.2 and Example 3.13, 2., we can write

fLog(I+λA) = fλA− 1
2λ

2A2 + λ2θλ(f), (31)

from which we deduce that θλ(f) is a quadratic form, i.e. θλ(f) = fθλ(A) where θλ(A) is

a symmetric matrix

(

because θλ(A) =
Log(I + λA)− λA+ 1

2
λ2A2

λ2

)

.

Then, relation (31) is equivalent to the following one

fLog(I+λA) = fλA− 1
2λ

2A2+λ2θλ(A) (32)

From the relation θλ(f) = fθλ(A) and the fact that [θλ(f)](x) −→λ↓00 for all x ∈ int(dom f)
= IRn, we deduce< (θλ(A))x, x >−→λ↓00 for all x∈ IRn, and by symmetry of θλ(A)we have
< (θλ(A))x, y >−→λ↓00 for all x, y ∈ IRn. It follows that ∀x ∈ IRn (θλ(A))x −→λ↓00 in
IRn.
Using the fact that the matrices associated to the quadratic forms of (32) are symmetric
we find the known development:

Log(I + λA) = λA− 1

2
λ2A2 + λ2θλ(A).

Corollary 4.5. Let f ∈ Γ◦(H) such that int(dom f) is nonempty. Then, for each s in a
neighbourhood of 0, there holds

∀x ∈ int(dom f)
d

ds
L(fσ + sf)(x) = (sfσ + f ∗)∗(x) + s(θs(f))(x),

where θs(f) tends (pointwise) to 0 when s → 0+.

Proof. It follows by combining Theorem 3.1, Lemma 4.1 and Theorem 4.2.

Proposition 4.6. Let f ∈ Γ◦(H) be a fixed functional such that int(dom f) is nonempty.

Then the mapping s −→ L(sfσ + f) defined from IR∗
+ :=]0,+∞[ into IR

H
is differentiable

and

∀x ∈ int(dom f)
d

ds
L(sfσ + f)(x) =

∫ 1

0

fσ (∇((1− t+ ts)fσ + tf)∗) (x)dt (33)

Proof. Here also, we omit the x and we write θ instead of θλ(f). Let s ∈ IR∗
+ and λ → 0+,

we have

L((λ+ s)fσ + f) =

∫ 1

0

{

fσ
t
− ((1− t)fσ + t(λ+ s)fσ + tf)∗

t

}

dt

=

∫ 1

0

{

fσ
t
− (λtfσ + (1− t+ ts)fσ + tf)∗

t

}

dt. (34)



M. Räıssouli, H. Bouziane / Functional Logarithm in the Sense of Convex Analysis 243

Setting f = (1 − t + ts)fσ + tf , it is clear that f ∈ Γ◦(H) and dom f = dom f . Using
relation (20) with Theorem 3.1, we obtain

(λtfσ + f)∗ = f
∗ − λtfσ(pf∗)− λtθ̃(t),

which, with (34), yields

L((λ+ s)fσ + f) =

∫ 1

0

{

fσ
t
− ((1− t)fσ + stfσ + tf)∗

t
+ λfσ(pf∗) + λθ̃(t)

}

dt

= L(sfσ + f) + λ

∫ 1

0

fσ (∇((1− t+ ts)fσ + tf)∗) dt+ λ

∫ 1

0

θ̃(t)dt,

where

[θ̃λ(f)](t) := θ̃(t) =
f
∗ − (λtfσ + f)∗

λt
− fσ(pf∗).

Lemma 4.3 implies that

lim
λ↓0

∫ 1

0

[θ̃λ(f)](t)dt =

∫ 1

0

lim
λ↓0

[θ̃λ(f)](t)dt = 0.

Let us observe that setting

∫ 1

0

[θ̃λ(f)](t)dt = θλ(f), it follows

L((λ+ s)fσ + f) = L(sfσ + f) + λ

∫ 1

0

fσ (∇((1− t+ ts)fσ + tf)∗) dt+ λθλ(f),

and consequently

d

ds
L(sfσ + f) =

∫ 1

0

fσ (∇((1− t+ ts)fσ + tf)∗) dt.

Remark 4.7. Let A be a symmetric positive operator from H into H and take f(x) =
1

2
< Ax, x > for all x ∈ H. In this case, relation (33) yields, after a simple computation,

the known classical result:

∀s ∈ IR∗
+

d

ds
Log(sI + A) = (sI + A)−1,

and the "Logarithm" terminology is again justified.
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[8] J. J. Moreau : Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France 93
(1965) 273–299.

[9] R. D. Nussbaum, J. E. Cohen: The arithmetic-geometric mean and its generalizations for
noncommuting linear operators, Ann. Sci. Norm. Sup. Sci. IV 15(2) (1989) 239–308.
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