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The differentiability properties of the metric projections onto the cones of nonnegative functions in
Lp(0, 1) and in W 1,p(0, 1) are considered. It is shown that the metric projection mapping is Bouligand
differentiable in Lp(0, 1), but it is not Bouligand differentiable in W 1,p(0, 1).
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1. Preliminaries

Differentiability properties of the matric projection onto closed convex sets are of interest
in variational inequalities and optimal control problems. The examples constructed by
J. Kruskal [6] and A. Shapiro [19] show that, in general such a projection is not direc-
tionally differentiable, even in finite dimensional spaces. An important contribution was
made by A. Haraux [4] and F. Mignot [12], who proved existence and characterized the
conical differentials of the projection for a class of closed convex sets in Hilbert spaces.
This direction of research has been further developed (see e.g., [14]) and found numerous
applications in sensitivity analysis of variational inequalities and optimal control (see e.g.,
[5, 9, 10, 20]). Recently, a quite general results on differentiability, in a weak sense, of
solutions to variational inequalities were obtained by A. B. Levy [7].

This paper is devoted to studying a stronger type of differentiability, the so called Bouli-
gand differentiability, of the maps of metric projection onto the cones of nonnegative
functions in Lp(0, 1) and W 1,p(0, 1). Just these cones are connected with control and
state constraints in optimal control problems for ODEs. Let us recall the notions of
conical and Bouligand differentiability (see [12] and [15, 17], respectively):

Definition 1.1. Let X and Y be Banach spaces. A function f : X → Y is called
conically differentiable at x if there exists a positively homogeneous mapping df(x) :
X → Y , called conical-derivative, with the property that, for every compact set C ⊂ X
and every ε > 0, there exists δ > 0 such that

‖f(y)− f(x)− (df(x); y − x)‖Y ≤ ε‖y − x‖X

for every y ∈ C such that ‖y − x‖X ≤ δ.
(1)

If (1) holds uniformly for all y ∈ X, ‖y − x‖X ≤ δ, then we say that f is Bouligand, or
B-differentiable at x and the corresponding B-derivative is denoted by Df(x).
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Clearly, the notions of conical and B-differentials coincide in finite dimensional spaces.
Moreover, if Df(x) is linear, then it becomes Fréchet derivative. That is the reason, that
sometimes B-derivative is called directional Fréchet derivative [2]. It turns out that the
concept of B-differentiability is useful in sensitivity analysis of parametric mathematical
programs [15, 16, 18]. Recently this concept was also used in sensitivity analysis of
optimal control problems [3, 11]. In this paper, we are going to study B-differentiability
properties of the metric projection onto the cone of nonnegative functions in Lp(0, 1)) and
in W 1,p(0, 1).

Our starting point are the differential properties of the metric projection onto closed
convex cones in abstract Hilbert spaces derived in [12] (see also [4]). To recall these
results, we have to start with some definitions. Let X be a real Hilbert space, with the
inner product denoted by (·, ·). Let K ⊂ X be a closed convex cone and PK denote the
metric projection onto K, i.e., for any x ∈ X, PKx ∈ K is a unique element such that

‖x− PKx‖X = min
y∈K

‖x− y‖X .

By [x] we donote the one-dimensional space generated by x and by [x]⊥ = {y ∈ X | (x, y) =
0} the subspace orthogonal to [x]. We will need the following notion (see [4]):

Definition 1.2. A closed convex cone K ⊂ X is called polyhedric, if for any x ∈ X

(K + [PKx]) ∩ [x− PKx]⊥ = (K + [PKx]) ∩ [x− PKx]⊥. (2)

Note that polihedricity is a natural extention of the polyhedral property in finite dimen-
sion. We will denote

Ξ(x) = (K + [PKx]) ∩ [x− PKx]⊥. (3)

The following theorem of Mignot (see Theorem 2.1 in [12]) shows that the notion of
polyhedricity plays an important role in differentiability properties of the projection onto
a cone.

Theorem 1.3. Let K be a polyhedric cone in a Hilbert space X. Then the metric pro-
jection mapping PK : X → K is conically differentiable and, for any x, y ∈ X,

(dPKx; y) = PΞ(x)y, (4)

where PΞ(x) denotes the metric projection onto Ξ(x).

Haraux studied polyhedric properties of positive cones of Hilbert lattices and he proved
the following result (Corollary 2 in [4]):

Theorem 1.4. Let X be a Hilbert lattice, with K = {x ∈ X | x ≥ 0} being closed.
Denote x+ = sup{x, 0}. If there exists constant M > 0 such that

‖x+‖X ≤ M‖x‖X for all x ∈ X,

then the cone K is polyhedric.

It follows from Theorem 1.4 that the cones of nonnegative functions in L2(0, 1) and
W 1,2(0, 1) are polyhedric, i.e., by Theorem 1.3, the metric projection mappings onto
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these cones are conically differentiable. We are going to study Bouligand-differentiability
property of the projection mappings onto these cones. We show that the metric projection
onto the cone of nonnegative functions is B-differentiable in Lp(0, 1)) for p < ∞ (but not
for p = ∞) and it is not B-differentiable in W 1,p(0, 1) for any p ∈ [1,∞].

2. Metric projection in Lp(0, 1)

In this section we investigate B-differentiability of the projection onto the cone of non-
negative functions in Lp(0, 1). The analysis is performed for one-dimensional problems.
However, the resuls can be extended to multi-dimensional case. Consider the cone

Kp = {x ∈ Lp(0, 1) | x(t) ≥ 0 for a.a. t ∈ [0, 1]}. (5)

Clearly, for any p ∈ [1,∞) we have

(PKpx) (t) = x+(t) := sup{x(t), 0} for a.a. t ∈ [0, 1]. (6)

For p = ∞, the projection is not unique. In the sequel, by PK∞x we will understand the
selection given by (6). Note that, a full characterization of a tangent set to the cone of
non-negative functions is L∞ is presented in [1]. For a given x ∈ Lp(0, 1) introduce the
sets

N+(x) = {t ∈ [0, 1] | x(t) > 0},
N0(x) = {t ∈ [0, 1] | x(t) = 0}, (7)

N−(x) = {t ∈ [0, 1] | x(t) < 0}.

Define the cones

Cp(x) =

y ∈ Lp(0, 1) | y(t)


free for a.a. t ∈ N+(x),
≥ 0 for a.a. t ∈ N0(x),
= 0 for a.a. t ∈ N−(x).

 . (8)

Clearly, C2(x) coincide with the set Ξ(x) defined in (3).

Theorem 2.1. The mapping PK∞ : L∞(0, 1) → Lp(0, 1) is Bouligand differentiable for
any p ∈ [1,∞) and for any x, y ∈ L∞(0, 1) the B-differential is given by

(DPK∞x; y) = PC∞(x)y. (9)

Proof. Clearly, the mapping PC∞(x) : L∞(0, 1) → Lp(0, 1) is positively homogeneous.
Hence to prove the theorem, it is enough to show that (1) holds for any y ∈ X := L∞(0, 1).
In view of (8) we have

(PC∞(x)y)(t) =


y(t) for a.a. t ∈ N+(x),
y+(t) for a.a. t ∈ N0(x),
0 for a.a. t ∈ N−(x).

(10)

Let us fix any x ∈ L∞(0, 1) and choose δ > 0. Introduce the following subsets of the
interval [0, 1]:

Aδ = {t ∈ [0, 1] | x(t) ≥ δ}, Bδ = {t ∈ [0, 1] | x(t) ≤ −δ},
Cδ = {t ∈ [0, 1] | x(t) = 0}, Dδ = {t ∈ [0, 1] | x(t) ∈ (−δ, δ)}.

(11)
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Let ||y − x‖∞ < δ. Consider

s(t) := (PK∞y)(t)− (PK∞x)(t)− (PC∞(x)(y − x))(t)

on each of the subintervals Aδ −Dδ successively.

Subset Aδ

In view of (6), (10) and (11), we have

(PK∞y)(t) = y(t), (PK∞x)(t) = x(t), (PC∞(x)(y − x))(t) = y(t)− x(t),

hence

s(t) = 0 for a.a. t ∈ Aδ. (12)

Subset Bδ

We have

(PK∞y)(t) = 0, (PK∞x)(t) = 0, (PC∞(x)(y − x))(t) = 0,

i.e.,

s(t) = 0 for a.a. t ∈ Bδ. (13)

Subset Cδ

Since x(t) = 0, by (6) and (10) we get

(PC∞(x)(y − x))(t) = (PC∞(x)y)(t) = (PK∞y)(t),

i.e.,

s(t) = 0 for a.a. t ∈ Cδ. (14)

Subset Dδ

On this subset we do not have information on the signs of y(t) and (y(t)−x(t)). We only
know that

|s(t)| ≤ |(PK∞y)(t)− (PK∞x)(t)|+ |(PC∞(x)(y − x))(t)|
≤ 2|y(t)− x(t)| ≤ 2‖y − x‖∞.

(15)

Using (12)-(15) we find

‖s‖p =

[∫
Dδ

|s(t)|pdt

] 1
p

≤ 2 e [meas Dδ]
1
p ||y − x‖∞.

Since meas Dδ → 0 as δ → 0, for any p > 0 and any ε > 0 we can find δ(p, ε) > 0 such
that

‖PK∞y − PK∞x− PC∞(x)(y − x)‖p ≤ ε‖y − x‖∞,

for all y such that ‖y − x‖∞ < δ(p, ε).
(16)

Note that the estimate (16) cannot be obtained for p = ∞. The following simple example
shows that, in general, the metric projection onto the cone of nonnegative functions is
not differentiable in L∞(0, 1).
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Example. Let x(t) = 1− 2t, y(t) = 1− τt. Hence y(t)−x(t) = (2− τ)t and ‖y−x‖∞ =
2− τ . By (6) and (10), we have

(PK∞x)(t) =

{
1− 2t for a.a. t ∈ [0, 1

2
],

0 for a.a. t ∈ [1
2
, 1],

(PK∞y)(t) =

{
1− τt for a.a. t ∈ [0, 1

τ
],

0 for a.a. t ∈ [ 1
τ
, 1],

(PC∞(x)(y − x))(t) =

{
(2− τ)t for a.a. t ∈ [0, 1

2
],

0 for a.a. t ∈ [1
2
, 1],

Hence, by simple calculations we get

‖PK∞y − PK∞x− PC∞(x)(y − x)‖p

=

{
1
2
[2τ(p + 1)]−

1
p |2− τ |

1
p‖y − x‖∞ for p ∈ [1,∞),

1
2
‖y − x‖∞, for p = ∞.

This shows that the projection is Fréchet differentiable at x in Lp(0, 1) for all p ∈ [1,∞),
but not for p = ∞.

3. Metric projection in W 1,p(0, 1)

In W 1,p(0, 1) we introduce the norm

‖x‖1,p = (|x(0)|p + ‖ẋ‖p
p)

1
p for p ∈ [1,∞),

‖x‖1,∞ = max{|x(0)|, ‖ẋ‖∞}.
(17)

By K1,p we denote the cone of nonnegative functions in W 1,p(0, 1). We will use the geo-
metrical characterization of the metric projection onto the cone of nonnegative functions
in W 1,p(0, 1) given by J. V. Outrata and Z. Schindler [13]. Clearly, PK1,px = x if x ∈ K1,p.
Suppose that x 6∈ K1,p, i.e., mint∈[0,1] x(t) < 0. Let x̃ be the right-continuous auxiliary
function defined on [−1, 1] as follows

x̃(t) =


0 for t ∈ [−1, 0),
x(t) for t ∈ [0, 1),
mint∈[0,1] x(t) for t = 1.

(18)

Denote by co x̃ the lower convex envelope of x̃. Since mint∈[0,1] x(t) < 0, the function

d

dt
co x̃ ∈ Lp(0, 1) is nonpositive and nondecreasing (see Fig. 3.1). According to [13], the

projection PK1,px is given by

(PK1,px)(t) = x(t)− co x̃(t) for all t ∈ [0, 1]. (19)

Note that the above construction refers to one-dimensional systems and it seems that it
cannot be extended to multidimensional situations.
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As in (6), by PK1,∞x we denote the mapping defined on W 1,∞(0, 1) by (19). Introduce
the sets

N1
+(x) = {t ∈ [0, 1] | x(t) > co x̃(t)},

N1
0 (x) = {t ∈ [0, 1] | x(t) = co x̃(t) and ẋ(t) =const in a neighborhood of t},

N1
−(x) = {t ∈ [0, 1] | x(t) = co x̃(t)} \N1

0 (x).

(20)

As in (8), define the cones

1 x 0
x � co x

1 1 x 0

x� co x

1

� 2 x

x

� 0.5

x

xcoco

-

-

-
~ ~

~

~

~~

-

-

-

Figure 3.1: Construction of the projection in W 1,p(0, 1).

C1,p(x) =

y ∈ W 1,p(0, 1) | y(t)


free for all t ∈ N1

+(x),
≥ 0 for all t ∈ N1

0 (x),
= 0 for all t ∈ N1

−(x).

 . (21)

Using (19), one can check that C1,2(x) = Ξ(x), where Ξ(x) corresponds to K1,2 according
to (3). Hence, by Theorems 1.2 and 1.4, the conical differential of PK1,2 at x in the
direction y is given by

(dPK1,2x; y) = PC1,2(x)y. (22)

We would like to check if (22) is the B-differential. The negative answer is given in the
following theorem.

Theorem 3.1. The mapping PK1,∞(0,1) : W 1,∞(0, 1) → W 1,p(0, 1), in general, is not
Bouligand differentiable for any p ∈ [1,∞].

Proof. We are going to construct an example, where condition (1) is violated for the

mapping PK1,∞ . Let x(t) =
t2

2
− t− 2, i.e., ẋ = t− 1. We have
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Figure 3.2: Time derivatives of the function and its projection.
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co x̃(t) =

{
−2− 2t for t ∈ [−1, 0],
x(t) for t ∈ [0, 1].

Hence, by (19)

PK1,px ≡ 0, (23)

whereas, by (21) we get

PC1,py ≡ 0 for any y ∈ W 1,p(0, 1). (24)

Let us construct y = x + ∆x in the following way. Choose any integer N and divide the

interval [0, 1] into
1

N
subintervals of the equal length h =

1

N
. Put ∆x(0) = 0 and define

d

dt
∆x as a periodic function, of period h, given on [0, h] by

d

dt
∆x(t) =



2t for t ∈ [0, 1
6
h],

1
3
h for t ∈ [1

6
h, 2

6
h],

−2t + h for t ∈ [2
6
h, 4

6
h],

−1
3
h for t ∈ [4

6
h, 5

6
h],

2(t− h) for t ∈ [5
6
h, h],

(25)

as it is shown in Fig. 3.2, where also
d

dt
y(t) =

d

dt
x(t) +

d

dt
∆x(t) is drawn. We have

‖y − x‖1,∞ =
1

3
h. (26)

It can be easily checked that the convex envelopes of the functions y and ỹ coincide on
[0, 1]:

(co y)(t) = (co ỹ)(t) for t ∈ [0, 1], (27)

but they do not coincide with the function y. We have

(co y)(0) = y(0) (28)

and, on the interval [0, h] the time derivative d
dt

(co y) is given (see, Fig. 3.2) by

d

dt
(co y)(t) =


−1 + 3t for t ∈ [0, 1

6
h],

−1 + 1
2
h for t ∈ [1

6
h, 5

6
h],

−1− 2h + 3t for t ∈ [5
6
h, h].

(29)

Using (25) and (29), we find that

d

dt
(co y)(t)− d

dt
y(t) =


0 for t ∈ [0, 1

6
h] ∩ [5

6
h, h],

t− 1
6
h for t ∈ [1

6
h, 2

6
h],

−t + 1
2
h for t ∈ [2

6
h, 4

6
h],

t− 5
6
h for t ∈ [4

6
h, 5

6
h]

(30)
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and this function is periodic, with the period h. On the other hand, (19) and (27) imply

PK1,py = (co y)(t)− y(t). (31)

We will show that the conical differential (22) does not satisfy the estimate (1) for all y
constructed above, so it is not the B-differential. In view of (23), (24) and (31) we get

s1 := PK1,∞y − PK1,∞x− PC1,∞(x)(y − x) = PK1,∞y = co y − y.

By (30), we have

‖s1‖1,∞ = ess supt∈[0,1]

∣∣∣∣ d

dt
(co y)(t)− d

dt
y(t)

∣∣∣∣ ,

‖s1‖1,p =

[∫ 1

0

∣∣∣∣ d

dt
(co y)(t)− d

dt
y(t)

∣∣∣∣p dt

] 1
p

.

Using (26) and (30), we obtain

‖s1‖1,∞ = 1
6
h = 1

2
‖y − x‖1,∞,

‖s1‖1,p =
(

2
3(p+1)

) 1
p 1

6
h =

(
2

3(p+1)

) 1
p 1

2
‖y − x‖1,∞ for p ∈ [1,∞).

(32)

Equalities (32) show that, for any h → 0 and for any p ∈ [1,∞], condition (1) is not sat-
isfied i.e., the mapping of the metric projection onto the cone K1,∞ is not B-differentiable
at x in W 1,p(0, 1), for any p ∈ [1,∞].

Remark 3.2. Since the embedding W 2,2(0, 1) ⊂ W 1,2(0, 1) is compact, Theorem 1.3
implies that PK is B-differentiable as a map from W 2,2(0, 1) into W 1,2(0, 1).
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