Remarks on Differentiability of Metric Projections onto Cones of Nonnegative Functions

K. Malanowski

Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447 Warszawa, Poland kmalan@ibspan.waw.pl

Received March 1, 2001

The differentiability properties of the metric projections onto the cones of nonnegative functions in $L^{p}(0,1)$ and in $W^{1,p}(0,1)$ are considered. It is shown that the metric projection mapping is Bouligand differentiable in $L^{p}(0,1)$, but it is not Bouligand differentiable in $W^{1,p}(0,1)$.

Keywords: Metric projection, cones of nonnegative functions, Bouligand differentiability

1. Preliminaries

Differentiability properties of the matric projection onto closed convex sets are of interest in variational inequalities and optimal control problems. The examples constructed by J. Kruskal [6] and A. Shapiro [19] show that, in general such a projection is not directionally differentiable, even in finite dimensional spaces. An important contribution was made by A. Haraux [4] and F. Mignot [12], who proved existence and characterized the conical differentials of the projection for a class of closed convex sets in Hilbert spaces. This direction of research has been further developed (see e.g., [14]) and found numerous applications in sensitivity analysis of variational inequalities and optimal control (see e.g., [5, 9, 10, 20]). Recently, a quite general results on differentiability, in a weak sense, of solutions to variational inequalities were obtained by A. B. Levy [7].

This paper is devoted to studying a stronger type of differentiability, the so called *Bouligand differentiability*, of the maps of metric projection onto the cones of nonnegative functions in $L^p(0,1)$ and $W^{1,p}(0,1)$. Just these cones are connected with control and state constraints in optimal control problems for ODEs. Let us recall the notions of *conical* and *Bouligand* differentiability (see [12] and [15, 17], respectively):

Definition 1.1. Let X and Y be Banach spaces. A function $f : X \to Y$ is called *conically* differentiable at x if there exists a positively homogeneous mapping $df(x) : X \to Y$, called conical-derivative, with the property that, for every compact set $C \subset X$ and every $\epsilon > 0$, there exists $\delta > 0$ such that

$$\|f(y) - f(x) - (df(x); y - x)\|_Y \le \epsilon \|y - x\|_X$$

for every $y \in C$ such that $\|y - x\|_X \le \delta$. (1)

If (1) holds uniformly for all $y \in X$, $||y - x||_X \leq \delta$, then we say that f is *Bouligand*, or B-differentiable at x and the corresponding B-derivative is denoted by Df(x).

ISSN 0944-6532 / \$2.50 © Heldermann Verlag

Clearly, the notions of conical and B-differentials coincide in finite dimensional spaces. Moreover, if Df(x) is linear, then it becomes Fréchet derivative. That is the reason, that sometimes B-derivative is called *directional* Fréchet derivative [2]. It turns out that the concept of B-differentiability is useful in sensitivity analysis of parametric mathematical programs [15, 16, 18]. Recently this concept was also used in sensitivity analysis of optimal control problems [3, 11]. In this paper, we are going to study B-differentiability properties of the metric projection onto the cone of nonnegative functions in $L^p(0, 1)$) and in $W^{1,p}(0, 1)$.

Our starting point are the differential properties of the metric projection onto closed convex cones in abstract Hilbert spaces derived in [12] (see also [4]). To recall these results, we have to start with some definitions. Let X be a real Hilbert space, with the inner product denoted by (\cdot, \cdot) . Let $K \subset X$ be a closed convex cone and P_K denote the metric projection onto K, i.e., for any $x \in X$, $P_K x \in K$ is a unique element such that

$$||x - P_K x||_X = \min_{y \in K} ||x - y||_X.$$

By [x] we donote the one-dimensional space generated by x and by $[x]^{\perp} = \{y \in X \mid (x, y) = 0\}$ the subspace orthogonal to [x]. We will need the following notion (see [4]):

Definition 1.2. A closed convex cone $K \subset X$ is called *polyhedric*, if for any $x \in X$

$$\overline{(K+[P_Kx])\cap[x-P_Kx]^{\perp}} = \overline{(K+[P_Kx])}\cap[x-P_Kx]^{\perp}.$$
(2)

Note that *polihedricity* is a natural extention of the polyhedral property in finite dimension. We will denote

$$\Xi(x) = \overline{(K + [P_K x])} \cap [x - P_K x]^{\perp}.$$
(3)

The following theorem of Mignot (see Theorem 2.1 in [12]) shows that the notion of polyhedricity plays an important role in differentiability properties of the projection onto a cone.

Theorem 1.3. Let K be a polyhedric cone in a Hilbert space X. Then the metric projection mapping $P_K : X \to K$ is conically differentiable and, for any $x, y \in X$,

$$(dP_K x; y) = P_{\Xi(x)} y, \tag{4}$$

where $P_{\Xi(x)}$ denotes the metric projection onto $\Xi(x)$.

Haraux studied polyhedric properties of positive cones of Hilbert lattices and he proved the following result (Corollary 2 in [4]):

Theorem 1.4. Let X be a Hilbert lattice, with $K = \{x \in X \mid x \ge 0\}$ being closed. Denote $x^+ = \sup\{x, 0\}$. If there exists constant M > 0 such that

$$||x^+||_X \le M ||x||_X \qquad for \ all \ x \in X,$$

then the cone K is polyhedric.

It follows from Theorem 1.4 that the cones of nonnegative functions in $L^2(0,1)$ and $W^{1,2}(0,1)$ are polyhedric, i.e., by Theorem 1.3, the metric projection mappings onto

these cones are conically differentiable. We are going to study Bouligand-differentiability property of the projection mappings onto these cones. We show that the metric projection onto the cone of nonnegative functions is B-differentiable in $L^p(0,1)$ for $p < \infty$ (but not for $p = \infty$) and it is *not* B-differentiable in $W^{1,p}(0,1)$ for any $p \in [1,\infty]$.

2. Metric projection in $L^p(0,1)$

In this section we investigate B-differentiability of the projection onto the cone of nonnegative functions in $L^p(0, 1)$. The analysis is performed for one-dimensional problems. However, the resuls can be extended to multi-dimensional case. Consider the cone

$$K^{p} = \{ x \in L^{p}(0,1) \mid x(t) \ge 0 \quad \text{for a.a. } t \in [0,1] \}.$$
(5)

Clearly, for any $p \in [1, \infty)$ we have

$$(P_{K^p}x)(t) = x^+(t) := \sup\{x(t), 0\} \text{ for a.a. } t \in [0, 1].$$
(6)

For $p = \infty$, the projection is not unique. In the sequel, by $P_{K^{\infty}x}$ we will understand the selection given by (6). Note that, a full characterization of a tangent set to the cone of non-negative functions is L^{∞} is presented in [1]. For a given $x \in L^{p}(0, 1)$ introduce the sets

$$N_{+}(x) = \{t \in [0, 1] \mid x(t) > 0\}, N_{0}(x) = \{t \in [0, 1] \mid x(t) = 0\}, N_{-}(x) = \{t \in [0, 1] \mid x(t) < 0\}.$$

$$(7)$$

Define the cones

$$C^{p}(x) = \left\{ y \in L^{p}(0,1) \mid y(t) \left\{ \begin{array}{ll} \text{free} & \text{ for a.a. } t \in N_{+}(x), \\ \geq 0 & \text{ for a.a. } t \in N_{0}(x), \\ = 0 & \text{ for a.a. } t \in N_{-}(x). \end{array} \right\}.$$
(8)

Clearly, $C^2(x)$ coincide with the set $\Xi(x)$ defined in (3).

Theorem 2.1. The mapping $P_{K^{\infty}}$: $L^{\infty}(0,1) \to L^{p}(0,1)$ is Bouligand differentiable for any $p \in [1,\infty)$ and for any $x, y \in L^{\infty}(0,1)$ the B-differential is given by

$$(DP_{K^{\infty}}x;y) = P_{C^{\infty}(x)}y.$$
(9)

Proof. Clearly, the mapping $P_{C^{\infty}(x)}$: $L^{\infty}(0,1) \to L^{p}(0,1)$ is positively homogeneous. Hence to prove the theorem, it is enough to show that (1) holds for any $y \in X := L^{\infty}(0,1)$. In view of (8) we have

$$(P_{C^{\infty}(x)}y)(t) = \begin{cases} y(t) & \text{for a.a. } t \in N_{+}(x), \\ y^{+}(t) & \text{for a.a. } t \in N_{0}(x), \\ 0 & \text{for a.a. } t \in N_{-}(x). \end{cases}$$
(10)

Let us fix any $x \in L^{\infty}(0,1)$ and choose $\delta > 0$. Introduce the following subsets of the interval [0,1]:

$$\mathcal{A}_{\delta} = \{ t \in [0,1] \mid x(t) \ge \delta \}, \qquad \mathcal{B}_{\delta} = \{ t \in [0,1] \mid x(t) \le -\delta \}, \\ \mathcal{C}_{\delta} = \{ t \in [0,1] \mid x(t) = 0 \}, \qquad \mathcal{D}_{\delta} = \{ t \in [0,1] \mid x(t) \in (-\delta,\delta) \}.$$
(11)

288 K. Malanowski / Remarks on Differentiability of Metric Projections onto Cones ...

Let $||y - x||_{\infty} < \delta$. Consider

$$s(t) := (P_{K^{\infty}}y)(t) - (P_{K^{\infty}}x)(t) - (P_{C^{\infty}(x)}(y-x))(t)$$

on each of the subintervals $\mathcal{A}_{\delta} - \mathcal{D}_{\delta}$ successively.

Subset \mathcal{A}_{δ}

In view of (6), (10) and (11), we have

$$(P_{K^{\infty}}y)(t) = y(t), \ (P_{K^{\infty}}x)(t) = x(t), \ (P_{C^{\infty}(x)}(y-x))(t) = y(t) - x(t),$$

hence

$$s(t) = 0$$
 for a.a. $t \in \mathcal{A}_{\delta}$. (12)

Subset \mathcal{B}_{δ}

We have

$$(P_{K^{\infty}}y)(t) = 0, \ (P_{K^{\infty}}x)(t) = 0, \ (P_{C^{\infty}(x)}(y-x))(t) = 0,$$

i.e.,

$$s(t) = 0$$
 for a.a. $t \in \mathcal{B}_{\delta}$. (13)

 $\frac{\text{Subset } \mathcal{C}_{\delta}}{\text{Since } x(t)} = 0, \text{ by (6) and (10) we get}$

$$(P_{C^{\infty}(x)}(y-x))(t) = (P_{C^{\infty}(x)}y)(t) = (P_{K^{\infty}}y)(t),$$

i.e.,

$$s(t) = 0$$
 for a.a. $t \in \mathcal{C}_{\delta}$. (14)

Subset \mathcal{D}_{δ}

On this subset we do not have information on the signs of y(t) and (y(t) - x(t)). We only know that

$$\begin{aligned} s(t)| &\leq |(P_{K^{\infty}}y)(t) - (P_{K^{\infty}}x)(t)| + |(P_{C^{\infty}(x)}(y-x))(t)| \\ &\leq 2|y(t) - x(t)| \leq 2||y-x||_{\infty}. \end{aligned} \tag{15}$$

Using (12)-(15) we find

$$||s||_p = \left[\int_{\mathcal{D}_{\delta}} |s(t)|^p dt\right]^{\frac{1}{p}} \le 2 \ e \left[\text{meas } \mathcal{D}_{\delta}\right]^{\frac{1}{p}} ||y - x||_{\infty}.$$

Since meas $\mathcal{D}_{\delta} \to 0$ as $\delta \to 0$, for any p > 0 and any $\epsilon > 0$ we can find $\delta(p, \epsilon) > 0$ such that

$$\|P_{K^{\infty}}y - P_{K^{\infty}}x - P_{C^{\infty}(x)}(y-x)\|_{p} \le \epsilon \|y-x\|_{\infty},$$

for all y such that $\|y-x\|_{\infty} < \delta(p,\epsilon).$ (16)

Note that the estimate (16) cannot be obtained for $p = \infty$. The following simple example shows that, in general, the metric projection onto the cone of nonnegative functions is *not* differentiable in $L^{\infty}(0, 1)$.

Example. Let x(t) = 1 - 2t, $y(t) = 1 - \tau t$. Hence $y(t) - x(t) = (2 - \tau)t$ and $||y - x||_{\infty} = 2 - \tau$. By (6) and (10), we have

$$(P_{K^{\infty}}x)(t) = \begin{cases} 1-2t & \text{for a.a. } t \in [0, \frac{1}{2}], \\ 0 & \text{for a.a. } t \in [\frac{1}{2}, 1], \\ (P_{K^{\infty}}y)(t) = \begin{cases} 1-\tau t & \text{for a.a. } t \in [0, \frac{1}{\tau}], \\ 0 & \text{for a.a. } t \in [0, \frac{1}{\tau}], \\ 0 & \text{for a.a. } t \in [\frac{1}{\tau}, 1], \end{cases}$$
$$(P_{C^{\infty}(x)}(y-x))(t) = \begin{cases} (2-\tau)t & \text{for a.a. } t \in [0, \frac{1}{2}], \\ 0 & \text{for a.a. } t \in [\frac{1}{2}, 1], \end{cases}$$

Hence, by simple calculations we get

$$\begin{aligned} \|P_{K^{\infty}}y - P_{K^{\infty}}x - P_{C^{\infty}(x)}(y-x)\|_{p} \\ &= \begin{cases} \frac{1}{2}[2\tau(p+1)]^{-\frac{1}{p}}|2-\tau|^{\frac{1}{p}}\|y-x\|_{\infty} & \text{for } p \in [1,\infty), \\ \frac{1}{2}\|y-x\|_{\infty}, & \text{for } p = \infty. \end{cases} \end{aligned}$$

This shows that the projection is Fréchet differentiable at x in $L^p(0,1)$ for all $p \in [1,\infty)$, but not for $p = \infty$.

3. Metric projection in $W^{1,p}(0,1)$

In $W^{1,p}(0,1)$ we introduce the norm

$$\begin{aligned} \|x\|_{1,p} &= (|x(0)|^p + \|\dot{x}\|_p^p)^{\frac{1}{p}} \quad \text{for } p \in [1,\infty), \\ \|x\|_{1,\infty} &= \max\{|x(0)|, \|\dot{x}\|_\infty\}. \end{aligned}$$
(17)

By $K^{1,p}$ we denote the cone of nonnegative functions in $W^{1,p}(0,1)$. We will use the geometrical characterization of the metric projection onto the cone of nonnegative functions in $W^{1,p}(0,1)$ given by J. V. Outrata and Z. Schindler [13]. Clearly, $P_{K^{1,p}}x = x$ if $x \in K^{1,p}$. Suppose that $x \notin K^{1,p}$, i.e., $\min_{t \in [0,1]} x(t) < 0$. Let \tilde{x} be the right-continuous auxiliary function defined on [-1,1] as follows

$$\widetilde{x}(t) = \begin{cases} 0 & \text{for } t \in [-1, 0), \\ x(t) & \text{for } t \in [0, 1), \\ \min_{t \in [0, 1]} x(t) & \text{for } t = 1. \end{cases}$$
(18)

Denote by co \tilde{x} the lower convex envelope of \tilde{x} . Since $\min_{t \in [0,1]} x(t) < 0$, the function $\frac{d}{dt}$ co $\tilde{x} \in L^p(0,1)$ is nonpositive and nondecreasing (see Fig. 3.1). According to [13], the projection $P_{K^{1,p}}x$ is given by

$$(P_{K^{1,p}}x)(t) = x(t) - \operatorname{co} \widetilde{x}(t) \quad \text{for all } t \in [0,1].$$
(19)

Note that the above construction refers to one-dimensional systems and it seems that it cannot be extended to multidimensional situations.

As in (6), by $P_{K^{1,\infty}}x$ we denote the mapping defined on $W^{1,\infty}(0,1)$ by (19). Introduce the sets

$$N^{1}_{+}(x) = \{t \in [0,1] \mid x(t) > \operatorname{co} \widetilde{x}(t)\},\$$

$$N^{1}_{0}(x) = \{t \in [0,1] \mid x(t) = \operatorname{co} \widetilde{x}(t) \text{ and } \dot{x}(t) = \operatorname{const in a neighborhood of } t\},$$

$$N^{1}_{-}(x) = \{t \in [0,1] \mid x(t) = \operatorname{co} \widetilde{x}(t)\} \setminus N^{1}_{0}(x).$$
(20)

As in (8), define the cones

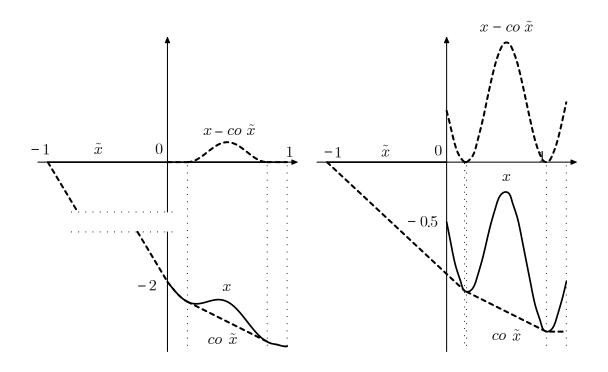


Figure 3.1: Construction of the projection in $W^{1,p}(0,1)$.

$$C^{1,p}(x) = \left\{ y \in W^{1,p}(0,1) \mid y(t) \left\{ \begin{array}{ll} \text{free} & \text{ for all } t \in N^1_+(x), \\ \ge 0 & \text{ for all } t \in N^0_0(x), \\ = 0 & \text{ for all } t \in N^1_-(x). \end{array} \right\}.$$
 (21)

Using (19), one can check that $C^{1,2}(x) = \Xi(x)$, where $\Xi(x)$ corresponds to $K^{1,2}$ according to (3). Hence, by Theorems 1.2 and 1.4, the conical differential of $P_{K^{1,2}}$ at x in the direction y is given by

$$(dP_{K^{1,2}}x;y) = P_{C^{1,2}(x)}y.$$
(22)

We would like to check if (22) is the B-differential. The negative answer is given in the following theorem.

Theorem 3.1. The mapping $P_{K^{1,\infty}(0,1)}$: $W^{1,\infty}(0,1) \to W^{1,p}(0,1)$, in general, is not Bouligand differentiable for any $p \in [1,\infty]$.

Proof. We are going to construct an example, where condition (1) is violated for the mapping $P_{K^{1,\infty}}$. Let $x(t) = \frac{t^2}{2} - t - 2$, i.e., $\dot{x} = t - 1$. We have

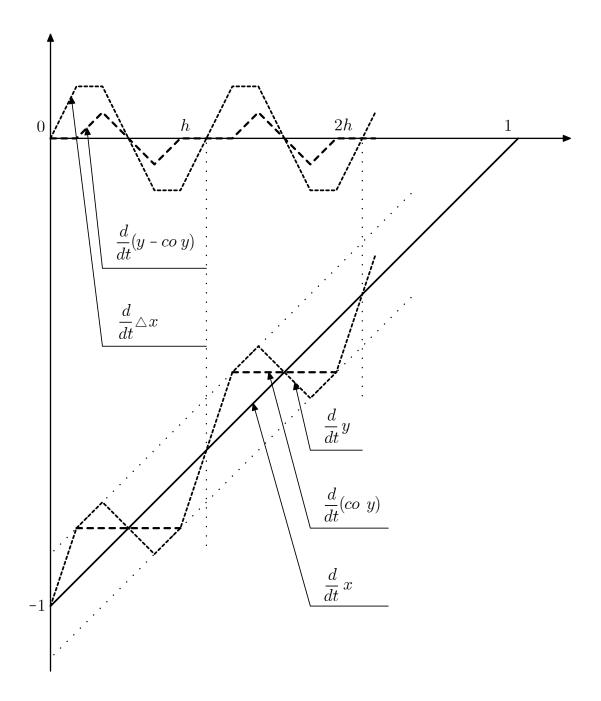


Figure 3.2: Time derivatives of the function and its projection.

292 K. Malanowski / Remarks on Differentiability of Metric Projections onto Cones ...

co
$$\widetilde{x}(t) = \begin{cases} -2 - 2t & \text{for } t \in [-1, 0], \\ x(t) & \text{for } t \in [0, 1]. \end{cases}$$

Hence, by (19)

$$P_{K^{1,p}}x \equiv 0, \tag{23}$$

whereas, by (21) we get

$$P_{C^{1,p}}y \equiv 0$$
 for any $y \in W^{1,p}(0,1)$. (24)

Let us construct $y = x + \Delta x$ in the following way. Choose any integer N and divide the interval [0, 1] into $\frac{1}{N}$ subintervals of the equal length $h = \frac{1}{N}$. Put $\Delta x(0) = 0$ and define $\frac{d}{dt}\Delta x$ as a periodic function, of period h, given on [0, h] by

$$\frac{d}{dt}\Delta x(t) = \begin{cases}
2t & \text{for } t \in [0, \frac{1}{6}h], \\
\frac{1}{3}h & \text{for } t \in [\frac{1}{6}h, \frac{2}{6}h], \\
-2t+h & \text{for } t \in [\frac{2}{6}h, \frac{4}{6}h], \\
-\frac{1}{3}h & \text{for } t \in [\frac{4}{6}h, \frac{5}{6}h], \\
2(t-h) & \text{for } t \in [\frac{5}{6}h, h],
\end{cases} (25)$$

as it is shown in Fig. 3.2, where also $\frac{d}{dt}y(t) = \frac{d}{dt}x(t) + \frac{d}{dt}\Delta x(t)$ is drawn. We have

$$\|y - x\|_{1,\infty} = \frac{1}{3}h.$$
 (26)

It can be easily checked that the convex envelopes of the functions y and \tilde{y} coincide on [0,1]:

$$(\operatorname{co} y)(t) = (\operatorname{co} \widetilde{y})(t) \quad \text{for } t \in [0, 1],$$

$$(27)$$

but they do not coincide with the function y. We have

$$(\text{co } y)(0) = y(0)$$
 (28)

and, on the interval [0, h] the time derivative $\frac{d}{dt}(\text{co } y)$ is given (see, Fig. 3.2) by

$$\frac{d}{dt}(\operatorname{co} y)(t) = \begin{cases} -1 + 3t & \text{for } t \in [0, \frac{1}{6}h], \\ -1 + \frac{1}{2}h & \text{for } t \in [\frac{1}{6}h, \frac{5}{6}h], \\ -1 - 2h + 3t & \text{for } t \in [\frac{5}{6}h, h]. \end{cases}$$
(29)

Using (25) and (29), we find that

$$\frac{d}{dt}(\operatorname{co} y)(t) - \frac{d}{dt}y(t) = \begin{cases} 0 & \text{for } t \in [0, \frac{1}{6}h] \cap [\frac{5}{6}h, h], \\ t - \frac{1}{6}h & \text{for } t \in [\frac{1}{6}h, \frac{2}{6}h], \\ -t + \frac{1}{2}h & \text{for } t \in [\frac{2}{6}h, \frac{4}{6}h], \\ t - \frac{5}{6}h & \text{for } t \in [\frac{4}{6}h, \frac{5}{6}h] \end{cases}$$
(30)

and this function is periodic, with the period h. On the other hand, (19) and (27) imply

$$P_{K^{1,p}}y = (\text{co } y)(t) - y(t).$$
(31)

We will show that the conical differential (22) does not satisfy the estimate (1) for all y constructed above, so it is not the B-differential. In view of (23), (24) and (31) we get

$$s^{1} := P_{K^{1,\infty}}y - P_{K^{1,\infty}}x - P_{C^{1,\infty}(x)}(y-x) = P_{K^{1,\infty}}y = \operatorname{co} y - y.$$

By (30), we have

$$\|s^{1}\|_{1,\infty} = \text{ess } \sup_{t \in [0,1]} \left| \frac{d}{dt} (\text{co } y)(t) - \frac{d}{dt} y(t) \right|,$$
$$\|s^{1}\|_{1,p} = \left[\int_{0}^{1} \left| \frac{d}{dt} (\text{co } y)(t) - \frac{d}{dt} y(t) \right|^{p} dt \right]^{\frac{1}{p}}.$$

Using (26) and (30), we obtain

$$\|s^{1}\|_{1,\infty} = \frac{1}{6}h = \frac{1}{2}\|y - x\|_{1,\infty},$$

$$\|s^{1}\|_{1,p} = \left(\frac{2}{3(p+1)}\right)^{\frac{1}{p}} \frac{1}{6}h = \left(\frac{2}{3(p+1)}\right)^{\frac{1}{p}} \frac{1}{2}\|y - x\|_{1,\infty} \quad \text{for } p \in [1,\infty).$$

(32)

Equalities (32) show that, for any $h \to 0$ and for any $p \in [1, \infty]$, condition (1) is not satisfied i.e., the mapping of the metric projection onto the cone $K^{1,\infty}$ is not B-differentiable at x in $W^{1,p}(0,1)$, for any $p \in [1,\infty]$.

Remark 3.2. Since the embedding $W^{2,2}(0,1) \subset W^{1,2}(0,1)$ is compact, Theorem 1.3 implies that P_K is B-differentiable as a map from $W^{2,2}(0,1)$ into $W^{1,2}(0,1)$.

References

- E. Bednarczuk, M. Pierre, E. Rouy, J. Sokolowski: Tangent sets in some functional spaces, Nonlinear Analysis 42 (2000) 871–886.
- [2] J. F. Bonnans, A. Shapiro: Perturbation Analysis of Optimization Problems, Springer, New York (2000).
- [3] T. Grund: Forthcomming doctoral thesis, Technical University of Chemnitz-Zwickau.
- [4] A. Haraux: How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities, J. Math. Soc. Japan 29 (1977) 615–631.
- [5] K. Ito, K. Kunisch: Sensitivity analysis of solutions to optimization problems in Hilbert spaces with applications to optimal control and estimation, J. Diff. Equations 99 (1992) 1–40.
- [6] J. Kruskal: Two convex counterexamples: a discontinuous envelope function and a nondifferentiable nearest-point mapping, Proc. Amer. Math. Soc. 23 (1969) 697–703.
- [7] A. B. Levy: Sensitivity of solutions to variational inequalities, SIAM J. Contr. Optim. 38 (1999) 50–60.
- [8] K. Malanowski: Second order conditions and constraint qualifications in stability and sensitivity analysis of solutions in optimization problems in Hilbert spaces, Appl. Math. Optim. 25 (1992) 51–79.

- 294 K. Malanowski / Remarks on Differentiability of Metric Projections onto Cones ...
- [9] K. Malanowski: Two-norm approach in stability and sensitivity analysis of optimization and optimal control problems, Adv. Math. Sci. Appl. 2 (1993) 397–443.
- [10] K. Malanowski: Stability and sensitivity of solutions to nonlinear optimal control problems, Appl. Math. Optim. 32 (1995) 111–141.
- [11] K. Malanowski: Bouligand differentiability of solutions to parametric optimal control problems, Numer. Funct. Anal. Optim. 22 (2001) 973–990.
- [12] F. Mignot: Contrôle dans les inéquations variationelles, J. Funct. Anal. 22 (1976) 130–185.
- [13] J. V. Outrata, Z. Schindler: An augmented Lagrangian method for a class of convex optimal control problems, Problems Contr. Inform. Theory 10 (1981) 67–81.
- [14] M. Rao, J. Sokłowski: Tangent sets in Banach spaces and applications to variational inequalities, Les Prépublications de l'Institut Élie Cartan 42/00 (2000).
- [15] S. M. Robinson: Local structure of feasible sets in nonlinear programming, Part III: Stability and sensitivity, Math. Program. Study 30 (1987, 97–116.
- [16] S. M. Robinson: An implicit-function theorem for a class of nonsmooth functions, Math. Oper. Res. 16 (1991) 292–309.
- [17] A. Shapiro: On concepts of directional differentiability, J. Math. Anal. Appl. 66 (1990) 477–487.
- [18] A. Shapiro: Perturbation analysis of optimization problems in Banach spaces, Numer. Funct. Anal. Optim. 13 (1992) 97–116.
- [19] A. Shapiro: Directinally nondifferentiable metric projection, J. Optim. Theory Appl. 81 (1994) 203–204.
- [20] J. Sokołowski: Sensitivity analysis of control constrained optimal control problems for distributed parameter systems, SIAM J. Contr. Optim. 26 (1987) 1542–1556.