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1. Introduction

In the study of generalized convexity and its applications pseudoconvex functions play
an important role [2]. Pseudoconvex functions f for which −f is also pseudoconvex are
often called pseudolinear. This is an interesting class of functions. An application of
pseudolinear programming is linear fractional programming with its various uses, e.g.
[2, 6].

Differentiable pseudoconvex functions are characterized by pseudomonotone gradients in
the sense of Karamardian [9]. Hence differentiable pseudolinear functions are character-
ized by pseudomonotone gradients for which the negative of the gradient is also pseu-
domonotone. Maps (not necessarily gradient maps) with this property are the focus of
the present study. They will be called pseudoaffine maps for the purposes of this paper.

In a previous study [4] some properties of pseudoaffine maps (denoted as PPM-maps
therein) were derived, and characterizations of the solution set of variational inequalities
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involving such maps were obtained. The work can be viewed as an extension of some
recent results for pseudolinear optimization problems in [8] to pseudoaffine maps and
pseudoaffine variational inequalities. For an extension in a different direction see [1].

In the present study we focus on pseudoaffine maps which are defined on the whole space.
The main goal of this paper is to derive the general form of such maps.

Let K ⊆ Rn be convex. A differentiable function f : K → R is called pseudoconvex if for
all x, y ∈ K, the following implication holds [2]:

〈∇f (x) , y − x〉 ≥ 0 ⇒ f (y) ≥ f (x) .

Here, 〈·, ·〉 denotes the scalar product in Rn. As mentioned before, the function f is
pseudolinear if both f and −f are pseudoconvex. First and second order characterizations
of pseudolinear functions and studies of pseudolinear programs are contained in various
papers; e.g., see [5, 6, 8, 10, 11, 14] and the references therein.

Pseudolinear functions are special cases of quasilinear functions. A function f : K → R is
called quasilinear if both f and −f are quasiconvex1. The study of quasilinear functions
originated in the sixties by the work of Martos and continued with the work of Tuy,
Mart́ınez-Legaz and others; e.g., see [2, 12, 13, 15, 16] and the references therein. When
K = Rn, the following result is known:

Theorem 1.1. [15]: A lower semicontinuous function f : Rn → R is quasilinear if and
only if it has the form

f (x) = h (〈u, x〉) (1)

where h is a lower semicontinuous increasing function and u ∈ Rn.

According to the above theorem, there are very “fewÔ quasilinear functions which are
defined on the whole space. However, even these are very useful. Indeed, according to
an important result of Mart́ınez-Legaz [12], a lower semicontinuous function g : Rn :→
R which is bounded from below is quasiconvex if and only if it is the supremum of
differentiable quasilinear functions. The following corollary is an immediate consequence
of Theorem 1.1:

Corollary 1.2. A differentiable function f : Rn → R is pseudolinear if and only if it can
be written in the form

f (x) = h (〈u, x〉) (2)

where u ∈ Rn and h is a differentiable function whose derivative is always positive or
identically zero.

Proof. If f is pseudolinear, then it is quasilinear. Thus it has the form (1) where h is
differentiable and increasing, i.e., with nonnegative derivative. If h′ is zero at some point,
then also ∇f vanishes at some point and this implies that f is constant [10], hence h′ is
identically zero. Otherwise, h′ is always positive. The converse is obvious.

We recall that a map T : K → Rn is called pseudomonotone [9] if for all x, y ∈ K, the
following implication holds:

〈T (x) , y − x〉 ≥ 0 ⇒ 〈T (y) , y − x〉 ≥ 0.
1Note that in the literature these functions are sometimes called quasiaffine or quasimonotonic.
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As mentioned above, a differentiable function f is pseudoconvex if and only if ∇f is a
pseudomonotone map [9]. A map T : K → Rn such that both T and −T are pseudomono-
tone will be called pseudoaffine. We note that in [4] such maps were called PPM maps.
Accordingly, T is pseudoaffine if and only if for all x, y ∈ Rn the following equivalence
holds

〈T (x) , y − x〉 ≥ 0 ⇔ 〈T (y) , y − x〉 ≥ 0

or equivalently,

〈T (x) , y − x〉 > 0 ⇔ 〈T (y) , y − x〉 > 0.

Note that if T is pseudoaffine, then for all x, y ∈ K, the following equivalence holds:

〈T (x), y − x〉 = 0 ⇔ 〈T (y), y − x〉 = 0. (3)

Conversely, if the above equivalence holds and T is continuous, then T is pseudoaffine [4].
We shall mostly use pseudoaffinity in the form (3). An easy consequence is the following:

T (0) = 0 ⇒ 〈T (x) , x〉 = 0,∀x ∈ Rn. (4)

Pseudoaffine maps were studied in [4] in relation with variational inequalities. Obviously,
a differentiable function f is pseudolinear if and only if ∇f is pseudoaffine. Inspired by
Corollary 1.2, it is natural to ask: what is the most general form of a pseudoaffine map
T which is defined on the whole space? In the special case where T = ∇f for some
pseudolinear function f , the answer is very simple: since f has the form (2), it follows
that T (x) = h′ (〈u, x〉)u, i.e., T is always a positive multiple of a constant vector.

Another special case of a pseudoaffine map on the whole space arises when both T and
−T are monotone. Then the answer is given by the following proposition:

Proposition 1.3. Let T : Rn → Rn be such that T and −T are both monotone. Then
there exists a skew-symmetric linear map A and a vector u ∈ Rn such that T (x) = Ax+u,
x ∈ Rn.

Proof. Set u = T (0) and define T ′ : Rn → Rn by T ′ (x) = T (x)− u. Then T ′ and −T ′

are monotone, thus

∀x, y ∈ Rn, 〈T ′ (y)− T ′ (x) , y − x〉 = 0 (5)

T ′ (0) = 0. (6)

From (5), (6) it follows that ∀x ∈ Rn, 〈T ′(x), x〉 = 0. Expanding (5), we then get

∀x, y ∈ Rn, 〈T ′ (x) , y〉 = −〈T ′ (y) , x〉 . (7)

Thus, for any t ∈ R, x, y ∈ Rn, using (7) repeatedly, we obtain

〈T ′ (tx) , y〉 = −〈tx, T ′ (y)〉 = −t 〈x, T ′ (y)〉 = t 〈T ′ (x) , y〉 ,

hence

∀y ∈ Rn, 〈T ′ (tx)− tT ′ (x) , y〉 = 0
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which implies T ′ (tx) = tT ′ (x) ,∀x ∈ Rn. Likewise, for all x, y, z ∈ Rn, relation (7) implies

〈T ′ (x+ y) , z〉 = −〈x+ y, T ′ (z)〉 = −〈x, T ′ (z)〉 − 〈y, T ′ (z)〉
= 〈T ′x, z〉+ 〈T ′y, z〉 ,

hence 〈T ′ (x+ y)− T ′ (x)− T ′ (y) , z〉 = 0 for all z ∈ Rn. It follows that T ′ (x+ y) =
T ′ (x) + T ′ (y) , i.e., T ′ is linear. By relation (7), it is also skew-symmetric. Setting
A = T ′, we get the result.

The aim of this paper is to study the most general form of a pseudoaffine map defined on
the whole space. In fact, our main result will be the following theorem:

Theorem 1.4. A map T : Rn → Rn is pseudoaffine if and only if there exist a skew-
symmetric linear map A, a vector u and a positive function g : Rn → R such that

∀x ∈ Rn, T (x) = g (x) (Ax+ u) . (8)

One part of the theorem is trivial. Indeed, if g, A, u are as above, then for any x, y ∈ Rn, we
have 〈Ay, y − x〉 = 〈Ax, y − x〉 since A is skew-symmetric. Thus we have the equivalences:

〈T (x), y − x〉 ≥ 0 ⇔ 〈Ax+ u, y − x〉 ≥ 0 ⇔
〈Ax, y − x〉+ 〈u, y − x〉 ≥ 0 ⇔ 〈Ay, y − x〉+ 〈u, y − x〉 ≥ 0 ⇔

〈T (y), y − x〉 ≥ 0.

The converse will be studied in the following sections. In Section 2 we show that it is
sufficient to prove Theorem 1.4 for continuous pseudoaffine maps. In Section 3 we study
some elementary properties of pseudoaffine maps. In Section 4 we prove the theorem
for n = 2. In Section 5 we derive some properties of pseudoaffine maps with regard to
straight lines. In Section 6 we establish the theorem for pseudoaffine maps that vanish in
at least one point. In Section 7 we prove the theorem for n = 3 without any assumption
on the number of zeros of the map. In the final section we establish the theorem for the
remaining case where the map never vanishes and n is arbitrary.

We introduce some terminology and notation. Given x ∈ Rn, S ⊆ Rn we denote by
x + S the set {x+ y : y ∈ S} . We set R++ = (0,+∞) and denote by R++S the set
{tx : t ∈ R++, x ∈ S} .
For x1, ...xk ∈ Rn, we denote by sp (x1, ...xk) the subspace generated by {x1, ...xk}. More
generally, if S ⊆ Rn, then sp (S) denotes the subspace generated by S. Two vectors
x, y ∈ Rn will be said to have the same direction if there exists α > 0 such that x = αy.
Given x, y ∈ Rn, x 6= y, we denote by l(x, y) the straight line generated by x and y, that
is

l(x, y) = {z ∈ Rn : z = tx+ (1− t)y, t ∈ R} .
A map T with values in Rn will be said to have a constant direction on a set K if it is
identically zero on K, or else it is everywhere nonzero on K and there exists e ∈ Rn such
that T (x) = ‖T (x)‖ e for all x ∈ K.

Note that for n = 1 it is obvious that Theorem 1.4 is true. Indeed, a pseudoaffine map
in R is a function which is always positive or always negative or identically zero, thus it
is sufficient to take in (8) A = 0 and u = 1 or u = −1 or u = 0. Unless otherwise stated,
the propositions of this paper are obviously true for n = 1. For this reason, we assume in
all proofs that n ≥ 2.
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2. Reduction to the continuous case

The aim of this section is to show that, without loss of generality, we may suppose that
T is continuous in order to prove Theorem 1.4.

The following proposition was proved in [4, Theorem 2.2] with the additional assumption
that T is continuous:

Proposition 2.1. Let K ⊆ Rn be open and convex and let T : K → Rn be pseudoaffine .
If z1, z2 ∈ K are such that T (z1) = T (z2) = 0, then T (z) = 0 for any z ∈ l (z1, z2) ∩K.

Proof. For each v ∈ Rn, let t ∈ R be such that z + tv ∈ K. Since T is pseudoaffine,

〈T (z1) , z + tv − z1〉 = 0 ⇒ 〈T (z + tv) , z + tv − z1〉 = 0. (9)

Since z ∈ l (z1, z2), there exists λ ∈ R such that z = λz1 + (1− λ) z2. Hence, (9) gives

〈T (z + tv) , tv + (1− λ) (z2 − z1)〉 = 0. (10)

Likewise, using T (z2) = 0 we find 〈T (z + tv) , z + tv − z2〉 = 0, hence

〈T (z + tv) , tv + λ (z1 − z2)〉 = 0. (11)

From (10) and (11) we easily deduce that 〈T (z + tv) , tv〉 = 0. It follows that 〈T (z + tv) ,
z − (z + tv)〉 = 0, hence, using again that T is pseudoaffine, we get 〈T (z) , tv〉 = 0.
Therefore 〈T (z) , v〉 = 0 for all v ∈ Rn, hence T (z) = 0.

By induction this result implies the following:

Proposition 2.2. Let K,T be as in Proposition 2.1. If z1, z2, . . . zm ∈ K are such that
T (z1) = T (z2) = . . . = T (zm) = 0, then T vanishes on M ∩ K where M is the affine
subspace generated by z1, z2, . . . zm.

It follows from the preceding proposition that the set of zeros V = M ∩K is closed as a
subset of K, thus the set

W := K\V = {x ∈ K : T (x) 6= 0}

is open.

Lemma 2.3. Let K,T be as in Proposition 2.1. Then the map S : W → Rn defined by
S (x) = T (x) / ‖T (x)‖ is continuous.

Proof. Let x ∈ W and suppose to the contrary that there exists a sequence (xn)n∈N in W
such that xn → x but S (xn) 9 S (x). Since ‖S (xn)‖ = 1 and the unit sphere is compact
in Rn, we may suppose that S (xn) → A where A 6= S (x) selecting a subsequence if
necessary. Note that since ‖A‖ = ‖S (x)‖ = 1, the vectors S (x) and A do not have the
same direction. Thus we can choose v ∈ Rn such that

〈S (x) , v〉 < 0 < 〈A, v〉 .
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We can also choose v small enough so that w := x + v ∈ K. Since S is also pseudoaffine
and 〈S (x) , w − x〉 < 0, we deduce

〈S (w) , w − x〉 < 0. (12)

On the other hand, 0 < 〈A, v〉 = 〈A,w − x〉 implies that there exists n0 ∈ N such that
for all n > n0 we have 〈S (xn) , w − xn〉 > 0. Using again the fact that S is pseudoaffine,
we deduce 〈S (w) , w − xn〉 > 0. Taking the limit we obtain 〈S (w) , w − x〉 ≥ 0 which
contradicts (12).

Theorem 2.4. Let K ⊆ Rn be open and convex and let T : K → Rn be pseudoaffine.
Then there exists a positive function g : K → R and a continuous pseudoaffine map T ′

such that T (x) = g(x)T ′(x), x ∈ K.

Proof. If the set of zeros V is empty, the theorem follows from Lemma 2.3. Otherwise,
let d (x, V ) be the distance of x ∈ K from V . The function d (·, V ) is continuous, and if
x → x0 ∈ V, d (x, V ) → 0. Thus the map T ′ : K → Rn defined by

T ′ (x) =

{

d (x, V )S (x) , x ∈ W
0, x ∈ V

is continuous. Obviously, T (x) = g (x)T ′ (x) where g : K → R is a positive function
defined by

g (x) =

{

‖T (x)‖
d(x,V )

, x ∈ W

1, x ∈ V

Since T ′ (x) = 1
g(x)

T (x) , x ∈ K, T ′ pseudoaffine.

It follows from Theorem 2.4 that in order to prove Theorem 1.4, we may suppose without
loss of generality that T is continuous.

3. Elementary properties of pseudoaffine maps defined on the whole space

Let us begin by exploring relation (8).

Proposition 3.1. Let T : Rn → Rn be pseudoaffine. If T has the form (8) where g :
Rn → R is a positive function, u ∈ Rn and A a linear map, then A is skew-symmetric. If
in addition T is continuous, then g is continuous on the set {x ∈ R : T (x) 6= 0} .

Proof. Set T ′ (x) = T (x) /g (x) . Then T ′ is pseudoaffine. We want to prove that for all
x ∈ Rn, 〈Ax, x〉 = 0. Suppose that for some x ∈ Rn, 〈Ax, x〉 > 0. Then for any y ∈ Rn, the
expression 〈T ′ (tx) , y − tx〉 = 〈tAx+ u, y − tx〉 = −t2 〈Ax, x〉+t [〈Ax, y〉 − 〈u, x〉]+〈u, y〉
will be negative for all t sufficiently great. Since T ′ is pseudoaffine, 〈T ′ (y) , y − tx〉 =
〈T ′ (y) , y〉 − t 〈T ′ (y) , x〉 will also be negative for t great, thus 〈Ay + u, x〉 is nonnegative
for all y. For y = tx, t ∈ R, it follows that 〈Atx+ u, x〉 ≥ 0. Letting t → −∞ and taking
into account 〈Ax, x〉 > 0 we get a contradiction. Analogously, 〈Ax, x〉 < 0 leads to a
contradiction. Thus, A is skew-symmetric.

If T is continuous, then at any x ∈ Rn such that T (x) 6= 0 it follows that g (x) =
‖T (x)‖ / ‖Ax+ u‖ which is continuous at x.
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We remark that when T is continuous, it does not follow that g is continuous on Rn. As
an example, define T on R2 by (8) where u = 0, A (x1, x2) = (x2,−x1) and g (x1, x2) =
1/
√

‖(x1, x2)‖ whenever (x1, x2) 6= (0, 0) and g (0, 0) = 1. Then it is easily seen that T is
continuous while g is discontinuous at 0.

The following easy result will be very useful in the sequel:

Proposition 3.2. Let V be a subspace in Rn, PV the orthogonal projection on V , x0 ∈
Rn, M = V + x0 an affine subspace and T : Rn → Rna pseudoaffine map. Then:

a) The translation T1 (x) = T (x− x0) is a pseudoaffine map on Rn.

b) The orthogonal projection PV T is a pseudoaffine map on M .

Proof. Part (a) is obvious. To show part (b), it is sufficient to note that 〈PV T (x), y − x〉=
〈T (x), PV (y − x)〉 = 〈T (x), y − x〉 for any x, y ∈ M.

By Proposition 2.2, the set of zeros of a pseudoaffine map defined on the whole space, is
either empty or an affine subspace. If T vanishes on a hyperplane M , then it vanishes on
the whole space. To see this, we first include in an easy lemma an argument which will
be often used in the sequel:

Lemma 3.3. Let M be a subspace in Rn and z, y ∈Rn be such that for all x∈ M, 〈z, y − x〉
= 0. Then z ∈ M⊥ ∩ y⊥.

Proof. Taking x = 0 in the given relation, we deduce that 〈z, y〉 = 0. Going back, we see
that 〈z, x〉 = 0 for all x ∈ M , i.e., z ∈ M⊥ ∩ y⊥.

Proposition 3.4. Let T : Rn → Rn be a pseudoaffine map. If T vanishes on a hyper-
plane M , then it vanishes on Rn.

Proof. By considering a translation of T , if necessary, we may suppose without loss of
generality that 0 ∈ M .

For any z /∈ M and any x ∈ M , 〈T (x) , z − x〉 = 0, hence by pseudoaffinity in the form
(3) we deduce that 〈T (z) , z − x〉 = 0. By Lemma 3.3, T (z) ⊥M and T (z) ⊥ z. Since
M is a hyperplane, it follows that T (z) = 0.

The above result can be further generalized:

Proposition 3.5. Let T : Rn → Rn be a pseudoaffine map. If T has constant direction
on a hyperplane M , then it has constant direction on Rn.

Proof. By Theorem 2.4, without loss of generality we may suppose that T is continuous.
If T vanishes on M , then the result follows from Proposition 3.4. Otherwise, T has the
form T (x) = ‖T (x)‖ e with ‖e‖ = 1. Note that T has no zeros on M by our definition
of constant direction at the end of the Introduction. Without loss of generality, we may
consider that M is a subspace.

Let z /∈ M . We consider two cases:

If e is orthogonal toM , then for all x ∈ M , 〈T (x) , z − x〉 = ‖T (x)‖ 〈e, z〉, hence the quan-
tity 〈T (x) , z − x〉 has constant sign. By pseudoaffinity, also the quantity 〈T (z) , z − x〉
has constant sign. In particular, for every x ∈ M and every t ∈ R the quantity
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〈T (z) , z − tx〉 = 〈T (z) , z〉 − t 〈T (z) , x〉 has constant sign which is possible only if
〈T (z) , x〉 = 0. Hence T (z) is also orthogonal to M ; it follows that T (z) and e are
linearly dependent.

If e is not orthogonal to M , consider the subspace V = {y ∈ Rn : 〈e, y〉 = 0} and the
hyperplane M1 = z+V . Since V is orthogonal to e, M1 intersects M at an affine subspace
M ∩M1 with dimension n − 2. Let P be the orthogonal projection to V . The map PT
is pseudoaffine on M1 and vanishes on M ∩ M1 since ∀x ∈ M, T (x) = ‖T (x)‖ e⊥V .
From Proposition 3.4 it follows that PT vanishes on M1. Hence T (z) and e are linearly
dependent.

It follows that in all cases, for every z ∈ Rn, T (z) and e are linearly dependent. Note
that T (z) is never zero. Indeed, T is never zero on M by assumption. If T (z) = 0 for
some z /∈ M , then for all x ∈ M, 〈T (z) , z − x〉 = 0 would imply by pseudoaffinity that
〈T (x) , z − x〉 = 0, yielding 〈e, z − x〉 = 0 for all x ∈ M . By Lemma 3.3, this would imply
that e is orthogonal both to z and M , which is impossible since e 6= 0. Since T (z) , z ∈ Rn

is always a multiple of e and is never zero, continuity of T implies that T (z) has always
the same direction.

4. The case n = 2

We now prove that Theorem 1.4 is true when n = 2. As we noted before, we may restrict
ourselves to continuous maps:

Theorem 4.1. Let T : R2 → R2 be a continuous pseudoaffine map. Then there exists a
vector u ∈ R2, a skew-symmetric linear map A and a positive function g : R2 → R, such
that T (x) = g(x)(Ax+ u).

Proof. We consider three cases:

Case 1: T (x) 6= 0,∀x ∈ R2. Let l = {y ∈ R2 : 〈T (0) , y〉 = 0}. Then by pseudoaffinity, for
all y ∈ l, 〈T (y) , y〉 = 0, hence T (y) is orthogonal to l. Since the space is two-dimensional
and T is never zero, T has constant direction on l. By Proposition 3.5, T has constant
direction on R2. It follows that T has the form (8) with A = 0, u = T (0) / ‖T (0)‖ and
g (x) = ‖T (x)‖.

Case 2: There exists exactly one point x0 such that T (x0) = 0. Set T ′ (x) = T (x+ x0),
then T ′ is pseudoaffine and T ′ (0) = 0. By (4), for any x ∈ R2, 〈T ′ (x) , x〉 = 0 . Let
A : R2 → R2 be the map

A (a, b) = (b,−a) ∀(a, b) ∈ R2.

Then (Ax, x) = 0,∀x ∈ R2. For any x ∈ R2\ {0}, both Ax and T ′ (x) are orthogonal
to x, hence they are linearly dependent. It follows that there exists g1 (x) 6= 0 such that

T ′ (x) = g1 (x)Ax. Then g1 (x) =
〈T ′(x),Ax〉

‖Ax‖2 is continuous and does not vanish on R2\ {0}.
Hence, g1 has a constant sign. By changing the sign of A if necessary, we may suppose
that g1 is positive. Finally, we have

T (x) = T ′ (x− x0) = g1 (x− x0) (Ax− Ax0) .



M. Bianchi, N. Hadjisavvas, S. Schaible / On Pseudomonotone Maps T ... 157

If we set g (x) = g1 (x− x0) for x 6= x0, g (x0) = 1 and u = −Ax0, we get the desired
result.

Case 3: There are at least two points x1 6= x2 such that T (x1) = T (x2) = 0. Then
Propositions 2.1 and 3.4 imply that T (x) = 0 for any x ∈ R2, i.e., has the form (8) with
g = 1, A = 0, u = 0.

5. Line properties of pseudoaffine maps

We now investigate some properties of pseudoaffine maps along straight lines.

Proposition 5.1. Let T : Rn → Rn be a continuous pseudoaffine map. Suppose that
T = 0 on a straight line l. Then T has constant direction on any straight line parallel to
l. This direction is orthogonal to l.

Proof. We may suppose that 0 ∈ l, i.e., l = {w ∈ Rn : w = te, t ∈ R} with e 6= 0.
Consider any straight line l′ = {y ∈ Rn : y = x0 + te, t ∈ R} parallel to l. If T (y) = 0 for
some y ∈ l′, then by Proposition 2.2 the map T vanishes on the affine subspace generated
by l and y, so T is identically zero on l′.

Now suppose that T is never zero on l′. For all w ∈ l and x ∈ Rn, 〈T (w), x− w〉 = 0
holds, and by pseudoaffinity this implies 〈T (x), x− w〉 = 0. By Lemma 3.3, T (x) ⊥ l and
T (x) ⊥x thus

〈T (x), w〉 = 〈T (x) , x〉 = 0 for all x ∈ Rn, w ∈ l. (13)

Now consider the hyperplane V = {z ∈ Rn : 〈T (x0), z〉 = 0}. For any z ∈ V , 〈T (x0), z + x0

−x0〉 = 0 implies by pseudoaffinity 〈T (z + x0), z〉 = 0. Combining with relation (13) we
infer that for all y = x0 + w,w ∈ l, 〈T (z + x0), y − (z + x0)〉 = 0 and by pseudoaffinity
〈T (y), y − (z + x0)〉 = 0. Using again (13) we deduce 〈T (y), z〉 = 0.

It follows that T (y) ∈ V ⊥, i.e., T (y) and T (x0) are linearly dependent. Since there is no
zero of T on the line l′, by continuity T (x0) and T (y) have the same direction.

Proposition 5.2. Let x1 6= x2 be two points in Rn and let T : Rn → Rn be a continuous
pseudoaffine map such that T (x1) = aT (x2), a ∈ R. Let l = l (x1, x2). Then for any x ∈ l
there exists λ(x) ∈ R such that T (x) = λ(x)T (x2). In particular, if T never vanishes on
l, then λ(x) > 0.

Proof. We may suppose that 0 ∈ l. If T (x2) = 0, we have T (x1) = 0, and thus T is zero
on l by Proposition 2.1. If T (x2) 6= 0, we distinguish two cases:

Case 1. 〈T (x2), x2 − x1〉 = 0. Let V = {y ∈ Rn : 〈T (x2), y〉 = 0} and PV the orthogonal
projection on V. Then PV T is a pseudoaffine map on M = V + x1. Since x1, x2 ∈ M and
PV T (x1) = PV T (x2) = 0, by Proposition 2.1, PV T vanishes on l and thus T (x) and T (x2)
are linearly dependent for each x ∈ l.

Case 2. 〈T (x2), x2 − x1〉 6= 0. From (3) we obtain easily that a 6= 0. We suppose to the
contrary that there exists x ∈ l such that T (x) and T (x2) are linearly independent. Then
x 6= x1, x 6= x2, and the equations

〈T (x2), z − x2〉 = 0 (14)
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and
〈T (x), z − x〉 = 0 (15)

define two nonparallel hyperplanes through x2 and x respectively. Let z satisfy both (14)
and (15). From pseudoaffinity we infer

〈T (z), z − x2〉 = 0 (16)

〈T (z), z − x〉 = 0.

Thus 〈T (z), x2 − x〉 = 0 and consequently 〈T (z), x2 − x1〉 = 0. Using (16) we infer
〈T (z), x1 − z〉 = 0. Again by pseudoaffinity, 〈T (x1), x1 − z〉 = 0. Using our assumption
we get 〈T (x2), x1 − z〉 = 0 and, taking into account (14), we obtain 〈T (x2), x2 − x1〉 = 0,
a contradiction.

Thus, in all cases there exists λ (x) ∈ R such that T (x) = λ(x)T (x2), x ∈ l. The function
λ is obviously continuous; hence, if it does not vanish, it has a constant sign.

If l is the straight line joining two points x1, x2 and T (x1) and T (x2) are linearly depen-
dent, then there are three possibilities for the various images T (x) , x ∈ l. If T has at
least two zeros on the line, we know that T is identically zero on l (Proposition 2.1). If
T has no zeros, then all T (x) , x ∈ l belong to an open half straight line beginning at the
origin (Proposition 5.2). If T has exactly one zero, then again Proposition 5.2 guarantees
that all T (x) , x ∈ l belong to a straight line through the origin, but some have opposite
directions according to the following proposition:

Proposition 5.3. Let x1, x2, l, T be as in Proposition 5.2. If T has exactly one zero on
l, then there exist z1, z2 ∈ l such that T (z1) = αT (z2) 6= 0, where α < 0.

Proof. Suppose that T has exactly one zero at x0 on l. By making a translation, if
necessary, we may suppose that x0 = 0. Obviously T (x2) 6= 0 since otherwise T would
be identically zero on l. Let V = sp (x2, T (x2)) and P be the orthogonal projection on V.
Then PT is pseudoaffine and for any x ∈ l, T (x) = λ (x)T (x2) ∈ V. Thus, PT = T on l.
By Theorem 4.1, there exist a linear map A on V, a vector u ∈ V and a positive function
g : V → R such that PT (x) = g (x) (Ax+ u) on V. Our assumption T (0) = 0 implies
that u = 0. Since A (−x2) = −Ax2, it follows that T (x2) and T (−x2) have opposite
directions.

We now study the case in which T (x1) and T (x2) are linearly independent:

Proposition 5.4. Let T : Rn → Rn be continuous and pseudoaffine and x1, x2 ∈ Rn be
such that T (x1) , T (x2) are linearly independent. Let l = l (x1, x2). Then for any z ∈ l,
T (z) ∈ sp(T (x1) , T (x2)).

Proof. Since T (x1) , T (x2) are linearly independent, the set

M = {z ∈ Rn : 〈T (x1) , z − x1〉 = 0, 〈T (x2) , z − x2〉 = 0}

is an intersection of two nonparallel hyperplanes and, as such, is an n − 2 dimensional
affine subspace. By pseudoaffinity, ∀z ∈ M, 〈T (z) , z − x1〉 = 0 and 〈T (z) , z − x2〉 = 0.
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It follows that ∀t ∈ R, 〈T (z) , z − (tx1 + (1− t)x2)〉 = 0 and again by pseudoaffinity
〈T (tx1 + (1− t)x2) , z − (tx1 + (1− t)x2)〉 = 0,∀z ∈ M. Thus,

∀w ∈ l,∀z ∈ M, 〈T (w) , z − w〉 = 0. (17)

Fix z0 ∈ M. IfN = (T (x1))
⊥∩(T (x2))

⊥, then obviouslyM = z0+N. From (17) we deduce
that ∀z ∈ N, 〈T (w) , z + z0 − w〉 = 0. By Lemma 3.3, T (w) ∈ N⊥ = sp (T (x1) , T (x2)),
for all w ∈ l.

6. The case where T has at least one zero

We already know that the set of zeros of T is either empty or an affine subspace. We shall
begin by showing that Theorem 1.4 is true under the additional assumption that T has
exactly one zero. First we recall two basic results from algebraic topology and projective
geometry:

Theorem 6.1. (Schauder domain invariance, [7, Theorem II2.8.4]) If U is open in
a normed space E and f : U → E is an injective completely continuous field, then f (U)
is open.

We recall that f is a completely continuous field if the map F (x) = x−f (x) is continuous
and it maps bounded sets to relatively compact sets.

Theorem 6.2. (Fundamental Theorem of Projective Geometry, [3]) Let F : L →
L be an automorphism of the lattice of subspaces of Rn, n ≥ 3 (i.e., an application onto
L such that V1 ⊆ V2 is equivalent to F (V1) ⊆ F (V2)). Then there exists a linear map A
on Rn such that F (V ) = A (V ) ,∀V ∈ L.

Actually the above is a simplified form of the fundamental Theorem of Projective Geom-
etry.

Proposition 6.3. Suppose that T is continuous and pseudoaffine and has a zero only at
0. Then there exists a positive function g and a linear map A such that T (x) = g (x)Ax
for all x ∈ Rn.

Proof. Since we know that the Theorem is true for n = 2, we may suppose that n ≥ 3.

For any straight line l through 0 and any nonzero y ∈ l, T (y) is also nonzero by assump-
tion. According to Proposition 5.2, for all x ∈ l, T (x) ∈ sp (T (y)). Thus the image of a
straight line though 0 is contained in a straight line through 0. Hence, if D is the set of all
lines through 0, T defines a map F1 : D → D such that for all x 6= 0, T (x) ∈ F1 (sp (x)) .
This map is 1-1. To prove this, first we show:

∀x, y ∈ Rn, T (sp (x, y)) ⊆ sp (T (x) , T (y)) . (18)

Indeed, each z ∈ sp (x, y) can be written as z = ax + by with a, b ∈ R. By Propositions
5.2 and 5.4, T (z) ∈ sp (T (ax) , T (by)). But we know that T (ax) ∈ sp (T (x)) and
T (ay) ∈ sp (T (y)) . Hence, T (z) ∈ sp (T (x) , T (y)) and (18) follows.

Now suppose F1 is not 1-1. Then there exist x, y linearly independent such that T (x) , T (y)
are linearly dependent. From (18) it follows that T (sp (x, y)) ⊆ sp (T (x)) . By our as-
sumption on zeros, T (sp (x, y) \ {0}) does not contain 0. In addition, by Proposition 5.3,
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it contains two points z and z′ such that T (z) , T (z′) have opposite directions. Thus,
T (sp (x, y) \ {0}) cannot be connected, while sp (x, y) \ {0} is connected. This is not
possible, since T is continuous. Hence F1 is 1-1.

Next we show that F1 is onto. The set D is a differentiable manifold; actually it is the
real projective n − 1 manifold RP n−1. Since D is compact and connected and F1 is
continuous, the image F1 (D) is also compact and connected. Thus, if F1 is not onto, then
there exists l ∈ D such that F1 (l) is a boundary point of the range of F1. By considering
local coordinate systems (U, φ) and (V, ϕ) around l and F1 (l) we get the coordinate

representation ˜F1 = ϕF1φ
−1 of F1 from the open bounded set φ (U) to the open bounded

set ϕ (V ) in Rn−1. Note that the image ˜F1 (U) is not open in Rn since ϕ (F1 (l)) is a

boundary point of ˜F1 (U). However, ˜F1 is obviously a completely continuous field, and
this contradicts Theorem 6.1.

Let L be the lattice of subspaces of Rn. We define a map F : L → L by F (V ) =
sp (T (V )) , V ∈ L. Note that from the definition of F and relation (18) it follows that

∀x1, x2, . . . xk ∈ Rn, F (sp (x1, x2, . . . xk)) = sp (T (x1) , T (x2) , . . . T (xk)) (19)

We show that this map is a lattice automorphism.

First we show that it preserves the dimension of subspaces. Indeed, for any V ∈ L, let
k1, k2 be the dimensions of V, F (V ) . From (19) it follows that if x1, x2, . . . xk1 span V ,
then T (x1) , T (x2) , . . . T (xk1) span F (V ) . Hence, k2 ≤ k1. Let D1, D2 be the sets of lines
through the origin in V, F (V ) respectively. Then D1, D2 are differentiable manifolds with
dimensions k1 − 1, k2 − 1 respectively. The map F1 : D1 → D2 is continuous and 1-1.
It is well known that this implies k2 − 1 ≥ k1 − 1. Hence, V and F (V ) have the same
dimension.

We now show that F is onto. If U ∈ L, let {y1, y2, . . . yk} be a basis of U . Since F1 is
onto, there exist x1, x2, . . . xk ∈ Rn such that F (sp (xi)) = sp (yi) , i = 1, 2, . . . k. Then
(19) implies

F (sp (x1, x2, . . . xk)) = sp(T (x1) , T (x2) , . . . T (xk)) = U.

Let us show that F preserves the lattice-theoretic union, i.e., the sum of subspaces. For
V1, V2 ∈ L, we may find a basis of V1 + V2 in the form K1 ∪K2 ∪K3 such that K1 ∪K3

is a basis of V1, K2 ∪ K3 is a basis of V2 and K3 is a basis of V1 ∩ V2 (K3 is empty if
V1 ∩ V2 = {0}). Then F (V1 ∪ V2) = sp (T (K1) , T (K2) , T (K3)) = sp (T (K1) , T (K3)) +
sp (T (K2) , T (K3)) = F (V1) + F (V2) .

It is obvious that for V1, V2 ∈ L, V1 ⊆ V2 implies F (V1) ⊆ F (V2) . We show that the
converse is true. If F (V1) ⊆ F (V2), then F (V1 + V2) = F (V1) + F (V2) = F (V2) . It
follows that V2, F (V2) , F (V1 + V2) , V1 + V2 all have the same dimension. Hence, V2 =
V1 + V2 which implies V1 ⊆ V2.

By definition, this last property together with the fact that F is onto, imply that F is
a lattice automorphism. By Theorem 6.2, there exists a linear map A such that for all
V ∈ L, F (V ) = A (V ) . In particular, for any x 6= 0 it follows that T (x) ∈ sp (T (x)) =
F (sp (x)) = A (sp (x)) . Thus, there exists a number g (x) 6= 0 such that T (x) = g (x)Ax.
The function g is obviously continuous on Rn\ {0} , thus it has a constant sign. By
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changing the sign, if necessary, we may suppose that g is positive. We set g (0) = 1 and
get the desired result.

Theorem 6.4. Suppose that T has at least one zero. Then there exist a positive function
g, a skew-symmetric map A and u ∈ Rn such that T (x) = g (x) (Ax+ u) , x ∈ Rn.

Proof. By Proposition 3.1 it is sufficient to show that T has the form (8) with g positive
and A linear. Pick x0 such that T (x0) = 0 and set T1 (x) = T (x+ x0) , x ∈ Rn. Then
T1 is pseudoaffine, and by Proposition 2.2 its set of zeros is a subspace V. We proceed
by induction on the dimension of V to show that T1 has the form (8) with u = 0. By
Proposition 6.3, this is true if the dimension of V is 0. We suppose that it is true if the
dimension is k − 1 and proceed to show that it is also true if the dimension is k. Pick
e ∈ V \ {0} .
We show first that the subspace {e}⊥ is invariant under T1. Indeed, if x ∈ {e}⊥ , then
〈T1 (e) , x− e〉 = 0, hence 〈T1 (x) , x− e〉 = 0. By Lemma 3.3, T1 (x) ∈ {e}⊥ . The set of
zeros of the restriction of T1 on {e}⊥ has dimension k − 1. Since the theorem is true in
this case, there exists a linear map A on {e}⊥ and a nonnegative function g on {e}⊥ such
that

T1 (x) = g (x)Ax, x ∈ {e}⊥ . (20)

Let P be the orthogonal projection on {e}⊥ . For any x ∈ Rn, x and Px are on a straight
line parallel to e, and by Proposition 5.1 we know that T1 (x) and T1P (x) have the
same direction, i.e., there exists a positive function g1 : Rn → R such that T1 (x) =
g1 (x)T1P (x) , x ∈ Rn. Combining with (20) we get

∀x ∈ Rn, T1 (x) = g1 (x)T1P (x) = g1 (x) g (Px)APx.

It follows that

∀x ∈ Rn, T (x) = g1 (x− x0) g (P (x− x0)) (APx− APx0) .

Hence T has the form (8).

7. The case n = 3

In this section we prove Theorem 1.4 for n = 3. Since we know that the theorem is true
if T has at least one zero, we may suppose that T has no zeros.

Proposition 7.1. Let T : R3 → R3 be a continuous pseudoaffine map that has no zeros
and let T have constant direction on a straight line l = {y ∈ Rn : y = te, t ∈ R}. Let
x′ 6= 0 be such that 〈T (0), x′〉 = 0, 〈e, x′〉 = 0. Then T has constant direction on l′ = x′+ l.

Proof. We distinguish two cases:

Case 1. 〈T (0), e〉 = 0. Then for any x′ + se ∈ l′ and any te ∈ l, 〈T (0), x′ + se− te〉 = 0.
Since T (te) and T (0) are linearly dependent, we deduce that 〈T (te), x′ + se− te〉 =
0. Pseudoaffinity implies that 〈T (x′ + se), x′ + se− te〉 = 0 , for each t ∈ R. Hence,
〈T (x′ + se), x′〉 = 0 and 〈T (x′ + se), e〉 = 0 . Since the space is 3-dimensional, T (0) and
T (x′ + se) are linearly dependent, for each s ∈ R. Since T has no zeros, it has constant
direction on l′.
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Case 2. 〈T (0), e〉 6= 0. We suppose to the contrary that T (x′) and T (x′ + se) are linearly
independent for some s ∈ R\ {0}. Thus we can find z ∈ R3 such that 〈T (x′), z − x′〉 = 0
and 〈T (x′ + se), z − (x′ + se)〉 = 0. By pseudoaffinity, we obtain 〈T (z), z − x′〉 = 0 and
〈T (z), z − (x′ + se)〉 = 0. Thus 〈T (z), e〉 = 0. It follows that z /∈ l since z ∈ l would
imply by assumption that T (z) and T (0) have the same direction while 〈T (0), e〉 6= 0.
We consider now a plane V containing l and z and let PV the orthogonal projection on V.
The map PV T is pseudoaffine with constant direction on l and thus by Proposition 3.5 with
constant direction on V. But 〈PV T (z), e〉 = 〈T (z), e〉 = 0 and 〈PV T (0), e〉 = 〈T (0), e〉 6= 0,
a contradiction. Hence T (x′) and T (x′ + se) are linearly dependent for all s ∈ R, and as
before this implies that T has a constant direction on l′.

Proposition 7.2. Let T : R3 → R3 be a continuous pseudoaffine map with no zeros.
There exists a straight line l = {y ∈ Rn : y = x0 + te, t ∈ R} such that T (y) = ‖T (y)‖ e
for all y ∈ l.

Proof. By Borsuk’s antipodal Theorem ([7]) there exists w ∈ Rn with ‖w‖ = 1 such that
T (−w) = αT (w), where α > 0. Hence Proposition 5.2 implies that there exists v 6= 0 such
that T (y) = ‖T (y)‖ v for all y on the line l′ = {tw, t ∈ R} .
Consider the subspace M1 = {x ∈ R3 : 〈x,w〉 = 0} and the orthogonal projection P1 on
M1. If for some x1 ∈ M1 we have P1T (x1) = 0, then T (x1) = βw for some β ∈ R and
〈T (x1), x1〉 = 0. Thus by pseudoaffinity we obtain 〈T (0), x1〉 = 0. Applying Proposition
7.1 we deduce that T has constant direction on the line l = x1 + l′. It follows that for
all y ∈ l′ one has T (y) = ‖T (y)‖σw where σ = 1 or −1. Setting e = σw we obtain the
desired result.

Now suppose that P1T (x) 6= 0 for each x ∈ M1. Then from the proof of Theorem 4.1 (case
1) we know that the pseudoaffine map P1T has constant direction on M1. Consider any
y ∈ M1 with 〈y, T (0)〉 6= 0. Note that T (0) is not orthogonal to M1 since P1T (0) 6= 0 by
assumption. Then there exists γ > 0 such that P1T (y) = γP1T (0). Consider further the
two dimensional subspace M2 containing y and w and let P2 be the orthogonal projection
on M2. Since l

′ ⊂ M2, by Proposition 3.5 the pseudoaffine map P2T has constant direction
on M2. Thus there exists δ > 0 such that P2T (y) = δP2T (0). Let {e1, e2, e3} be an
orthonormal basis with e1 = w, e2 =

y
‖y‖ and let (a, b, c) and (a1, b1, c1) be the coordinates

of T (0) and T (y) respectively with respect to this basis. Then (0, b1, c1) = γ(0, b, c),
(a1, b1, 0) = δ(a, b, 0) and b 6= 0. It follows that δ = γ and T (y) = γT (0), i.e., T (y) and
T (0) have the same direction. This holds for all y ∈ M1 such that 〈y, T (0)〉 6= 0 and,
by continuity, it holds for all y ∈ M1. Applying again Proposition 3.5, we obtain that
T has constant direction on R3, and thus to finish the proof, we can choose x0 = 0 and
e = T (0)

‖T (0)‖ .

Theorem 7.3. Let T : R3 → R3 be a continuous pseudoaffine map. Then there exists a
vector u ∈ R3, a skew-symmetric linear map A and a positive function g : R3 → R such
that T (x) = g(x)(Ax+ u).

Proof. We may suppose that T has no zeros. Let l be the straight line whose existence
is asserted in Proposition 7.2. We may suppose that x0 = 0. Consider an orthonormal
basis {e1, e2, e3} such that e3 = e and denote by x1, x2, x3 the coordinates of x ∈ R3 in
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this basis. Let Mi = {x ∈ R3 : 〈x, ei〉 = 0} and Pi be the orthogonal projection on Mi.
Then P3T is pseudoaffine on M3 and P3T (0) = 0. If P3T = 0 on M3, then T has constant
direction on M3, hence by Proposition 3.5 it has constant direction on R3. So in this case
(8) holds with A = 0 and u = e3. Otherwise, by the proof of Theorem 4.1 (see case 2)
there exists a function with constant sign g : R2 → R, continuous on R2\ {0} and such
that

∀ (x1, x2, 0) ∈ M3, P3T (x1, x2, 0) = g (x1, x2)A (x1, x2, 0) ,

where
A (x1, x2, x3) = (x2,−x1, 0) . (21)

Define the map T ′ : R3 → R3 by T ′ (x1, x2, x3) =
T (x1,x2,0)
g(x1,x2)

. For any x = (x1, x2, x3) ∈ R3,
by Proposition 7.1, T has constant direction on the line x+ l. Hence,

T (x1, x2, x3) =
‖T (x1, x2, x3)‖
‖T (x1, x2, 0)‖

T (x1, x2, 0)

=
‖T (x1, x2, x3)‖
‖T (x1, x2, 0)‖

g (x1, x2)T
′ (x1, x2, x3) . (22)

Since T and T ′ always have the same or always opposite direction, T ′ is pseudoaffine. In
addition, it is continuous on R3\l and P3T

′ (x) = Ax for all x ∈ M3. Hence,

∀x = (x1, x2, 0) ∈ M3, T
′ (x) = (x2,−x1, f (x1, x2)) (23)

where f : R2 → R is continuous on R2\ {0}.
Take any x2 6= 0, x1 6= 0 and consider the affine subspaceM2+x2e2. Then T ′ is constant on
the line l+x2e2 which belongs toM2, hence by Proposition 3.5, P2T

′ has constant direction
on M2 + x2e2. Thus, the vectors P2T

′ (x1, x2, 0) = (x2, 0, f (x1, x2)) and P2T
′ (0, x2, 0) =

(x2, 0, f (0, x2)) have the same direction. It follows that f (x1, x2) = f (0, x2). Likewise, we
can prove that f (x1, x2) = f (x1, 0). Since x1 and x2 are arbitrary, for any x1, x2, x

′
1, x

′
2 ∈

R\ {0} it follows that

f (x1, x2) = f (x1, 0) = f (x1, x
′
2) = f (0, x′

2) = f (x′
1, x

′
2) .

Continuity implies that f is constant on R2\ {0}. Thus, combining (21) with (23) we see
that T ′ has the form T ′x = Ax+ λe3 for all x ∈ M3\ {0}.

Setting g1 (x1, x2, x3) =
‖T (x1,x2,x3)‖
‖T (x1,x2,0)‖ g (x1, x2) we deduce from (22) that for all x ∈ R3\l,

T (x) = g1 (x) (Ax+ λe3) .

By changing the sign of A and λ, if necessary, we can take g1 to be positive. Since T
has no zeros, Ax + λe3 is never zero on R3 and its norm has a positive infimum. Thus
g1 (x) = ‖T (x)‖ / ‖Ax+ λe3‖ , x ∈ R3\l has a positive continuous extension g on R3. By
continuity,

T (x) = g (x) (Ax+ λe3) , x ∈ R3,

which completes the proof of the theorem.



164 M. Bianchi, N. Hadjisavvas, S. Schaible / On Pseudomonotone Maps T ...

8. The case where T has no zeros

In this section we prove Theorem 1.4 for maps that have no zeros. This is the only case
left unproved so far. First we obtain some more information on the image of a straight
line through T ; see also Proposition 5.4.

Proposition 8.1. Let T be continuous and pseudoaffine. Let further x 6= y ∈ Rn and
l = l(x, y). If T (x) , T (y) are linearly independent, then R++T (l) is an open half-space in
the plane sp (T (x) , T (y)) .

Proof. We know already that T (l) ⊆ sp (T (x) , T (y)) (Proposition 5.4). Without loss
of generality we suppose that x = 0. Let V be the subspace sp (y, T (0), T (y)) and P
be the orthogonal projection on V. Then PT is pseudoaffine on V and PT = T on
sp (y) . Thus, by Theorem 7.3, PT has the form PT (z) = g (z) (Az + u) , z ∈ V with
g positive and A : V → V linear. Consequently, PT (ty) = T (ty) = g (ty) (tAy + u)
hence T (l) = {g (ty) (tAy + u) : t ∈ R}. Since T (0) and T (y) are linearly independent,
u and Ay also are linearly independent. Then R++T (l) = {tsAy + su : t ∈ R, s ∈ R++}
is obviously a half-space.

We now investigate the sets where T has a constant direction. The following proposition
generalizes both Propositions 2.2 and 5.2:

Proposition 8.2. Let T : Rn → Rn be a continuous pseudoaffine map and z1, z2, ...zm ∈
Rn be such that T (zi) ∈ sp(v), i = 1, 2, . . .m, for some v ∈ Rn. Then T (z) ∈ sp(v) for
all z on the affine subspace M generated by z1, z2, ...zm. In particular, if T has no zeros,
then T has a constant direction on M .

Proof. We proceed by induction. If m = 2, the statement is true by Proposition 5.2.
Suppose that it is true for m − 1 and let z =

∑m
i=1 aizi with

∑m
i=1 ai = 1, ai 6= 0 and

T (zi) ∈ sp(v), i = 1, 2, . . .m. At least one of the ai’s is different from 1. If, say, a1 6= 1
then z = a1z1+(1− a1) z

′
1 where z

′
1 =

∑m
i=2

ai
1−a1

zi belongs to the affine subspace generated
by z2, . . . zm. By assumption, T (z′1) ∈ sp (v) . The proposition follows by applying again
Proposition 5.2.

The following proposition generalizes Proposition 7.1:

Proposition 8.3. Let T be continuous and pseudoaffine with no zeros. If T has constant
direction on a straight line l, then it has a constant direction on any straight line l′ parallel
to l.

Proof. We may assume with no loss of generality that l contains the origin. Let T (w)
have the same direction with a vector u for all w ∈ l. Consider the two-dimensional
subspace V generated by l, l′ and let x0 ∈ V \l. If x is any point on V not belonging
to the line l + x0, then the straight line through x0 and x intersects l at some point y.
By Propositions 5.2 and 5.4, T (x) ∈ sp (T (x0) , T (y)) = sp (T (x0) , u) . By continuity, it
follows that the same holds for any x ∈ V.

Note that if T (x′) has the same direction with u for some x′ ∈ V \l, then by Proposition
8.2, T has a constant direction on V. Thus, T has a constant direction on l′. Hence, we
may assume that T (x′) has a direction different from u for all x′ ∈ V \l′. Now consider
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any straight line l1 in V intersecting l′ at z. Then T (l1) and T (l′) also intersect at T (z),
and a fortiori R++T (l1) and R++T (l′) intersect. Since l1 intersects l, by assumption T
has not a constant direction on l1; thus, by Proposition 8.1, R++T (l1) is an open half-
space in the two-dimensional space sp (T (x0) , u). If R++T (l′) is also an open half-space,
then there exists another common point of R++T (l1) and R++T (l′) , linearly independent
from T (z) . Thus, there exist two points z1 ∈ l1 and z′ ∈ l′ such that T (z) and T (z′)
have the same direction. Let l2 be the straight line joining z1, z

′. Then T has a constant
direction on l2. But l2 intersects l. Thus T has the direction u on l2. This contradicts our
assumption on the direction of T outside l. Thus, R++T (l′) is not an open half-space.
Hence by Proposition 8.1, for any w,w′ ∈ l′, T (w) , T (w′) are linearly dependent. Since
by our assumption T has no zeros, T has a constant direction on l′.

Proposition 8.4. Let T be pseudoaffine and continuous with no zeros and let M be the
set of all x ∈ Rn such that T (x) has the same direction as T (0) . Then M is a non-trivial
subspace. In addition, if we set N = M⊥, then for any distinct x, y ∈ N, T (x) , T (y) are
linearly independent. Finally, if x, y and 0 are all distinct, then T (0) /∈ sp (T (x) , T (y)) .

Proof. By Proposition 8.2 the set M is indeed a subspace. Arguing as in the beginning
of the proof of Proposition 7.2, we deduce that M contains at least one line through the
origin.

We show that T (x) , T (y) are linearly independent. Indeed, if they are linearly dependent
then by Proposition 5.2, T has a constant direction on the straight line l ⊆ N through x, y.
Then by Proposition 8.3, T has constant direction on the straight line l′ through 0 which
is parallel to l. Since l′ ⊆ N this means that M and N intersect at l′, a contradiction.

Now suppose that x, y 6= 0 and T (0) ∈ sp (T (x) , T (y)) . For any z ∈ sp (x, y), let a, b ∈ R
be such that z = ax+ by. Applying Proposition 5.4 we find T (2ax) ∈ sp (T (0) , T (x)) ⊆
sp (T (x) , T (y)) and likewise T (2by) ∈ sp (T (x) , T (y)). Since z = 1

2
2ax + 1

2
2by, we

also find T (z) ∈ sp (T (2ax) , T (2by))⊆ sp (T (x) , T (y)). Hence the restriction of T on
sp (x, y) is a continuous map of sp (x, y) into the 2-dimensional subspace sp (T (x) , T (y)).
By the first part of the proof, this map sends distinct points to linearly independent points.
If we consider any simple continuous closed curve C in sp (x, y), then its image through
T will be a simple continuous closed curve in the 2-dimensional space sp (T (x) , T (y)).
It is easy to see that at least two points of the latter curve are linearly dependent, a
contradiction.

We are now in a position to prove Theorem 1.4.

Proof of Theorem 1.4. According to Theorem 2.4 we may suppose that T is continu-
ous. According to Theorems 4.1, 6.4, 7.3 and the remark at the end of Section 1, we may
suppose that n > 3 and T has no zeros. Let M and N be as in Proposition 8.4.

For any straight line l ⊆ N through 0 we know by Propositions 5.4 and 8.4 that T (l) is
included in a subspace of dimension 2. Let Vl be the subspace generated by l and T (l) ,
and let Pl be the orthogonal projection on Vl. Then Vl is two- or three-dimensional, PlT
is pseudoaffine on Vl and PlT = T on l. Thus we know that there exist a positive function
gl : Vl → R, a linear map Al : Vl → Vl and a vector ul such that ∀z ∈ Vl, PlTz =
gl (z) (Alz + ul) . We can choose gl so that gl (0) = 1. In particular, on l it follows that

∀x ∈ l, T (x) = gl (x) (Alx+ ul) . (24)
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For x = 0 we get T (0) = ul, so ul does not depend on l and we shall denote it by u. Now
define the positive function g : N → R by g (0) = 1 and g (x) = gsp(x) (x) ,∀x ∈ N\ {0} .
Then (24) gives

∀x ∈ N, T (x) = g (x)
(

Asp(x)x+ u
)

where we put Asp(0)0 = 0. If further we define the map T ′ : N → Rn by T ′ (x) =
T (x) /g (x), then T ′ is pseudoaffine. Finally, if we define the map A : N → Rn by
Ax = Asp(x)x for all x ∈ N , we deduce

∀x ∈ N, T ′ (x) = Ax+ u. (25)

We want to show that the map A is linear. Note that for all t ∈ R, x ∈ N ,

A (tx) = Asp(x) (tx) = tAsp(x)x = tAx. (26)

We now show that for any x, y ∈ N,A (x+ y) = Ax + Ay. This is evident if x, y are
linearly dependent, because then they belong to the same straight line through the origin.
Thus we suppose that they are linearly independent. First we show that for any linearly
independent x, y ∈ N and any t ∈ R, A (tx+ (1− t) y) belongs to the straight line joining
T (x) , T (y).

By Proposition 5.4 and the definition of T ′ there exist a, b ∈ R (depending on x, y, t) such
that T ′ (tx+ (1− t) y) = aT ′ (x) + bT ′ (y); thus,

A (tx+ (1− t) y) + u = aAx+ bAy + (a+ b)u. (27)

The above relation is true for all x, y, t. If we take 2x, 2y instead of x, y and the same t
we deduce that there exist a′, b′ ∈ R such that

A (t2x+ (1− t) 2y) + u = a′A2x+ b′A2y + (a′ + b′)u

which, in view of (26), becomes

2A (tx+ (1− t) y) + u = 2a′Ax+ 2b′Ay + (a′ + b′)u. (28)

Then (27) with (28) imply that

(a− a′)Ax+ (b− b′)Ay = (−a− b+
a′ + b′ + 1

2
)u. (29)

Let us prove that u /∈ sp (Ax,Ay) and that Ax,Ay are linearly independent. Indeed,
suppose first that u = a′′Ax+ b′′Ay. Then a′′, b′′ cannot be both zero since u = T (0) 6= 0.
From (25) we deduce that

u = a′′T ′x+ b′′T ′y − (a′′ + b′′)u. (30)

Note that a′′+b′′ 6= −1 since otherwise (30) would imply that T ′ (x) and T ′ (y) are linearly
dependent, and this is excluded by Proposition 8.4. Solving (30) with respect to u implies
that u ∈ sp (T ′x, T ′y); thus u ∈ sp (Tx, Ty) . But this contradicts Proposition 8.4. Hence
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u /∈ sp (Ax,Ay). Writing Ax = T ′ (x)− u and Ay = T ′ (y)− u shows easily that Ax,Ay
are linearly independent.

Then (29) implies that a = a′, b = b′, a+b = 1. From (27) it follows thatA(tx+(1− t) y) =
aAx+ bAy where a+ b = 1.

Thus, if w = 1
2
(x+ y), then ∃α, β ∈ R with α+ β = 1 and

Aw = αAx+ βAy. (31)

For any 0 < t < 1, w = t
(

x
2t

)

+ (1− t)
(

y
2(1−t)

)

is also in the straight line joining x
2t

and
y

2(1−t)
, hence

Aw = α (t)A
( x

2t

)

+ β (t)A

(

y

2 (1− t)

)

=
α (t)

2t
Ax+

β (t)

2 (1− t)
Ay

where α (t) , β (t) are functions of t such that α (t) + β (t) = 1. Since Ax,Ay are lin-
early independent, a comparison with (31) shows that α (t) = 2tα, β (t) = 2 (1− t)β.
Hence 2tα + 2 (1− t)β = 1, 0 < t < 1 and this implies α = β = 1

2
. Hence A (x+ y) =

2A
(

1
2
(x+ y)

)

= 2Aw = Ax+ Ay and A is linear.

It follows from (25) that
∀x ∈ N, T (x) = g (x) (Ax+ u) (32)

where A : N → Rn is linear and g : N → R is positive.

Let P be the orthogonal projection on N. Then for any x ∈ Rn, the straight line l joining
x and Px is parallel to a line l′ ⊆ M . Since T has a constant direction on l′, it also
has a constant direction on l by Proposition 8.3. Hence T (x) and T (Px) have the same
direction. Thus for any x ∈ Rn, there exists g1 (x) > 0 such that T (x) = g1 (x)T (Px).
Using (32) we obtain

∀x ∈ Rn, T (x) = g1 (x) g (Px) (APx+ u)

where AP : Rn → Rn is linear and g1 (x) g (Px) is positive. Proposition 3.1 finishes the
proof of the theorem.
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