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In many cases the convexity of the image of a linear map with range is Rn is automatic because of the
facial structure of the domain of the map. We develop a four step procedure for proving this kind of
“automatic convexity”. To make this procedure more efficient, we prove two new theorems that identify
the facial structure of the intersection of a convex set with a subspace in terms of the facial structure of
the original set.

Let K be a convex set in a real linear space X and let H be a subspace of X that meets K. In Part 1 we
show that the faces of K ∩H have the form F ∩H for a face F of K. Then we extend our intersection
theorem to the case where X is a locally convex linear topological space, K and H are closed, and H
has finite codimension in X. In Part 2 we use our procedure to “explain” the convexity of the numerical
range (and some of its generalizations) of a complex matrix. In Part 3 we use the topological version of
our intersection theorem to prove a version of Lyapunov’s theorem with finitely many linear constraints.
We also extend Samet’s continuous lifting theorem to the same constrained siuation.

Historically there have been several theorems that concluded, unexpectedly, even mysteri-
ously at first, that a certain set inRn is convex. Perhaps the two best known examples are
the convexity of the numerical range of an n× n complex matrix [9, 16] and Lyapunov’s
theorem on the convexity of the range of a vector measure [13]. In each of these cases
the set in question is the image under some apparently non-linear map of a non-convex
set. Each of these theorems has been generalized in many directions. Until the work
of Lindenstrauss [12], Lyapunov’s theorem remained a mystery with several complicated,
yet incomplete, proofs (including Lyapunov’s and a later proof by Halmos [7]) in the lit-
erature. See [1] for a discussion of Lyapunov’s theorem and generalizations. As for the
convexity of the numerical range, while the proofs in the literature have been complete,
and they have gotten steadily simpler, the mystery of the appearance of convexity has
remained (see [11, p. 78], [14] and [6, Sections 1.1 and 5.5]).

In [1] a number of automatic convexity theorems related to Lyapunov’s Theorem were
proved. The key to those theorems is given in [1, Theorem 1.6 and Corollary 1.7], which
we restate here, correcting misprints, after introducing some notation.

Notation. K denotes a convex set in a real linear space X. For any distinct points
x, y ∈ X let (x, y) denote the line segment joining x and y, excluding the end points.
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E(K) denotes the set of extreme points of K. If K is not a singleton, the facial dimension
[1, p. 10] of K is defined to be inf{dim(Q) : Q is a nonsingleton face of K}. (Facial
dimension ∞ is quite possible and especially interesting as we shall see in Part 3 of this
paper.) For any subset F of K let G(K,F ) denote the smallest face of K containing
F . In [1] this concept was defined and developed for singleton sets F = {v}, where the
notation G(K, v) was used.

[1, 1.6]. If K has facial dimension > n, Ψ is an affine map of K into Rn, and v ∈ K,
then every extreme point of Ψ−1(Ψ(v)) is an extreme point of K.

[1, 1.7]. If X is a locally convex space, K is compact with facial dimension > n, and Ψ
is a continuous affine map from K into Rn, then Ψ(E(K)) = Ψ(K).

The form of [1, 1.7] suggests the following procedure for proving that the image in Rn of
certain kinds of maps are automatically convex. Let’s assume that we have some set E
and some function f that takes elements of E into Rn. To prove that f(E) is convex you
can try the following procedure. We shall illustrate this in several cases in Parts 2 and 3
of this paper.

Automatic Convexity Procedure.

1. Find a suitable linear space X and linear map Ψ such that the elements E can be
found in X (perhaps in a slightly different guise) and f(e) = Ψ(e) for each e ∈ E.

2. Define K = Conv(E) (or perhaps the closure of Conv(E)). Show that the extreme
points of K lie in E.

3. Show that the facial dimension of K is more than the dimension of the range of Ψ,
possibly using the intersection theorems in Part 1 below.

4. Apply [1, 1.7] to get the desired convexity.

A knowledge of the facial structure of K is crucial to any application of [1, 1.7]. In Part 1
we prove two new theorems that describe the facial structure of the intersection of a convex
set with certain subspaces in terms of the facial structure of the original convex set. These
theorems will allow new applications of the automatic convexity procedure. In Part 2 of
the present paper we discuss numerical range as an application of pure convexity theory
in a way that (we believe) unravels the mystery and paves the way for more theorems
having convexity as their conclusions. In Part 3 we further extend Lyapunov’s convexity
theorem and even the continuous lifting theorem of Samet [15]; again our methods open
the way for many more results of the same type.

1. The Intersection Theorems

Algebraic Intersection Theorem. Given a subspace H in X and a point x ∈ X, let
F be a face of (H + x) ∩K. Then G(K,F ) ∩H = F .

Proof. WLOG we can assume that x = 0. From [1, 1.1 and 1.2], G(K, v) consists of
all elements y of K such that there exists λ > 0 such that (1 + λ)v − λy ∈ K. Let
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G =
⋃

{G(K, v) : v ∈ F}. Claim G(K,F ) = G. The inclusion G ⊂ G(K,F ) is clear from
the face property, so we need only show that G is a face of K and that F ⊂ G.

If x, y ∈ G, then there exist v, w ∈ F such that x ∈ G(K, v) and y ∈ G(K,w). We can
assume a single λ such that (1+λ)v−λx ∈ K and (1+λ)w−λy ∈ K. For any α ∈ (0, 1),

α((1 + λ)v − λx) + (1− α)((1 + λ)w − λy) ∈ K.

Grouping the (1 + λ) terms and the λ terms, we get

(1 + λ)(αv + (1− α)w)− λ(αx+ (1− α)y) ∈ K.

Thus (αx+ (1− α)y) ∈ G. This shows that G is convex.

To show that G is a face of K, assume x, y ∈ K such that .5(x+y) ∈ G. Then there exists
v ∈ F such that .5(x+ y) ∈ G(K, v). But G(K, v) is a face of K, so x, y ∈ G(K, v) ⊂ G.
Thus G is a face of K.

Finally we show that G ∩H = F . The inclusion F ⊂ G ∩H is clear from the definition
of G. If y ∈ G ∩H, then there is a v ∈ F such that y ∈ G(K, v) ∩H. Thus there exists
λ > 0 such that (1 + λ)v − λy ∈ K. But v ∈ F ⊂ H and y ∈ H, so (1 + λ)v − λy ∈ H
since H is a subspace. Thus (1 + λ)v − λy ∈ H ∩K. Since v ∈ F, v = (1/(1 + λ)((1 +
λ)v − λy)) + (λ/(1 + λ))y and F is a face of H ∩K, we conclude that y ∈ F .

Comment. If F has a weak internal point v (in the sense of [1, p. 8]), then G(K,F ) =
G(K, v). However, many interesting infinite dimensional convex sets do not have weak
internal points, e.g. the state space of C([0, 1]) or most any other interesting C*-algebra.

Now we prove a topological version of this result. As will be clear from a subsequent
example, we need to consider a restricted class of subspacesH in the topological situation.

Topological Intersection Theorem. Assume now that K is a convex, closed set in
a locally convex space X. Given a closed subspace H of finite co-dimension in X and
a point y ∈ X, let F be a closed face of (H + y) ∩ K. Then G(K,F ) is closed and
G(K,F ) ∩H = F .

Proof. By a simple induction argument, it suffices to prove the theorem under the asump-
tion that H is a closed hyperplane, and WLOG we can assume that y = 0. Let f : X → R
be a continuous linear functional such thatH = f−1(0). We need only prove that G(K,F )
is closed, as G(K,F ) ∩H = F follows from the Algebraic Intersection Theorem.

Suppose {xt} is a net in G(K,F ) such that xt → x; we must show x ∈ G(K,F ). Exchang-
ing −f for f if necessary and passing to a subnet, we can assume that f(xt) ≥ 0 for all t. If
f(xt) = 0 frequently, then we can pass to a subnet such that each xt ∈ G(K,F )∩H = F ,
and so x ∈ F (and hence x ∈ G(K,F )) because F is closed.

Otherwise, pass to a subnet such that f(xt) > 0 for all t. Let x0 be any of the xt and fix
it. Since f(x0) > 0, x0 can’t lie in F , so by [1, 1.1] x0 ∈ G(K,F ) implies that there is a
y0 ∈ G(K,F ) such that the open line segment (x0, y0) intersects F . It follows by linearity
of f that f(y0) < 0. Now for each t, linearity of f implies that there is a unique point zt
in (xt, y0) such that f(zt) = 0, i.e. zt ∈ H ∩ (xt, y0). Explicitly, zt = rtxt+(1−rt)y0 where
rt = −f(y0)/(f(xt)−f(y0)) ∈ (0, 1) since f(y0) < 0. Since xt and y0 are both in G(K,F ),
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it follows from convexity of G(K,F ) that zt ∈ G(K,F ). Hence zt ∈ G(K,F ) ∩ H = F
by the Algebraic Intersection Theorem. Now r = lim rt = −f(y0)/(f(x) − f(y0)) > 0
because xt → x. Thus (zt) converges; let z = lim zt, so z ∈ F . Then z = rx+(1− r)y0, so
if r = 1 then x = z ∈ F . If r < 1, then the line segment (x, y0) contains z, which implies
x ∈ G(K, z) ⊂ G(K,F ) . Thus G(K,F ) is closed.

Example. In this example we show why it is necessary to restrict H to a subspace of
finite co-dimension in the Topological Intersection Theorem.

We work in the Banach space c0(Z). Let h be the sequence with nth term

hn =

{

1/n if n ≥ 1

0 if n ≤ 0.

For each n ∈ Z let en be the sequence which is 1 at n and 0 elsewhere. Let K1 be the
closed convex hull of the vectors kn = 1

n
e−n + h (for n ≥ 1); let K2 be the closed convex

hull of the vectors − 1
n
kn (for n ≥ 1); and let F be the set of sequences a = (an) such that

an = 0 for n ≤ 0 and 0 ≤ an ≤ n−2 for n ≥ 1.

K1 and K2 are each the closed convex hull of a convergent sequence of vectors in a Banach
space, and hence are compact. F is compact because it is closed and totally bounded.
Thus the convex hull K of K1, K2, and F is compact. (It is a continuous image of the
compact set K1 ×K2 × F × S where S = {(r, s, t) : r, s, t ≥ 0 and r + s+ t = 1}.)
Explicitly, K1 is the set of sequences (an) such that a0 = 0, an = hn for n ≥ 1, an ≥ 0
for n ≤ 0, and

∑∞
n=0 na−n ≤ 1. K2 is the set of sequences bn such that b0 = 0, bn ≤ 0 for

n ≤ 0,
∑∞

n=0 n
2b−n ≥ −1, and bn = αhn for n ≥ 1 where α =

∑∞
n=0 nb−n.

Observe that if ra + sb is in the convex hull of K1 and K2 (a ∈ K1, b ∈ K2, r + s = 1)
and ran + sbn = 0 for all n ≤ 0, then we must have

s ·
∞
∑

n=0

nb−n = −r ·
∞
∑

n=0

na−n ≥ −r.

Thus ra+ sb = rh+ sαh where α ≥ −r/s, and thus ra+ sb = βh with 0 ≤ β ≤ 1.

Now let H be the set of sequences (an) such that an = 0 for all n ≤ 0. This is a closed
subspace of c0(Z). K1 intersects H in the point h and F is contained in H, so K ∩ H
contains the convex hull C of h and F . Moreover, any element of K — that is, any convex
combination ra+ sb+ tc with a ∈ K1, b ∈ K2, and c ∈ F — which lies in H must satisfy
ra+ sb ∈ H; then by the last paragraph, ra+ sb = βh where 0 ≤ β ≤ r + s, so we have

ra+ sb+ tc = βh+ tc = (1− t)
β

1− t
h+ tc

where β/(1− t) = β/(r+ s) ≤ 1. Since C contains h and 0, it contains (β/(1− t))h, and
therefore it contains ra+ sb+ tc. We have shown that C = K ∩H.

Next we claim F is a closed face of C. It is closed because it is compact. It is a face
because if a, b ∈ C and neither belongs to F then lim an/hn and lim bn/hn both exist and
are strictly positive, so the same is true of (a + b)/2, which implies (a + b)/2 6∈ F . This
proves the claim.
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Finally, we claim that any closed face G of K that contains F must contain h. For 0 ∈ F ,
and 0 lies in the line segment joining kn and − 1

n
kn, which both belong to K, so kn ∈ G.

Since G is closed and kn → h, it follows that h ∈ G. This proves the final claim and
shows that G ∩H 6= F.

2. Applications to Numerical Range

Notation. Let Mn denote the set of n × n complex matrices and Un the set of unitary
matrices in Mn. Let τ denote the trace on Mn and 1 the identity matrix. For a, b ∈ Mn

write a ≥ b if a − b is positive semi-definite. Define K = {a ∈ Mn : 0 ≤ a ≤ 1}.
When we need to specify a norm on Mn we shall always take the operator norm, i.e.
‖a‖ = sup{‖aη‖ : η is a unit vector in Cn}. The k-numerical range of an n × n matrix b
is Wk(b) = {(1/k)

∑k
1(bxj, xj) : the xj are orthonormal}. When no confusion can develop

we identify the complex plane with R2.

Let’s illustrate our four step method by proving the convexity of the k-numerical range
of b ∈ Mn. This was first shown by Berger [5]. A more accessible proof based on the
convexity of the ordinary numerical range can be found in [8, Problem 167]. The first
step is to linearize the function that produces the points in the k-numerical range. The
definition of Wk(b) calls for calculating a complex number for each k-tuple of orthonormal
vectors in Cn. Replace such a k-tuple {xj}k1 with the orthogonal projection p of their

span. Then τ(pb) =
∑k

1(bxj, xj), thus we can see that kWk(b) = {τ(bq) : q is a projection
of rank k}, so it suffices to show that the latter set is convex. Setting E = {q ∈ Mn : q is
a projection of rank k} completes the first step.

For the second step we define Qk = Conv(E). Clearly Qk ⊂ K. Since τ(q) = k for
each q ∈ E, this suggests that we consider Qk as a subset of {a ∈ K : τ(a) = k}. In
Proposition 2.1 below we show that E(Qk) = E.

For the third step we need to determine the facial structure ofQk. It seems sensible to start
with K. This is probably classical, but a readable (and more general) account appears
as [3, 2.2] where faces of K are shown to have the form F = {x ∈ K : p ≤ x ≤ q}, where
q, p are self-adjoint projections in Mn. This can be rewritten in terms of the difference
q−p = r as F = p+rKr. A face of this form is an extreme point exactly when r = 0, and
then the extreme point is just the projection p, i.e. the extreme points ofK are exactly the
projections. Since the analysis of the facial structure of Qk uses the intersection theorem
from Part 1, we state the facts as a proposition.

Proposition 2.1. For 1 ≤ k < n, Qk = {a ∈ K : τ(a) = k}. The facial dimension of
Qk is 3. Further, the extreme points of Qk are exactly the projections of rank k.

Proof. We already noted that Qk ⊂ {a ∈ K : τ(a) = k}. If we show that the right
hand side has exactly the projections of rank k as its extreme point set, then equality will
follow.

Note that if we intersect K with the hyperplane H = {x : τ(x) = k}, then we get exactly
{a ∈ K : τ(a) = k}. Using the notation developed just above the statement of the
proposition, let a face F of K have the form F = p+ rKr. By the Algebraic Intersection
Theorem the typical face of {a ∈ K : τ(a) = k} is F ∩H.
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WLOG suppose F ∩H is nonempty. If τ(p) = k then F ∩H = {p} has dimension 0. The
same is true if τ(q) = k. Otherwise, τ(p) < k < τ(q), which implies τ(r) ≥ 2. Then rKr
has real dimension at least 4, hence so does the face F , and H contains an interior point
of F , so in this case F ∩H has dimension at least 3. Thus we have shown that the set of
extreme points of {a ∈ K : τ(a) = k} is exactly the set of projections of rank k, thereby
completing the proof of Qk = {a ∈ K : τ(a) = k}. We also have shown that Qk has
no faces of dimension 1 or 2, hence its facial dimension is at least 3. Faces of dimension
exactly 3 occur when τ(r) = 2.

We complete step 4 with the following proposition.

Proposition 2.2. If b ∈ Mn, then the k-numerical range of b is convex.

Proof. The linear map Ψ(a) = τ(ab) takes Qk into C and its range is exactly the k-
numerical range of b. Since the facial dimension of Qk is 3 and the extreme points are
projections of rank k, [1, 1.7] gives the desired convexity.

As another example of this method, we prove the convexity of the c-numerical range for
a self-adjoint element c of Mn. For any c ∈ Mn the c-numerical range of a matrix a ∈ Mn

is defined to be Wc(a) = {τ(cuau∗), u ∈ Un}. It is easy to check that the k-numerical
range W (a) is obtained from this definition when c is taken to be a self-adjoint projection
matrix of rank k (for the ordinary numerical range simply take k = 1). It is known that
the c-numerical range is convex when c is self-adjoint [6, sect. 5.5]. In the next proposition
we show “whyÔ this is true.

Proposition 2.3. If c ∈ Mn is self adjoint, then the c-numerical range of b is convex for
all b ∈ Mn.

Proof. In this formulation the first step of the automatic convexity procedure is straight-
forward. Fix an element b ∈ Mn. Define E = {u∗cu : u ∈ Un}. Let M = Conv(E). Note
that M is compact since E is compact [17, 2.2.6]. The set of extreme points of M is
exactly the set E since M contains extreme points [17, 2.6.16], these lie in E [17, 2.6.4],
and any point of E can be mapped onto any other by a linear isometry of M onto itself
(namely u∗cu → v∗u(u∗cu)u∗v = v∗cv). For any a ∈ Mn define Ψ(a) = τ(ab). Then Ψ(E)
is exactly the c-numerical range of b. To complete the proof using [1, 1.7], we need only
show that the facial dimension of M is at least 3. This is done in the following lemma.

Since we have to borrow from matrix theory for the proof of the next lemma, for compar-
ison and convenience we use the notation of [6, Section 5.5]. Because of the change to the
notation of [6, Section 5.5] what we called c in the previous proposition is now C, while
c stands for the real vector consisting of the eigenvalues of C.

Lemma 2.4. Fix a self-adjoint matrix C ∈ Mn. Then the facial dimension of M =
Conv({U∗CU : U ∈ Un}) is at least 3.

Proof. Let α, β ∈ Rk. We say that α is obtained from β by pinching if all components
of α and β agree except for two, αi and αj, which satisfy αi = λβi + (1 − λ)βj and
αj = (1−λ)βi+λβj for some λ ∈ [0, 1]. We require the following fact: the positive vector



C. A. Akemann, N. Weaver / Automatic Convexity 281

α is obtained from the positive vector β by a finite number of pinchings if and only if

k
∑

i=1

αi ≤
k

∑

i=1

βi

for 1 ≤ k ≤ n, with equality when k = n. Write α ≺ β for this relation.

Since adding a scalar multiple of the identity matrix to C only shifts the C-numerical
range, WLOG we can let C be the positive diagonal matrix with diagonal c, denoted
C = [c], where c is arranged in decreasing order. Let M ′ = {U∗[b]U : U is unitary and
b ≺ c}. We shall show that M ′ = M . Note that M ′ is the set of positive matrices B whose
ordered eigenvalue list b satisfies b ≺ c. Observe that the sum of the first k eigenvalues of
B equals sup{τ(BP ) : P is a rank k projection} [2, Lemma 1.3]. Thus, M ′ is the set of
positive matrices B such that τ(B) = τ(C) and

τ(BP ) ≤
k

∑

i=1

ci

for 1 ≤ k ≤ n and every rank k projection P . It easily follows that M ′ is closed and
convex.

Next, we claim that the extreme points of M ′ are precisely the matrices of the form
U∗[c]U for U a unitary matrix. To see this, let B = U∗[b]U ∈ M ′ and suppose B is
not of the form U∗[c]U . Then [b] is obtained from [c] by a finite, nonempty sequence of
pinchings. It follows that [b] is obtained from some [a] by a single pinching, where a ≺ c.
That is, bi = tai + (1 − t)aj and bj = (1 − t)ai + taj for some t ∈ (0, 1), where ai 6= aj,
and all other components of a and b agree. Let a′ be the real vector obtained from a by
switching the i and j components. Then A = U∗[a]U and A′ = U∗[a′]U are both in M ′,
and B = tA+ (1− t)A′. So B is not an extreme point. Thus, every extreme point of M ′

must be of the form U∗[c]U . Thus M ′ = M by [17, 2.6.16].

Finally, we claim that the facial dimension ofM is at least 3. To see this, let B = U∗[b]U ∈
M and suppose B is not an extreme point. Define A and A′ as in the last paragraph.
Then, with respect to a basis which diagonalizes B, we have

A[ij] =

[

ai 0
0 aj

]

and A′
[ij] =

[

aj 0
0 ai

]

,

where we use the subscript [ij] to indicate restriction to the (i, i), (i, j), (j, i), and (j, j)
entries. (Recall that A and A′ agree elsewhere.) Define new matrices A1, A

′
1, A2, and A′

2

by setting

(A1)[ij] =

[

tai + (1− t)aj (t− t2)1/2(ai − aj)
(t− t2)1/2(ai − aj) (1− t)ai + taj

]

(A′
1)[ij] =

[

tai + (1− t)aj −(t− t2)1/2(ai − aj)
−(t− t2)1/2(ai − aj) (1− t)ai + taj

]

(A2)[ij] =

[

tai + (1− t)aj i(t− t2)1/2(ai − aj)
−i(t− t2)1/2(ai − aj) (1− t)ai + taj

]

(A′
2)[ij] =

[

tai + (1− t)aj −i(t− t2)1/2(ai − aj)
i(t− t2)1/2(ai − aj) (1− t)ai + taj

]
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and letting them agree with A and A′ elsewhere. It is clear that each of these matrices
is self-adjoint, and as the 2 × 2 parts all have the same trace and determinant, they
all have the same eigenvalues (namely, ai and aj). Thus they all belong to M . But
B = (A1 +A′

1)/2 = (A2 +A′
2)/2, and the affine space spanned by A, A′, A1, A

′
1, A2, and

A′
2 is three-dimensional, so the smallest face containing B has dimension at least 3. This

proves the final claim.

3. Applications to Lyapunov Type Theorems

Let (X,M) be a measurable space. A vector measure is an n-tuple (µ1, . . . , µn) = µ of
real-valued measures on (X,M). Lyapunov’s Theorem [13] states that, if µ is nonatomic,
then the range of µ is a convex, compact set in Rn. Following the 4 step plan for proving
convexity (and often compactness in the same stroke, as is the case here) one observes
that

∫

χAdµ = µ(A) = (

∫

χAdµ1, . . . ,

∫

χAdµn) = (

∫

χAf1dν, . . . ,

∫

χAfndν),

where χA is the characteristic function of the set A, ν =
∑n

1 |µi| is a finite, positive
measure, and fi is the Radon-Nikodym derivative of µi with respect to ν for each i. This
formulation suggested the definition of the map Ψ : L∞(X,M, ν) → Rn by Ψ(g) =
(
∫

gf1dν, . . . ,
∫

gfndν). Moving to step 2 in the plan, we note that if E is viewed as the
set of characteristic functions in L∞(X,M, ν), then the closed convex hull K of E in the
weak* topology is exactly the set of positive functions of norm no more than 1. The facial
dimension of K is shown in [3] to be ∞, so [1, 1.7], the weak* compactness of K and the
weak* continuity of Ψ complete the proof of Lyapunov’s Theorem.

As with the numerical range situation discussed earlier in this paper, once the problem
was put into the correct notation, the convexity was automatic from facial structure
considerations and [1, 1.7]. Of course [1] contained many results that could be viewed
as generalizations of Lyapunov’s Theorem. Now let’s combine these results with the
Topological Intersection Theorem to show how even more theorems of the Lyapunov type
are true using our 4 step method. In the next Theorem we extend [1, 2.5], which is itself
an extension of Lyapunov’s theorem to a non-commutative situation.

Theorem 3.1. Suppose that N is a non-atomic von Neuman algebra and {f1, . . . , fn}
and {g1, . . . , gk} are self-adjoint, normal linear functionals on N . Let z1, . . . , zn ∈ R and
define

K = {a ∈ N : ‖a‖ ≤ 1, a ≥ 0, fj(a) = zj, j = 1, . . . , n}.

Let Nsa denote the set of self adjoint elements of N . Define Ψ : Nsa → Rk by Ψ(a) =
(g1(a), . . . , gk(a)). Then E(K) = {p : p is a projection in K} and Ψ(K) = Ψ(E(K)).

If N is abelian, then there is a continuous map Φ : Ψ(K) → E(K) that is a right inverse
for Ψ.

Proof. If K is void, the theorem is trivially true, so asume not. If N+
1 denotes the

positive part of the unit ball of N , then the facial dimension of N+
1 is ∞ by [3, 2.2].

Since K is the intersection of N+
1 with a subspace of finite codimension, the Topological

Intersection Theorem applies to show that the faces of K are either extreme points of
N+

1 or else infinite dimensional faces. Since the extreme points of N+
1 are exactly the
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projections of N by [3, 2.2] , we get E(K) = {p : p is a projection in K}. The conclusion
Ψ(K) = Ψ(E(K)) follows from [1, 1.7].

Now assume that N is abelian and let Nsa be its self-adjoint part. Define Ψ
′ : Nsa → Rn+k

by the formula
Ψ′(a) = (Ψ(a), f1(a), . . . , fn(a)).

By Lyapunov’s Theorem Ψ′(N+
1 ) is compact and convex. By [15] there is a continuous

right inverse Φ′ : Ψ(K) → E(K) for Ψ′. Now let

S = {(Ψ(a), f1(a), . . . , fn(a)) ∈ Ψ′(N+
1 ) : fj(a) = zj, j = 1, 2, . . . , n}.

Clearly Ψ′−1(S) = {a ∈ N+
1 : fj(a) = zj, j = 1, 2, . . . , n} = K. Thus the restriction of Φ′

to K is the desired lifting if we identify the first k coordinates of Rk+n with Rk.

We present two corollaries of Theorem 3.1. The first is a version of Lyapunov’s theorem
with linear constraints, and could possibly have applications in control theory along the
lines of the classical Lyapunov theorem [10]. The second gives a von Neumann algebra
version of the convexity of the k-numerical range (where here k = z).

Corollary 3.2. Let (X,M) be a measurable space, let µ = (µ1, . . . , µk) be a vector mea-
sure on (X,M), let ν1, . . . , νn be measures which are absolutely continuous with respect
to ν = |µ1| + · · · + |µk|, and let z1, . . . , zn ∈ R. Then the set {µ(A) : νj(A) = zj, j =
1, 2, . . . , n} is compact and convex.

Proof. We translate into the language of Theorem 3.1 by letting N = L∞(X, ν) and
letting the fi and gj be the Radon-Nikodym derivatives of the µi and νj with respect to
ν. Then {µ(A) : νj(A) = zj, j = 1, 2, . . . , n} = Ψ(E(K)) = Ψ(K), and Ψ(K) is clearly
compact and convex.

Corollary 3.3. Let N be a non-atomic von Neumann algebra with normal tracial state
τ and let b ∈ N and z ∈ [0, 1]. Then the set

{τ(pb) : p is a projection and τ(p) = z}

is a compact and convex subset of C.

Proof. In Theorem 3.1, take n = k = 1, f1 = τ , g1 = τ(·b), and z1 = z.
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