
Journal of Convex Analysis

Volume 10 (2003), No. 1, 169–184

Convexity and the Natural Best Approximation
in Spaces of Integrable Young Measures∗

Zvi Artstein†

Department of Mathematics,
The Weizmann Institute of Science, Rehovot 76100, Israel

zvi.artstein@weizmann.ac.il

Cristian Constantin Popa
Department of Mathematics,

The Weizmann Institute of Science, Rehovot 76100, Israel
popa@wisdom.weizmann.ac.il

Received June 8, 2001
Revised manuscript received January 18, 2002

The natural best approximation in function spaces singles, out of the family of best L1-approximation
of an integrable function in a convex set, the element which is the limit as p converges to 1+, of the
unique best Lp-approximation of the function. The present paper extends the result to convex sets
in spaces of integrable Young measures. Such spaces lack a standard affine structure. In this paper
convexity is considered via a limiting procedure. Consequently, the proof of the existence of a natural
best approximation does not rely on tools like weak convergence, available in an ordinary function space.
Rather, the interplay of compactness and convexity in the relaxed setting plays a major role.

1. Introduction

Probability measure valued maps, also called Young measures, play a prime role in depict-
ing solutions and parameters when instantaneous changes and oscillations are expected in
variational problems. Such solutions were introduced by L.C. Young as generalized curves
in the calculus of variations, and by J. Warga in the framework of optimal control theory.
see Young [31] and Warga [30] for the general theory and historical accounts. More recent
applications include solutions of partial differential equations and variational problems,
and the description of limit behavior of systems when some parameters are rapidly oscil-
lating. Consult Tartar [28], Demengel and Temam [12], Valadier [29], Artstein [2]. While
in the mentioned applications there was no need for the Young measures to be equipped
with a linear or with a convexity structure, more recent applications call for that. Hence
a study of notions for linear variations and convexity structures of Young measures has
begun. Useful developments in these directions are offered in Pedregal [22], Roubiček [24],
and in the monograph Roubiček [26]. A study of norm-like structures was carried out by
Balder [7], [8], Kružik and Roubiček [15] Piccinini and Valadier [23], Artstein [4], [5]. The
last two papers develop notions of linearity and convexity of Young measures which are
based on norm-like approximations of ordinary functions, and examine the problem of a
best approximation of an ordinary map within a convex set of Lp-Young measures. The
present paper continues this effort. A particular case in [4] is the case of relaxed σ-fields
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when p = 2, namely, appropriate measure valued limits of standard σ-fields. Then the
best approximation is the relaxed conditional expectation of the map. It is shown in [5]
that when p > 1 the property that a unique best approximation exists and is unique, is
carried over from the vector function framework to the Young measure setting.

In this paper we pay special attention to the case p = 1. As in the case of ordinary
functions, best approximations may not exist, and when they exist, they may not be
unique. We follow in this paper the important development initiated in D. Landers and
L. Rogge [17], [18], who introduced the notion of natural best approximation. The notion
singles out a unique best approximation with the property that it approximates the unique
Lp approximation for p = 1+ε with ε > 0 small enough. We show that under appropriate
general conditions, a natural best integrable approximation can be identified within the
Young measures framework.

To this end we need to further develop the basic convexity arguments within the Young
measures framework. Specifically, the definition of convexity is not purely algebraic,
rather, it depends on the norm in question. When the natural best approximation con-
cept is examined, the arguments involve more than one Lp-norm. Therefore, we have to
examine the effect of different norms on the convexity notion. The proof pertaining to the
natural best approximation follows the general lines set out in Landers and Rogge [17],
but since some of the tools available in function spaces are not available in the relaxed
spaces, we have to modify the arguments accordingly.

The paper is organized as follows. Up front in Section 2, even before recalling the relevant
notions and terminology, we state the main result concerning the natural minimal norm
problem in the space of integrable Young measures. The natural best approximation is an
equivalent problem, which in the Young measures setting needs some explanation. This
result is displayed in Section 5. After stating the main result in Section 2, we recall,
for the benefit of the readers who are not familiar with Young measures, the necessary
notions, and set the framework for the results. In Section 3 we display some tools for
the analysis of convexity in the relaxed framework, examining in particular the impact
of different norms on the convexity notion for Young measures. The proof of the main
result is given in Section 4. In the closing section we display comments and examples
concerning possible extensions and applications.

2. The main result and the setting

We start this section with the underlying definition and the statement of the main result
concerning a minimal norm problem. Following the statement, for the benefit of the
readers who may not be familiar with the terminology it relates to, we recall the basic
notions, and display the setting within which the result is verified.

We denote by L1+ the collection of functions which are p-integrable for some p > 1 and,
likewise, Y1+ denotes the collection of Young measures which are p-integrable for some
p > 1. The following terminology is in line with the terminology introduced in Landers
and Rogge [17] for function spaces.

Definition 2.1. Let C ⊆ Y1 be such that for every p > 1 close enough to 1, there exists
a unique element in C, say µp(C), with minimal ‖ ‖p-norm in C. An element µ1 ∈ C
which minimizes the ‖ ‖1-norm in C, is called the natural minimizer of the ‖ ‖1-norm in
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C if the following two properties hold.

(i) For every ν ∈ C, ν 6= µ1, there exists a p(ν) > 1 such that ‖µ1‖p < ‖ν‖p for every
1 < p ≤ p(ν), and

(ii) µp(C) converges in the sn1-metric, as p → 1+, to µ1.

Note that if µ1 ∈ C satisfies properties (i) and (ii), it still may not be a minimizer of
the ‖ ‖1-norm in C. Therefore the latter property is assumed explicitly. It is clear that
if a natural minimizer of the ‖ ‖1-norm in C exists, then it is unique. The terminology
“natural" follows Landers and Rogge [17]; properties (i) and (ii) reflect well-posedness
and stability with respect to a perturbation in the minimization criterion; the stability
identifies, indeed, a natural choice among the minimizers.

The statement of the main result follows the result in Landers and Rogge [17], adapted
here to the relaxed setting.

Theorem 2.2. Let C ⊆ Y1 be a K1-convex set. Let β1(C) be the collection of elements
of minimal ‖ ‖1-norm in C. Suppose that β1(C) is not empty and contains elements in
Y1+. Then for every p > 1 close enough to 1, there exists a unique element in C, say
µp(C), with minimal ‖ ‖p-norm in C. Moreover, the natural minimizer of the Y1-norm
in C exists and it is the minimizer of the functional

∫ 1

0

∫

Rd

d
∑

i=1

|xi| ln |xi|ν(t)(dx)dt (1)

among all the elements in β1(C).

We present now, very briefly, the setting in which our problem is posed, and display
the terminology which the main result refers to. For elaboration on Young measures in
general see Valadier [29], Balder [9], Roubiček [26]. For details concerning the convexity-
like arguments which we follow in the present paper, consult Artstein [4], [5]. References
on weak convergence of measures are Billingsley [11] and Bertsekas and Shreve [10].

We work with measurable maps

f(·) : [0, 1] → Rd, (2)

with Rd the d-dimensional Euclidean space, and where [0, 1] is endowed with the Lebesgue
measure (see Remark 6.3). We consider a function of the form (2) as a particular case of
a mapping of the form

µ(·) : [0, 1] → P, (3)

where P = P(Rd) is the space of probability measures on Rd endowed with the weak
convergence of measures. This convergence is generated by a topology which is separable
and metrizable by a metric which makes P = P(Rd) a complete metric space. We
demand that the measure-valued mappings be measurable with respect to the metric.
Such maps are called Young measures. A function of the form (2) is associated with the
Young measure which assigns to each t the Dirac measure δ{f(t)}. When µ(·) is a Young
measure then the value which the measure µ(t) assigns to the Borel set B ⊂ Rd is denoted
by µ(t)(B). Measurability of µ(·) is equivalent to the measurability of µ(·)(B) for every
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Borel set B. When a function on Rd is integrated with respect to µ(t) we use the notation
µ(t)(dx).

An alternative representation of a Young measure µ(·) is its direct integral, namely, the
measure µ defined on [0, 1]×Rd (the latter is considered with its Borel field), and deter-
mined by

µ(E ×B) =

∫

E

µ(t)(B)dt. (4)

Since [0, 1] has Lebesgue measure one, it follows that µ is a probability measure on [0, 1]×
Rd. We alternate freely between the notations µ and µ(·).
The space of Young measures is denoted by Y . It is endowed with the weak convergence of
measures, namely the weak convergence of the representations µ on [0, 1]×Rd. This is the
topology in which the maps (3) form a completion of the functions (2). The convergence on
Y is also called the narrow convergence (to distinguish it from weak convergence notions
for functions).

Next we define the spaces Yp. Recall that for each such p ≥ 1 the space Lp is the space
of functions of the form (2) which are p-integrable. We denote by ‖f‖p the Lp-norm of
f(·). The extension to Young measures is given by

‖µ‖p =
(∫ 1

0

∫

Rd

|x|ppµ(t)(dx)dt
)1/p

, (5)

where |x|p is the lp-norm of the vector x = (x1, · · · , xd) in Rd (however, when it is clear
from the context which lp space is under consideration, we suppress the subscript from
the norm |x| of the Rd-vectors). We refer to ‖µ‖p as the Yp-norm or as the ‖ ‖p-norm of
µ. On Lp-Young measures see Kružik and Roubiček [15] and Piccinini and Valadier [23].
It is clear that the Lp-norm and the Yp-norm coincide for functions.

Narrow convergence in Yp plays, to some extent, the role of weak convergence in Lp,
although a sequence in Lp may converge weakly in Lp and narrowly in Yp, with distinct
limits. For a strong-type convergence we adopt the following.

Definition 2.3. The sequence µk in Yp converges in the p-strong-narrow sense to µ0 ∈ Yp,
if both, µk converges narrowly to µ0 and ‖µk‖p → ‖µ0‖p as k → ∞. This convergence
is derived from a metric. We choose a specific metric to describe the p-strong-narrow
convergence, as follows. The metric is denoted by snp(·, ·) and snp(µ, ν) is defined to be
the sum of (‖µ‖p − ‖ν‖p) and n(µ, ν) where n(·, ·) is the metric which makes Y with the
weak convergence a complete separable metric space.

The definition is inspired by a property which holds in uniformly convex spaces, e.g.,
in Lp spaces for 1 < p < ∞; namely, that fk → f0 weakly in Lp and ‖fk‖p → ‖f0‖p
imply that ‖fk − f0‖p → 0. See Dunford and Schwartz [13, II.4.28]. (In Yp, however,
the difference µk − µ0 is not defined, or when defined in an abstract manner, it may
not belong to Yp, see Roubiček [26].) It is well known that this property is not valid
in L1. The definition, however, of p-strong-narrow convergence applies also to the case
p = 1, and we use it in the Y1 case as well. In particular, when the p-strong-narrow
convergence in Yp is restricted to Lp, it coincides with the norm convergence in Lp, see
Artstein [5, Proposition 2.6]. Thus, for each p (including p = 1), the normed space Lp is
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homeomorphically embedded in Yp when the latter is endowed with the snp-metric. The
spaces Yp are not equipped with a natural affine structure which extends continuously
the linear structure of the Lp spaces. In particular, the affine structure derived from the
space of measures, namely, identifying a Young measure with a measure on the product
space (see (4)) and considering the standard linear structure stemming from duality, does
not work. Indeed, the average of two functions in Lp when considered as Young measures
in the space of measures, does not coincide with the average of the same functions when
considered as functions in Lp. We follow [5] and offer a convexity notion based on limit
arguments as follows.

Definition 2.4. A set C ⊂ Yp is Kp-convex if it is the Kp-limit of a sequence Dk of
convex sets in Lp, where by Kp-limit we mean that

(i) every µ0 ∈ C is the snp-limit of a sequence fk ∈ Dk, and

(ii) whenever fki ∈ Dki for a subsequence which converges in the snp-metric, say to µ0,
then µ0 ∈ C0.

The definition of Kp-limit amounts to the definition of the Kuratowski limit of sets in the
space Yp. See Kuratowski [16], Klein and Thompson [14]. Another notion of convexity,
namely the M -convexity, is mentioned in Remark 6.2.

In addition to the lack of an inherent convexity notion, the spaces Y and Yp lack a natural
linear structure compatible with the completion. We refer to this problem in Section 5
and display in Theorem 5.3 the best approximation facet of the main result.

The minimal norm notion mentioned in the statement of the main result refers to the
norm given in (5). In particular, an element µ ∈ C is of minimal ‖ ‖p-norm in C if

‖µ‖p = min{‖ν‖p : ν ∈ C}. (6)

The set of minimal ‖ ‖p-norms is denoted by βp(C).

It is clear from (6) that when C ⊂ Lp, the minimal norm reduces to the classical notion
of minimal norm in Lp spaces. On norm minimizers and best approximations in function
spaces see, e.g., Singer [27]. In Yp, however, the problem is not of metric projection,
this since (6) is not induced by a metric compatible with respect to the p-strong-narrow
convergence.

It is proved in [5] that if C is Kp-convex and p > 1, the set βp(C) contains exactly one
point. The set β1(C) may be empty, and may contain more than one point. Follow-
ing Landers and Rogge, Theorem 2.2 singles out, under the displayed conditions, the
aforementioned stable point in β1(C).

3. Compactness and convexity in Yp

In this section we display some observations which are needed for the proof of the main
result. They are concerned with compactness and Kp-convexity arising when applying
different norms in the relaxed framework.

We start with some compactness issues. Recall the notion of uniform p-integrability of a
family of Young measures, namely, a family F of Young measures in Yp (for 1 ≤ p < ∞)
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is called uniformly p-integrable if for every ε > 0 there exists an N > 0 such that

∫ 1

0

∫

|x|≥N

|x|pµ(t)(dx)dt ≤ ε (7)

for every µ ∈ F . It is shown in [4, Proposition 6.9] that for 1 ≤ p < ∞, a family F ⊂ Yp

is relatively compact (namely, its closure is compact) in the snp-topology if and only if
it is uniformly p-integrable. The following result is a de la Vallée-Poussin type estimate
(see e.g., Natanson [20, Chapter IV]) for Young measures.

Lemma 3.1. Let γ(t, x) be a continuous function from [0, 1]×Rd to R, which grows faster
than the p-power in |x| (namely, γ(t, x)|x|−p tends to +∞ as |x| → ∞, uniformly in t).
Let F ⊂ Yp be such that

sup
ν∈F

∫

[0,1]×Rd

γ(t, x)dν < ∞. (8)

Then F is relatively compact in the snp-topology.

Proof. Suppose that the criterion (7) does not hold, i.e., suppose that for some ε0 > 0

∫ 1

0

∫

|x|≥N

|x|pµ(t)(dx)dt ≥ ε0 (9)

for arbitrarily large N and some µ ∈ F . Then

∫ 1

0

∫

|x|≥N

γ(t, x)µ(t)(dx)dt ≥ α(N)ε0 (10)

with α(N) a lower bound on γ(t, x)|x|−p for |x| ≥ N . Since α(N) → ∞ as N → ∞, we
get a contradiction to (8). This verifies the claim of the lemma.

Corollary 3.2. Let F be a bounded set in Yq. Then it is relatively compact in the snp-
topology of Yp for 1 ≤ p < q.

Proof. Use the previous lemma with γ(t, x) = |x|q.
The following result is trivial in Lp spaces, but needs a proof in the relaxed framework.

Corollary 3.3. Suppose that µj → µ0 in the snq-metric, then µj → µ0 in the snp-metric
for all 1 ≤ p ≤ q.

Proof. By Corollary 3.2 the sequence is relatively compact in Yp, hence convergent
subsequences exist. The narrow convergence to µ0 implies that it is the unique limit.

We need the following truncation notion.

Notation 3.4. For N > 0 and a vector x = (x1, . . . , xd) define the vector N(x) by
N(x)i = xi if |xi| ≤ N , N(x)i = N if xi > N and N(x)i = −N if xi < −N .

Lemma 3.5. Let γ(t, x) : [0, 1] × Rd → [0,∞) be continuous, and let ν1 and ν2 be two
Young measures such that

∫

γ(t, x)dνk is finite for k = 1, 2. Let f1,j and f2,j be se-
quences converging narrowly, as j → ∞, to ν1 and ν2 respectively, and assume that
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f3,j = 1
2
(f1,j + f2,j) converges narrowly, say to ν3. Then there exist sequences h1,j and

h2,j, which converge narrowly to ν1 and ν2 respectively, and such that h3,j =
1
2
(h1,j + h2,j)

converges narrowly to ν3, and furthermore,

∫ 1

0

γ(t, hk,j(t))dt →
∫

[0,1]×Rd

γ(t, x)dνk (11)

for k = 1, 2, 3.

Proof. Using Notation 3.4, the sequences N(f1,j) and N(f2,j) converge narrowly to ν1

and ν2 when both, j and N , tend to ∞. Since, when considered as Young measures, in
particular as measures on the product space (see (4)), the sequences are tight (for tightness
of collections of measures see, e.g., Billingsley [11]), it follows that N(f3,j) converges
narrowly to ν3 as j and N tend to ∞. It is also easy to see that

lim
N→∞

lim
j→∞

∫ 1

0

γ(t, N(fk,j(t)))dt =

∫

[0,1]×Rd

γ(t, x)dνk (12)

for k = 1, 2, 3. From (12) it follows that a relation N(j) can be determined such that (11)
holds for the diagonal sequences hk,j = N(fk,N(j)) for k = 1, 2, 3.

Corollary 3.6. Let C be a Kp-convex set in Yp. Let ν1 and ν1 be in C such that both
are in Yq for some q > p. let f1,j and f2,j be sequences converging narrowly, as j → ∞,
to ν1 and ν2 respectively, and assume that f3,j =

1
2
(f1,j + f2,j) converges narrowly, say to

ν3. Then there exist sequences h1,j and h2,j in Yq, which converge in the snq-metric to ν1

and ν2 respectively, and such that h3,j =
1
2
(h1,j + h2,j) converges in the snq-metric to ν3.

Proof. Apply Lemma 3.5 with γ(t, x) = |x|q.
As mentioned already, the definition of convexity in the relaxed setting depends on the
choice of the norm. The following result shows that under a compactness condition, the
convexity notions for different norms coincide (in view of Corollary 3.2, the compactness
in the following result may be replaced in some cases by boundedness).

Proposition 3.7. Let C be a Kp-convex set in Yp. Suppose that for some 1 ≤ q < ∞,
the family C is uniformly q-integrable. Then C is Kq-convex in Yq.

Proof. Corollary 3.3 covers the case where p ≥ q. Assume that p < q. Let Dk be
the sequence of convex subsets of Lp, establishing, according to Definition 2.4, the Kp-
convexity of C. Let εj → 0. Since C is relatively compact in Yq, it follows that for every
εj > 0 there exists a finite set, say {µj,1, . . . ,µj,rj} which is an εj net in C in the snq-metric
(namely, it εj-approximates every element in C). For a fixed j, let fk,j,1, . . . , fk,j,rj be rj
sequences such that fk,j,l ∈ Dk and fk,j,l converge as k → ∞, in the snp-metric, to µj,l.

Let Nj be the estimate guaranteed when the test (7) of uniform p-integrability is applied
when ε =

εj
rj
, and when F = {fk,j,l : l = 1, . . . , rj, k = 1, 2, . . .}, namely a finite number

rj of convergent sequences. Using Notation 3.4 we define

gk,j,l = Nj(fk,j,l). (13)
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Let Ek,j be the convex hull of gk,j,l for l = 1, . . . , rj. We construct a diagonal sequence
Ek(j),j as follows. Let k(j) be such that snq(µj,l, gk(j),j,l) < 2εj and ‖fk(j),j,l−gk(j),j,l‖p < 2εj
for all l = 1, . . . , rj. An index k(j) validating the latter estimates exists due to the relative
compactness of C in Yq and the assumed convergence in Yp. We now establish the Kq-
convexity of C by the Kq-convergence of Ek(j),j to C. Indeed, let µ ∈ C. Then µ is
a limit of elements µj,l(j) for an appropriate choice of l(j). Then gk(j),j,l(j) converges in
the snq-metric to µ, as condition (i) in Definition 2.4 requires. To check condition (ii) of
the definition, we should consider a convergent subsequence, say also indexed by j. Let
hj ∈ Ek(j),j converge in the snq-metric, say to µ0. Then each hj is a convex combination
of the elements gk(j),j,1, . . . , gk(j),j,rj , and in particular of at most rj elements. The choice
of Nj as guaranteeing an

εj
rj

estimated in (7), implies that the corresponding convex

combination with the same weights of fk(j),j,1, . . . , fk(j),j,rj , will have the same snp-limit.
By the Kp convexity, this limit point is in C. This completes the proof.

4. Proof of Theorem 2.2

The proof follows on the lines of Landers and Rogge, [17, Theorem 2], but with the required
modifications. We shall not make specific comparisons, but note here that a prime tool
used in [17, Theorem 2] is not available in our setting, namely, that convex sets closed
in norm are also closed with respect to weak convergence. We overcome this difficulty
by establishing enough compactness with respect to the strong-narrow topology. Another
difficulty is that averages of Young measures are not defined. The way to overcome this
obstacle is to employ averages in the limit process that determines the convexity.

For each ν ∈ β1(C) denote
φν(p) = ‖ν‖pp, (14)

namely, the p-norm of the Young measure ν(·) raised to the p-power, see (5). It follows
from the assumptions that there exists an element ν ∈ β1(C) such that φν(p) < ∞ for p
in a non-degenerate interval [1, p(ν)].

Claim 4.1. For any two elements µ and ν in β1(C)

φν(1) = φµ(1). (15)

Proof. Trivial, since all the elements in β1(C) share the same ‖ ‖1-norm.

Claim 4.2. For ν in β1(C) either φν(p) = ∞ for all p > 1, or the function φν(·) is
differentiable as a function of p at p = 1, and the derivative is

d

dp
φν(1) =

∫ 1

0

∫

Rd

(

d
∑

i=1

|xi| ln |xi|

)

ν(t)(dx)dt. (16)

Proof. We spell out the expression for φν as an integral over [0, 1] × Rd, as follows
(compare with (5)).

φν(p) =

∫ 1

0

∫

Rd

|x|pp dν. (17)

The integrand |x|pp = |x1|p+ · · · |xd|p is clearly differentiable. Its derivative with respect to

p is
∑d

i=1 |xi|p ln |xi|p. This derivative is uniformly bounded from below (by the constant
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−d
e
). If the integral of this derivative diverges, then φν(p) = ∞ for p > 1. Otherwise

the expression is ν-integrable for all p in a half open interval [1, p(ν)). In the latter case
we can change the order of integration and differentiation and get the desired expression
(16). This completes the proof.

Denote the integrand in (16) by Φ(x), namely

Φ(x) =
d

∑

i=1

|xi| ln |xi|. (18)

Claim 4.3. There exists a Young measure in β1(C) which minimizes the expression
d
dp
φν(1).

Proof. Since we assumed that β1(C) contains elements in Y1+ it follows from the pre-
ceding claim that d

dp
φν(1) < ∞ for some ν ∈ β1(C). Let νj be a minimizing sequence of

d
dp
φν(1) in β1(C). In particular, the condition (8) holds with F = {νj} and γ(t, x) = Φ(x),

with respect to p = 1. Hence there exists a subsequence which converges in the sn1-
topology, with a limit, say ν0. The closedness of β1(C) implies that ν0 ∈ β1(C). Since
Φ(x) is a convex function for |x| large enough, it follows that d

dp
φν(1), which is given by

(16), is lower semi-continuous in the sn1-topology. The compactness together with the
lower semi-continuity imply that ν0 is a minimizer of the given expression.

Claim 4.4. The minimizer in β1(C) of the expression d
dp
φν(1) is unique.

Proof. Suppose that there are two distinct minimizers, say ν1 and ν2. Since C is K1-
convex, it follows that there exist two sequences f1,j and f2,j which sn1-converge to ν1

and ν2, respectively, and such that any sn1-limit point of the averages

f3,j =
1

2
(f1,j + f2,j) (19)

is in β1(C). The compactness criterion given in (7) implies that the sequence f3,j is
relatively compact in the sn1-topology, hence a converging subsequence exists. We assume
that it is the sequence itself, and denote the limit by ν3. In view of Lemma 3.5 we may
assume that

lim
j→∞

∫ 1

0

Φ(fk,j(t))dt =
d

dp
φνk

(1) (20)

for k = 1, 2, 3. We plan to show that the strict convexity of Φ is uniform enough to get, in
the limit, a contradiction to the assumption that ν1 and ν2 are distinct minimizers. But
we should proceed with care since Φ is convex only on a pointed orthant of Rd.

Since the d
dp
φν(1) < ∞ both ν1 and ν2, it follows that both belong to Yq for some

q > 1. Therefore, by Corollary 3.6, we may assume that the strong-narrow convergence
as j → ∞ of the sequences fk,j(·) for k = 1, 2, 3 is actually in snq, and in particular, (by
[4, Proposition 6.9]) the three sequences are uniformly q-integrable.

Denote

Q = {(x, y) : xiyi < 0 for some coordinate i} (21)
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and let
Tj = {t : (f1,j(t), f2,j(t)) ∈ Q}. (22)

For t ∈ Tj let Ij(t) be the set of indices i in {1, . . . , d} such that the i-th coordinates of
f1,j(t) and f2,j(t) have opposite signs, and then let

gj(t) = max
i∈Ij(t)

min{|f1,j(t)i|, |f2,j(t)i|}. (23)

Define gj(t) = 0 if t 6∈ Tj. A simple geometrical observation implies that

|f3,j(t)| ≤
1

2
(|f1,j(t)|+ |f2,j(t)|)− gj(t) (24)

(equality holds when t 6∈ Tj). Since the L1-norms of the three sequences fk,j, k = 1, 2, 3,
converge to the same limit, it follows from (24) that

∫ 1

0

gj(t)dt → 0 as j → ∞. (25)

The uniform q-integrability of fk,j for some q > 1 implies that gj are uniformly q-integrable
for the same q.

The next step is to show that for some δ > 0
∫ 1

0

Φ(f3,j(t))dt ≤
1

2

(∫ 1

0

Φ(f1,j(t))dt+

∫ 1

0

Φ(f2,j(t))dt

)

− δ. (26)

Once (26) is verified, it implies that the limit (20) contradicts the assumption that ν1 and
ν2 are distinct minimizers, and the proof of the claim would be complete.

To verify (26) we employ an estimate for the convexity gap, as follows. A simple com-
parison with quadratic functions shows that for any convex real valued function, say γ(·),
one can estimate 1

2
(γ(s) + γ(r))− γ(1

2
(s+ r)) by 1

8
|s− r|2η when η is the infimum of the

second derivative of γ on the interval [r, s] (say r < s). Applying this estimate to the
function γ(s) = |s| ln |s| (notice that this function is convex on the half line only) one gets
that for real numbers r and s which have the same sign, namely rs ≥ 0, and say |r| < |s|,
then

|r + s|
2

ln(
|r + s|

2
) ≤ 1

2
(|r| ln |r|+ |s| ln |s|)− 1

8
(s− r)2|s|−1. (27)

In the case where rs < 0, and, say, |r| ≤ |s|, the function is not convex anymore on [r, s]
and a correction argument is needed. In this case one can use the convexity on a half line
and the fact that 0 ln 0 is 0 to get (say r < 0 < s) the inequality 1

2
(r + s) ln 1

2
(r + s) ≤

|r| ln |r|+ 1
2
(|r|+s) ln 1

2
(|r|+s). Applying now the preceding estimate for the convexity gap

on [|r|, s], employing the fact that the function is symmetric around 0 and manipulating
a bit the terms, one gets the expression (valid also when s < 0 < r)

|r + s|
2

ln(
|r + s|

2
) ≤ 1

2
(|r| ln |r|+ |s| ln |s|)− 1

8
(s− r)2|s|−1 +

1

2
|r| − |r| ln |r|. (28)

Consequently, if we denote by hj(t) the largest absolute value of a coordinate of either
f1,j(t) or f2,j(t), we get the estimate

Φ(f3,j(t)) ≤
1

2
(Φ(f1,j(t)) + Φ(f2,j(t)))−

1

8
|f1,j(t)− f2,j(t)|22hj(t)

−1 + cj(t) (29)
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(if hj(t) = 0 then both sides equal 0) where the correction term cj(t) is given by

cj(t) =
1

2
|gj(t)| − dgj(t) ln gj(t) (30)

(in the above displayed expression | · |2 is the l2-norm, d is the dimension of the Euclidean
space and gj(t) is as defined in (23); in particular, when t 6∈ Tj we have gj(t) = 0, hence
cj(t) = 0). Now we integrate the expressions (29) over [0, 1] and check the limit as j → ∞.

The uniform q-integrability of gj for some q > 1 implies that that in addition to (25)

the convergence
∫ 1

0
dgj(t) ln gj(t)dt → 0 as j → ∞ holds as well. Hence

∫ 1

0
cj(t)dt → 0

as j → ∞. Since f1,j and f2,j converge to distinct Young measures, it follows that the

integrals
∫ 1

0
|f1,j(t) − f2,j(t)|22dt are bounded away from 0 as j → ∞. The uniform 1-

integrability of the sequences, which implies that hj are uniformly integrable, implies that
∫ 1

0
1
4
|f1,j(t)− f2,j(t)|22hj(t)

−1dt is bounded away from 0 as j → ∞. This verifies (26), and
as already noted, this completes the proof of Claim 4.4.

Notice that we have proved in the previous claims that there exists a unique element in
β1(C), which we denote by µ1, such that

d

dp
φµ1

(1) <
d

dp
φν(1) (31)

for all ν ∈ β1(C) (the right hand side of (31) could be equal to +∞). This inequality
together with Claim 4.1 verify (i) of Definition 2.1 and the minimization of (1) in Theorem
2.2. It remains to verify property (ii) in Definition 2.1.

Claim 4.5. For p > 1 close to 1, there exists a unique minimizer of the Yp-norm in C.

Proof. The assumption β1(C)
⋂

Y1+ 6= ∅ implies that for p > 1 close to 1 the intersection
of Yp and C is not empty. Let νj be a sequence in C minimizing the Yp-norm. Applying
Lemma 3.1 with γ(t, x) = |x|pp implies that the sequence νj is relatively compact in the
sn1-topology. Hence, the sequence has a subsequence, say it is the sequence itself, which
converges, say to µp, in C. The semi-continuity of the Yp-norm with respect to sn1-
convergence in C implies that µp is a minimizer of the Yp-norm in C. Applying Lemma
3.5 with γ(t, x) = |x|pp, and using the strict convexity of the latter function, implies that
µp is a unique minimizer.

Claim 4.6.

lim sup
p→1+

∫

[0,1]×Rd

Φ(x)dµp ≤
∫

[0,1]×Rd

Φ(x)dµ1. (32)

Proof. Recall the definition of Φ(x) from (18). By the mean value theorem,

Φ(x) ≤
d

∑

i=1

|xi|p − |xi|
p− 1

. (33)

Integrating with respect to µp yields

∫

[0,1]×Rd

Φ(x)dµp ≤
1

p− 1

(∫

[0,1]×Rd

|x|ppdµp −
∫

[0,1]×Rd

|x|1dµp

)

. (34)
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Using the fact that µp is the minimizer of the ‖ ‖p-norm, and µ1 is the minimizer of the
‖ ‖1-norm, we can replace the measures with respect to which we integrate in the right
hand side of (34) and obtain

∫

[0,1]×Rd

Φ(x)dµp ≤
1

p− 1

(∫

[0,1]×Rd

|x|ppdµ1 −
∫

[0,1]×Rd

|x|1dµ1

)

. (35)

With p → 1+, the relation (35) verifies the claim.

Claim 4.7. Any sequence µpn for pn → 1+ is relatively compact in the sn1-topology. Any
sn1-limit point of such a sequence is in β1(C).

Proof. The first part follows from Claim 4.6 together with Lemma 3.1 when γ(t, x) =
Φ(x). The second part follows from the continuity of the Y1-norm.

Claim 4.8. Any sn1-limit of a sequence µpn for pn → 1+, coincides with µ1.

Proof. By Claim 4.7 any sn1-limit, say ν, of a sequence as described, is in β1(C). By
Claim 4.6 the derivative d

dp
φν(1) is less than or equal to the derivative d

dp
φµ1

(1). The
uniqueness established in Claim 4.4 implies that ν = µ1.

With the last claim the proof of the Theorem 2.2 is complete. Indeed, the sn1-compactness
of µp as p → 1+, together with the fact that any subsequence converges in the sn1-topology
to µ1, imply that (ii) of Definition 2.1 is satisfied; since (i) of Definition 2.1 and the desired
minimization of (1) were established with Claim 4.4, the proof is complete.

5. Natural best approximations

In this section we show how the result on the natural minimizer within the Young measures
framework can be used to define a natural best approximation, following the lines of
Landers and Rogge [17]. Some preparations need, however, to be carried out.

In addition to the lack of an inherent convexity notion, the spaces Y and Yp lack a natural
linear structure compatible with the completion, as was explained before introducing Def-
inition 2.4. A partial linear structure compatible with the Lp-operations can be identified,
namely when an ordinary function interacts with a Young measure, and when a Young
measure is multiplied by a scalar, as follows.

Let µ ∈ Y, let α be a scalar and let f : [0, 1] → Rd be measurable. The Young measure
αµ is defined by

(αµ)(t)(B) = µ(t)({x : αx ∈ B}), (36)

and the Young measure µ+ f is defined by

(µ+ f)(t)(B) = µ(t)({x : (x+ f(t)) ∈ B}) (37)

(notice that the latter is not an operation on the entire product space Y × Y). Similar
operations were used in the literature; see Roubiček [25].

We call µ + f the translation of µ by f ; obviously, µ − f = µ + (−f). The expressions
given in (36) and (37) are continuous with respect to convergence of scalars, the strong
convergence in Lp and the snp-convergence in Yp. With the aid of (37) we can formulate
the best approximation problem as follows.
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Definition 5.1. Let C ⊂ Yp and g ∈ Lp. An element µ ∈ C is a ‖ ‖p-best approximation
of g in C, if

‖µ− g‖p = min{‖ν− g‖p : ν ∈ C}. (38)

As it is evident from (38), when C ⊂ Lp the best approximation reduces to the classical
notion of the best approximation in Lp spaces. Note, however, that we do not define the
best approximation problem for a Young measure and a set of Young measures. Indeed,
the difference ν1 − ν2 is not defined in our context (in other available definitions, see
Roubiček [26], the difference ν1 − ν2 may not belong to Y).
The translation defined in (37) enables reduction of the best approximation problem to a
minimal norm problem. For completeness we state the relevant definition and the result
extending the main result in Landers and Rogge [17] to Young measures, as follows.

Definition 5.2. Let f ∈ L1+ and C ⊆ Y1 be such that for every p > 1 close enough to 1,
there exists a unique ‖ ‖p-best approximation of f in C, say µp(f, C). An element µ1 ∈ C
which is a ‖ ‖1-best approximation of f in C, is called the natural best approximation of
f in C if the following two properties hold.

(i) For every ν ∈ C, ν 6= µ1, there exists a p(ν) > 1 such that ‖µ1 − f‖p < ‖ν− f‖p for
every 1 < p ≤ p(ν), and

(ii) µp(f, C) converges in the sn1-metric, as p → 1+, to µ1.

Theorem 5.3. Assume that f ∈ L1+ and let C ⊆ Y1 be a K1-convex set. Let β1(f, C)
be the collection of measures which minimize the expression ‖µ− f‖1 in C. Suppose that
β1(f, C)

⋂

Y1+ is not empty. Then for every p > 1 close enough to 1, there exists a unique
element in C, say µp(f, C), such that ‖µp(f, C)− f‖p is minimal among the elements in
C. Furthermore, the natural best approximation of f in C exists, and it is the minimizer
of the functional

∫ 1

0

∫

Rd

d
∑

i=1

|f(t)i − xi| ln |f(t)i − xi|ν(t)(dx)dt (39)

among the Young measures in β1(f, C).

Proof. The continuity of the translation of µ by f reduces the natural best approximation
problem to the problem of natural minimizer addressed in Theorem 2.2.

6. Comments and Examples

Remark 6.1. A particular case of the natural best approximation is the case where
C is the set of measurable functions with respect to a given σ-field, say B. The L1-
approximation is then the conditional median of f given B. See Landers and Rogge
[18]. A concept of relaxed σ-fields, as an appropriate completion of ordinary σ-fields,
was developed in Artstein [4], extending to the relaxed framework the continuity of the
conditional expectation as established in, e.g., Alonso and Bramila-Paz [1]. A relaxed
conditional median of a function, given a relaxed σ-field, is then a Y1-best approximation.
The application of the present paper to a relaxed σ-field identifies the natural relaxed
conditional median of an ordinary function.
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Remark 6.2. In addition to the K-convexity given in Definition 2.4, another convexity
notion is useful, as follows.

A set C ⊂ Yp is Mp-convex if it is the Mp-limit of a sequence Dk of convex sets in Lp,
where for the Mp-limit we require the conditions of Kp-limit, and in addition

(iii) whenever fki ∈ Dki , for a subsequence ki, is bounded in the Lp-norm and converges
in the narrow topology to µ0, then µ0 ∈ C0.

While theKp-limit amounts to the definition of the Kuratowski limit of sets, the definition
of the Mp-limit is the generalization of the Mosco-convergence in Lp-spaces; for the latter
concept see Attouch [6], Mosco [19]. For an analysis of this relaxed convexity notion see
[5]. It is clear that a set which is Mp-convex is also Kp-convex; indeed, (iii) in this remark
is strictly stronger than (ii) in Definition 2.4. Hence Theorems 2.2 and 5.3 hold for M -
convex sets. It is also not difficult to see that the result established in Proposition 3.7,
guaranteeing that, in the case of compactness, convexity does not depend on the choice
of the norm, holds for M -convexity as well.

Remark 6.3. The choice of [0, 1] as the underlying space in our main result is for con-
venience of notations only. The results can be extended with no effort to any compact
metric space endowed with an atomless measure, and with some effort, along the lines of
Balder [9], to abstract measure spaces satisfying some regularity conditions. We leave out
the details.

Remark 6.4. Of interest in applications of the best approximation problem, say of f
in C, is the dependence of the best approximation µp(f, C) on variations in f and in
C (where on the family of sets we consider, say, the Hausdorff distance with respect to
the sn1-metric; for the Hausdorff distance see, e.g. [14]). The problem was addressed
in [5] within the Young measures framework for p > 1. The natural best approximation
for p = 1 does not depend continuously on variations in C, even in a finite dimensional
space. Indeed, the unique element of minimal l1-norm in the interval joining the points
(0, 1) and (1 + η, 0) in R2 for η > 0 is the point (0, 1), while the natural minimizer of
the l1-norm of the limit set as η → 0 is the point (12 ,

1
2
). The natural best approximation

µ1(f, C) is a continuous function of f when the latter is endowed with the Lp-norm for
p > 1, and the range is endowed with the sn1-topology. This is a direct consequence of
the characterization of the natural best approximation as the unique minimizer of the
functional (39).

Remark 6.5. The continuous dependence situation is slightly different when along with
variations in (f, C) we consider also the convergence, as p → 1+, of µp(f, C) to µ1(f, C)
(when the latter is the natural best approximation). Indeed, it is not difficult to show that
if pj → 1+ as numbers, fj → f in the L1-norm and Cj → C in the Hausdorff metric, then
µpj(fj, Cj) converge to µ1(f, C), provided the convergence of (fj, Cj) to (f, C) is faster (in
the appropriate sense) than the convergence of p to 1. The arguments are straightforward.

Example 6.6. We conclude with an illustration of the limit processes leading to sets
of Young measures, and the notion of the natural best approximation. Such processes
appear in variational problems depending on a parameter, see [3],[4]. In this framework,
the observation in Remark 6.5 has a natural interpretation. Here and in the next example
we restrict the discussion to minimum norm problems.
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For a function h(·) : [0, 1] → R denote by U(h) the family of measurable functions, say g,
satisfying

|g(t)| ≥ |h(t)| and h(t)g(t) ≥ 0. (40)

Let f1(t) = t and f2(t) = 1 − t. For k = 1, 2, let hk,j(t) = sign cos(jt)fk(t). Let Dj be
the convex hull of the union of U(h1,j) and U(h2,j).

It is easy to verify the K1-convergence of the family of integrable functions in Dj to the
set C in Y1 given as follows. Each ν ∈ C is related to a number α in [0, 1] such that ν(t)
is a probability measure supported on the union of the half lines [αt+ (1− α)(1− t),∞)
and (−∞,−αt − (1 − α)(1 − t)], and the values of ν(t) on the positive half line is the
reflection of the values on the negative half line. In particular, C is K1-convex. It is
easy to compute the natural Y1-norm minimizer. Indeed, it is the constant probability
measure, equally distributed on {1

2
,−1

2
}. In addition, this Young measure is the sn1-limit

of the natural L1-norm minimizers of Dj.

Example 6.7. A variant of the preceding example would alter slightly the results. Re-
place in Example 6.6 the functions f1 by ρjf1 where ρj → 1+. The limit set is exactly
as in Example 6.6, and likewise is the natural Y1-norm minimizer. There is, however, a
unique L1-norm minimizer in Dj, namely h2,j. The unique minimizer does not converge
to the natural norm minimizer of the relaxed limit. If, however, pj → 1+ is given and
ρj → 1+ fast enough, then (see Remark 6.5) the unique Lpj -norm minimizer in Dj would
converge in the sn1-metric to the Y1-norm minimizer.
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