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Let us consider the set of lower semicontinuous functions defined on a Banach space, equipped with the
AW -convergence. A function is called Tikhonov well-posed provided it has a unique minimizer to which
every minimizing sequence converges. We show that well-posedness of f guarantees strong convergence
of approximate minimizers of τaw -approximating functions (under conditions of equiboundedness of sub-
level sets), to the minimizer of f .
Moreover we show that a lower semicontinuous function f which satisfies growth conditions at ∞ is
well-posed iff its lower semicontinuous convex regularization is.
Finally we investigate the link between AW -convergence of non convex integrands and that of the asso-
ciated integral functionals.
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1. Introduction

In this paper we study non convex minimization problems and the AW -convergence. In
particular we deal with Tikhonov well-posed functions, i.e. functions with a unique mini-
mum point to which every minimizing sequence converges (see [6] for a complete reference).
We are also interested in another concept of well-posedness: the continuous dependence
of the minimizer on problem’s data. The latter means that approximate minimizers of
perturbed functions fn converge to the minimizer of f , and that inf f = lim(inf fn), when
we consider an appropriate convergence on the set of lower semicontinuous, proper func-
tions. It turns out that usual notions of convergence (pointwise convergence, uniform
convergence) are not well suited in this setting; this explains the attention paid to the
AW -convergence, which was deeply studied in the papers of Attouch and Wets [1], [2],
[3]; in fact this convergence satisfies the desired stability conditions.
The two notions of well-posedness are strongly correlated: Theorem 4.1 of [5] establishes
the equivalence between Tikhonov well-posedness and continuous dependence of the min-
imizer on problem’s data for a proper, lower semicontinuous and convex function when
the set of such functions is endowed with the AW -convergence.
Purpose of this paper is to understand what happens when the functions we consider are
proper and lower semicontinuous, but not convex.
In Section 3 we prove that the previous equivalence is still valid if we require the sublevel
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sets of fn at height near to inf fn to be equibounded.
Another way to approach the well-posedness problem of a given function f , is to study
the greater lower semicontinuous and convex function which minorizes f ; this function,
denoted by Ýf , is called the lower semicontinuous, convex regularization of f .
We establish the equivalence between well-posedness of f and of Ýf under the assumption
that lim inf‖x‖→+∞(f(x)/‖x‖) ∈ (0,+∞].
Finally, in Section 4, we investigate the case of non convex integral functionals; more pre-
cisely, we prove a dominated convergence theorem for AW -convergence. A similar result
is also valid for Mosco convergence in the convex case (see [8]).

2. Definitions and preliminaries

In order to introduce definitions and results, we start with some notations.
We always denote by (X, ‖ ‖) a normed linear space and by d the distance function
generated by the norm. For any subset A of X,

d(x,A) := inf
y∈A

‖x− y‖

denotes the distance from x to A.
In any space we consider, the unit ball is U := {x : ‖x‖ ≤ 1} and ρU denotes the ball of
radius ρ ≥ 0. For any set A ⊂ X and ρ ≥ 0, we set

Aρ := A ∩ ρU.

Γ0(X) denotes the set of all extended real valued, proper, lower semicontinuous and convex
functions on X.
We write v(f) = inf{f(x) : x ∈ X}, and argminf for the possibly empty set of points
{x ∈ X : f(x) = v(f)}. For each α ∈ R, we denote by lev(f ;α) the sublevel set of f at
height α, that is, {x ∈ X : f(x) ≤ α}.
For A,B ⊂ X, the excess of A on B is

e(A,B) := sup
x∈A

d(x,B),

with the convention that e(A,B) = 0 if A = ∅ and e(A,B) = +∞ if B = ∅. Then, the
ρ-Hausdorff distance between A and B is the following number:

hausρ(A,B) := max{e(Aρ, B), e(Bρ, A).}

Definition 2.1. For ρ ≥ 0, the ρ-(Hausdorff)-distance between two extended real valued
functions f and g defined on X is

hausρ(f, g) := hausρ(epif, epig),

where the unit ball of X × R is the set U := {(x, α) : ‖x‖ ≤ 1, |α| ≤ 1}.

Definition 2.2. Let f, fn : X → [−∞,+∞] be lower semicontinuous functions. We say
that fn AW - converge to f , and we write f = τaw − lim fn, iff:

∃ρ0 > 0 such that ∀ρ > ρ0 hausρ(f, fn) → 0 as n → +∞.
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The following theorem gives a method to compute, or at least estimate, the ρ-Hausdorff
distance between two functions, see [1].

Theorem 2.3 (Kenmochi conditions). Suppose f, g are proper extended real valued
functions defined on a normed real space X, both minorized by −α0‖ · ‖p − α1 for some
α0 ≥ 0, α1 ∈ R, and p ≥ 1. Let ρ0 > 0 be such that (epif)ρ0 and (epig)ρ0 are nonempty.

1. Then the following conditions hold: for all ρ > ρ0 and x ∈ domf such that ‖x‖ ≤ ρ,
|f(x)| ≤ ρ, for every ε > 0 there exists some xε ∈ domg that satisfies

‖x− xε‖ ≤ hausρ(f, g) + ε, g(xε) ≤ f(x) + hausρ(f, g) + ε

as well as a symmetric condition with the roles of f and g interchanged.

2. Conversely, assuming that for all ρ > ρ0 > 0 there exists n(ρ) ≥ 0, such that for all
x ∈ domf with ‖x‖ ≤ ρ, |f(x)| ≤ ρ, there exists x̃ ∈ domg that satisfies

‖x− x̃‖ ≤ n(ρ), g(x̃) ≤ f(x) + n(ρ),

and the symmetric condition (interchanging the roles of f and g), then with ρ1 :=
ρ+ α0ρ

p + |α1|,
hausρ(f, g) ≤ n(ρ1).

The next theorem is a sequential characterization of AW -convergence and it will be useful
in the following, see [10].

Theorem 2.4. Let fn, f : X → (−∞,∞], n ∈ N, be proper lower semicontinuous func-
tions. Assume v(f) > −∞. Then f = τaw − lim fn if and only if the following two
conditions hold.

(i) If xn is a bounded sequence then fn(xn) is bounded below. Moreover, if fn(xn) is
bounded, then there are sequences yn in X and εn ≥ 0 such that

‖xn − yn‖ → 0, εn → 0 and f(yn) ≤ fn(xn) + εn, ∀n ∈ N. (1)

(ii) For any bounded sequence xn such that f(xn) is bounded above there are sequences
yn in X and εn ≥ 0, such that

‖xn − yn‖ → 0, εn → 0 and fn(yn) ≤ f(xn) + εn, ∀n ∈ N. (2)

Now, let us recall the definition of Tikhonov well-posedness:

Definition 2.5. We say that a function f : X → (−∞,+∞] is Tikhonov well-posed
(shortly, well-posed) if it satisfies the following conditions:

1. there exists a unique global minimum point x0 for f ;

2. if xn is any minimizing sequence, i.e. a sequence in X such that f(xn) → f(x0),
then xn → x0.

Let fn be a sequence of functions bounded from below. We say that a sequence xn ∈ X
is asymptotically minimizing iff fn(xn)− inf fn → 0.

Let us recall some characterizations of well-posedness:
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Definition 2.6. A function
c : D → [0,+∞)

is called a forcing function iff

0 ∈ D ⊂ [0,+∞), c(0) = 0 and an ∈ D, c(an) → 0 ⇒ an → 0.

The proof of the following fact is in [6].

Theorem 2.7. Let f : X → (−∞,+∞] be proper, bounded from below and lower semi-
continuous. f is well-posed iff there exists a forcing function c and a point x0 such that

f(x) ≥ f(x0) + c[d(x, x0)] for every x ∈ X.

Finally we recall a characterization of well-posedness due to Furi and Vignoli (see [7]):

Theorem 2.8. A proper lower semicontinuous function f : X → [−∞,+∞] is well-posed
if and only if

inf{diam[lev(f ;α)] : α > v(f)} = 0.

3. Well-posedness and AW -convergence for non convex functions

The main result of this section is a generalization of the following theorem, due to Beer
and Lucchetti [5], in the case of non convex functions.

Theorem 3.1 (Beer-Lucchetti). Let X be a Banach space and f ∈ Γ0(X) bounded
from below. Then the following conditions hold:

1. if f is well-posed then the conditions εn > 0, εn → 0, f = τaw − lim fn, with
fn ∈ Γ0(X) and xn ∈ lev(fn; v(fn) + εn) for each n, imply that xn is convergent to
the unique minimizer of f ;

2. whenever the conditions εn > 0, εn → 0, f = τaw − lim fn, with fn ∈ Γ0(X) and
xn ∈ lev(fn; v(fn)+ εn) for each n imply that xn is convergent, then f is well-posed.

We start with the following lemma, which obtains the continuity of the value function v.

Lemma 3.2. Let εn > 0 be such that εn → 0, and let f, fn : X → (−∞,+∞] be lower
semicontinuous and proper. Assume v(f) > −∞ and suppose there exists α > v(f) such
that lev(f ;α) is bounded. Moreover assume there is m > 0 such that lev(fn; v(fn)+ εn) ⊂
mU for each n sufficiently large and f = τaw − lim fn.
Then v(fn) → v(f).

Proof. By definition of v(f), there exists ε ∈ (0, 1] such that v(f) + ε ≤ α and therefore
there is ρ such that lev(f ; v(f) + ε) ⊂ ρU .
Let x ∈ lev(f ; v(f) + ε).
Then the pair (x, f(x)) ∈ epif ∩ rU , with r ≥ max{ρ, |v(f)|+ 1}. From Theorem 2.4 we
get the existence of yn ∈ X, δn ≥ 0, such that ‖x−yn‖ → 0, δn → 0 and fn(yn) ≤ f(x)+δn.
Hence we have:

v(fn) ≤ fn(yn) ≤ f(x) + δn ≤ v(f) + ε+ δn. (3)

Passing to the upper limit we have:

lim sup v(fn) ≤ v(f). (4)
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Now consider xn ∈ lev(fn; v(fn) + εn). By hypothesis xn is bounded, so, from Theorem
2.4 we get that fn(xn) is bounded below; moreover, from fn(xn) ≤ v(fn) + εn and (3) we
obtain that fn(xn) is also bounded above and therefore, by Theorem 2.4, we have that
there exist yn ∈ X, δn ≥ 0, such that ‖yn − xn‖ → 0, δn → 0 and f(yn) ≤ fn(xn) + δn.
Then we have:

v(f) ≤ f(yn) ≤ fn(xn) + δn ≤ v(fn) + εn + δn.

Passing to the lower limit we get:

v(f) ≤ lim inf v(fn).

Hence, recalling (4), we have v(fn) → v(f).

Remark 3.3. Notice that we haven’t used the hypothesis of equiboundedness of sublevel
sets to prove upper semicontinuity of the value function v, which therefore is valid more
generally for proper and lower semicontinuous functions only.

We shall use the following assumption repeatedly on a sequence εn and on a sequence
fn : X → (−∞,+∞]:

Assumption 3.4.

1. εn > 0 and εn → 0;

2. fn are proper, lower semicontinuous and there exists m > 0 such that lev(fn; v(fn)+
εn) ⊂ mU for each n sufficiently large.

Now we are able to prove the main result of this section:

Theorem 3.5. Let X be a Banach space and f : X → (−∞,+∞] be bounded from below,
proper and lower semicontinuous.

1. Suppose that for every sequences εn, fn satisfying Assumption 3.4 with f := τaw −
lim fn, every asymptotically minimizing sequence corresponding to fn is convergent.
Then f is well-posed.

2. Suppose f is well-posed. Then for every sequences εn and fn satisfying Assumption
3.4 and f := τaw − lim fn, whenever xn is asymptotically minimizing, then xn is
convergent to the unique minimizer of f .

Proof. 1. Let us define fn = f for each n ∈ N. Consider εn > 0, εn → 0 and two
sequences xn and yn belonging to lev(f ; v(f) + εn) for each n ∈ N. Suppose lim yn = y
and limxn = x. Now consider the sequence:

zn :=

{

xn if n is even,

yn if n is odd.

The sequence zn is minimizing, thus convergent and thus x = y.
All the sequences which satisfy the hypothesis are therefore convergent to the same point
x0.
Now, let xn be a minimizing sequence and xnk

:= yk any subsequence. By the definition of
minimizing sequence there exists a subsequence ykh := zh such that zh ∈ lev(f ; v(f) + εh),
εh → 0, which is convergent to x0. Since the subsequence was arbitrary, xn is itself
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convergent. On the other hand, from the definition of minimizing sequence and of lower
semicontinuity of f , we get:

lim inf (v(f) + εh) ≥ lim inf f(zh) ≥ f(x0) ≥ v(f),

and so x0 ∈ argminf .
2. Let x be the minimum point of f . By well-posedness and Lemma 3.2, v(fn) → f(x).
Pick xn ∈ lev(fn; v(fn) + εn) and fix ε > 0: we will find Nε such that for each n > Nε,
‖xn − x‖ < ε.
Since f is well-posed, from the Furi-Vignoli characterization, Theorem 2.8, we get the
existence of δ > 0 such that

diam[lev(f ; v(f) + δ)] < ε/2. (5)

Moreover there exists N ∈ N such that, when n > N we have:

- εn < δ/3,

- v(fn) < v(f) + δ/3.

Since fn(xn) is bounded, by Theorem 2.4, there exist yn in X, γn ≥ 0 , such that ‖yn −
xn‖ → 0, γn → 0 and f(yn) ≤ fn(xn) + γn. Choosing Nε > N such that for each n > Nε

we have ‖xn − yn‖ < ε/2 and γn < δ/3, we get:

f(yn) ≤ fn(xn) + γn ≤ v(fn) + γn + εn ≤ v(f) + δ.

Therefore, by (5) we have:

‖xn − x‖ ≤ ‖xn − yn‖+ ‖yn − x‖ < ε.

Thus the sequence xn goes to x and the proof is complete.

The hypothesis of equiboundedness of sublevel sets cannot be omitted, as the following
example shows:

Example 3.6. Let f, fn : R → R be such that f(x) = |x| and:

fn(x) =











|x| if |x| ≤ n,

−|x|+ 2n if n < |x| ≤ 2n,

|x|+ 2n if |x| > 2n.

Clearly f is well-posed and 0 is the unique minimizer, f = τaw − lim fn since fn converges
uniformly to f on bounded sets (for a proof of this fact, see e.g. [4]), but taking xn = 2n
we have fn(xn) = min fn = 0, however xn 6→ 0.

Notice that the condition on the equiboundedness of sublevel sets is satisfied when the
approximating functions are convex: this follows from Lemma 3.1 and Theorem 3.6 of [5].
The same condition is also satisfied when the functions fn are equicoercive:

Proposition 3.7. Let f, fn : X → (−∞,+∞] with lim sup v(fn) < +∞. Moreover
suppose there exists ϕ : X → (−∞,+∞] such that:

fn(x) ≥ ϕ(x) for each n and lim
‖x‖→+∞

ϕ(x) = +∞

and let f = τaw − lim fn, εn > 0, εn → 0.
Then there exists m > 0 such that lev(fn; v(fn) + εn) ⊂ mU if n is sufficiently large.
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Proof. By Remark 3.3 we get v(fn) < v(f) + 1 if n is sufficiently large; moreover we can
assume without loss of generality εn ≤ 1 for each n. Taking xn ∈ lev(fn; v(fn) + εn), with
n sufficiently large, we have:

ϕ(xn) ≤ fn(xn) ≤ v(fn) + 1 ≤ v(f) + 2. (6)

Since ϕ(x) → +∞ if ‖x‖ → +∞, there exists R > 0 such that

ϕ(x) > v(f) + 2 if ‖x‖ > R.

Thus, from (6), we deduce ‖xn‖ ≤ R, i. e. equiboundedness of sublevel sets.

Let us change point of view, and find the relations between well-posedness of a given
function f and well-posedness of its convex envelope Ýf .

Definition 3.8. Let f : X → (−∞,+∞] be proper, bounded from below and lower
semicontinuous. We define the convex, lower semicontinuous regularization of f to be the
function Ýf such that

epi Ýf = cl co(epif).

The definition is consistent, in the sense that the convex hull of an epigraph is still an
epigraph. Moreover Ýf is the largest convex and lower semicontinuous function minorizing
f .

Remark 3.9. Let f : X → (−∞,+∞] be as in the definition above and suppose that
min f = 0. This means that epif ⊆ X × [0,+∞] which is a closed and convex subset of
X × (−∞,+∞] so, by the definition of Ýf , we have epi Ýf ⊆ X × [0,+∞].

The following theorem establishes the relation between well-posedness of a given function
f and well-posedness of its convex, lower semicontinuous regularization:

Theorem 3.10. Let f : X → (−∞,+∞] be proper and lower semicontinuous. Suppose
min f = f(0) = 0. The following properties are equivalent:

(i) f is well-posed and lim inf‖x‖→+∞
f(x)
‖x‖ ∈ (0,+∞];

(ii) Ýf is well-posed.

Proof. Suppose condition (i) is satisfied. Then there existsM > 0 such that lim inf‖x‖→+∞
f(x)
‖x‖ ≥ 4M . By Remark 3.9 we have that min f ≤ inf Ýf . On the other hand Ýf(x) ≤ f(x)

for every x ∈ X, so inf Ýf = f(0) = Ýf(0). We observe that, since f is well-posed, by
Theorem 2.7, there exists a forcing function c such that f(x) ≥ c(‖x‖). Without loss of
generality we can assume that lim inft→+∞ c(t)/t ≥ 2M. In fact, if lim inft→+∞ c(t)/t = 0,
we can replace c by the function c1 defined in this way:

c1(t) =

{

c(t) if t ≤ r

2Mt if t > r,

with r such that f(x) ≥ 2M‖x‖ when ‖x‖ > r. It’s enough to prove that Ýc is forcing. In
fact we have:

Ýf(x) ≥ Ýc(‖x‖),
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which means Ýf is well-posed in the case that Ýc is forcing. First observe that Ýc(x) ≥ 0 for
every x ∈ X and Ýc(0) = c(0) = 0 from the previous argument.
By contradiction, let us suppose that there exist tn ∈ [0,+∞) such that

Ýc(tn) → 0, but tn 6→ 0.

Since tn 6→ 0, we can assume (maybe considering a subsequence) that there exists a > 0
such that tn ≥ 2a for each n. Since a forcing function is well-posed , thanks to the
Furi-Vignoli characterization of well-posedness, Theorem 2.8, we can find δ > 0 such that
lev(c; δ) ⊂ [0, a).
Moreover, since lim inf c(t)/t = 2M , there exists R > 0 such that c(t) ≥ Mt for all t > R.
We define g : [0,+∞) → [0,+∞) to be the following function:

g(t) =











0 if t ≤ a

δ if a < t ≤ K

Mt+ δ −MK if t > K.

Choose K such that K ≥ max{ δ
M

+ a, R}. By construction, we get g(t) ≤ c(t) for every
t. In this way Ýg is the following function:

Ýg(t) =











0 if t ≤ a
δ

K−a
t− δa

K−a
if a < t < K

Mt+ δ −MK if t ≥ K.

Ýg is a convex and lower semicontinuous function which minorizes c, so we have Ýc ≥ Ýg, and
min c = Ýg(0) = 0. The sequence tn is therefore minimizing also for Ýg; but tn ≥ 2a and
Ýg(tn) → 0, a contradiction. We then have that Ýc is forcing and Ýf is well-posed.

Now suppose Ýf is well-posed. We get min Ýf = min f = Ýf(0) = f(0).
Let xn be a minimizing sequence for f : then xn is a minimizing sequence also for Ýf
therefore xn → 0. This means that f is well-posed.
For the sake of contradiction, assume lim inf‖x‖→+∞(f(x)/‖x‖) = 0.
Then it’s possible to find a sequence yk in X such that ‖yk‖ > k and f(yk) <

1
k
‖yk‖.

Recalling the definition of epigraph (yk,
1
k
‖yk‖) ∈ epif .

Since epi Ýf = cl co(epif), the segments joining (0, 0) to (yk,
1
k
‖yk‖) are entirely contained

in epi Ýf .
Consider the sequence zk := tkyk, with tk =

1
‖yk‖

.

Then ‖tkyk‖ = |tk|‖yk‖ = 1, and so zk 6→ 0. Moreover (tkyk, (tk/k)‖yk‖) ∈ epi Ýf and
tk
k
‖yk‖ = 1

k
→ 0; that is zk is minimizing for Ýf , but zk 6→ 0, which is a contradiction,

because Ýf is well-posed.

4. A dominated convergence theorem

It is useful to obtain criteria which guarantee that a sequence fn of lower semicontinuous
functions converges in the AW -sense to a certain function f . This is relevant e. g. in order
to apply Theorem 3.5.
In this section we study some class of integral functionals, and we prove that under
suitable hypotheses convergence of the sequence of the integrands is a sufficient condition
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to assure convergence of the sequence of the integrals (both in the AW -sense).

Let (T,A, µ) a measure space and let µ be a positive finite measure onA which is complete.

Definition 4.1. An integrand is a function f : T × Rk → (−∞,+∞]. If for each t ∈
T , the set epif(t, ·) is closed and nonempty, and if the multifunction t 7→ epif(t, ·) is
measurable, we say that f is a normal integrand.

Let f be a normal integrand and let L be a class of measurable functions from T to Rk;
then for each u ∈ L, the function t 7→ f(t, u(t)) is measurable; if it is summable or it is
majorized by a summable function, a natural value can be assigned to the integral

F (u) =

∫

T

f(t, u(t)) dµ. (7)

Otherwise, we set F (u) = +∞. In this way, F is a well-defined extended real-valued
functional on the space L; we say that F is the integral functional associated with the
normal integrand f . See [9].

Let h be a function on Rk bounded from below and lower semicontinuous; then for each
z ∈ Rk

Hz(x) = h(x) + |x− z|
has at least one global minimum point on Rk. Let us define

Prox[z, h] = argminHz.

Given f a normal integrand defined on T × Rk bounded from below and a measurable
function u : T → Rk, we can consider the multifunction P given by:

P (t) = Prox[u(t), f(t, ·)].

Since the function (t, x) 7→ f(t, x) + |x− u(t)| is itself a normal integrand, we get that P
is a measurable multifunction from Theorem 2K of [9]. Moreover, by Theorem 1C of [9],
there exists a measurable selection of P , which we will denote by t 7→ prox[u(t), f(t, ·)].
Lemma 4.2. Let f, fn : T × Rm → [0,+∞) be normal integrands with ρ0 > 0.
Fix G ⊂ T , G measurable and write for all ρ > ρ0,

sup
t∈G

hausρ(fn(t, ·), f(t, ·)) := hn(ρ).

Consider x : T → Rm such that, for some ρ,

{x(t) : t ∈ G} ⊂ ρU and {f(t, x(t)) : t ∈ G} ⊂ ρU

and let Gn ⊂ T be measurable and xn : T → Rm be a sequence such that:

{xn(t) : t ∈ Gn, n ∈ N} ⊂ ρU and {fn(t, xn(t)) : t ∈ Gn, n ∈ N} ⊂ ρU.

Then, for every ε > 0, t ∈ G and for each n ∈ N, we can find xn,ε(t) ∈ Rm such that:

|x(t)− xn,ε(t)| ≤ hn(ρ) + ε
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and

fn(t, xn,ε(t)) ≤ f(t, x(t)) + hn(ρ) + ε

and for every ε > 0, t ∈ Gn, n ∈ N we can find yn,ε(t) such that:

|xn(t)− yn,ε(t)| ≤ hn(ρ) + ε

and

f(t, yn,ε(t)) ≤ fn(t, xn(t)) + hn(ρ) + ε.

Proof. By Theorem 2.3, for every ε > 0, t ∈ G and for each n ∈ N, we can find
xn,ε(t) ∈ Rm such that:

|x(t)− xn,ε(t)| ≤ hausρ(f(t, ·), fn(t, ·)) + ε

and

fn(t, xn.ε(t)) ≤ f(t, x(t)) + hausρ(f(t, ·), fn(t, ·)) + ε.

In particular we obtain:

|x(t)− xn,ε(t)| ≤ hn(ρ) + ε

and

fn(t, xn,ε(t)) ≤ f(t, x(t)) + hn(ρ) + ε.

Finally, by Theorem 2.3, for every ε > 0 and t ∈ Gn there exist yn,ε(t) such that:

|xn(t)− yn,ε(t)| ≤ hn(ρ) + ε

and

f(t, yn,ε(t)) ≤ fn(t, xn(t)) + hn(ρ) + ε.

Given f, fn : T → [0,+∞) normal integrands we can consider the associated integral
functionals F, Fn defined by (7) on Lp = Lp(T ;Rm), with p ∈ (1,+∞). In the sequel we
denote by p′ the conjugate exponent of p.
Using Lemma 4.2 we can prove the following Theorem:

Theorem 4.3. Let f, fn : T × Rm → [0,+∞) be normal integrands. Suppose there exist
ϕ : T → [0,+∞) in Lp′ and ψ : T → [0,+∞) in L1 such that

fn(t, x) ≤ ϕ(t)|x|+ ψ(t) and f(t, x) ≤ ϕ(t)|x|+ ψ(t)

for each n ∈ N, t ∈ T , x ∈ Rm. Moreover assume

f(t, ·) = τaw − lim fn(t, ·)

for almost every t. Then:

F = τaw − limFn.

Proof. We shall prove:



S. Villa / AW -Convergence and Well-Posedness of Non Convex Functions 361

(i) For all r > 0 and ε > 0 there exists ηε ∈ N such that for all u ∈ Lp with ‖u‖p ≤ r
and F (u) ≤ r, and for each n > ηε we can find wn ∈ Lp which satisfy:

‖u− wn‖p ≤ ε and Fn(wn) ≤ F (u) + ε.

(ii) For all r > 0 and ε > 0 there exists νε ∈ N such that for all un ∈ Lp with ‖un‖ ≤ r
and Fn(un) ≤ r, and for each n > νε we can find yn ∈ Lp which satisfy:

‖un − yn‖p ≤ ε and F (yn) ≤ Fn(un) + ε.

Since F, Fn are proper, lower semicontinuous and bounded from below by the same con-
stant, we can apply part 2 of Theorem 2.3, therefore the previous conditions will imply
that for every r > 0 and ε > 0, there exists Nε := ηε + νε such that hausr(F, Fn) < ε if
n > Nε, that is exactly what we have to prove.
(i) Fix r > 0 an let u ∈ Lp(T ;Rm) such that

‖u‖p ≤ r and also F (u) ≤ r. (8)

Fix ε > 0 and let K > 0 to be chosen later.
Define:

SK := {t ∈ T : |u(t)| ≥ K} and TK := {t ∈ T : f(t, u(t)) ≥ K}.
We have

(‖u‖p)p =
∫

T

|u(t)|p dµ =

∫

T\SK

|u(t)|p dµ+

∫

SK

|u(t)|p dµ ≤ rp.

Hence:

|SK | ≤
rp

Kp
, (9)

where | · | denotes measure. In the same way, from (8):
∫

T

f(t, u(t)) dµ =

∫

T\TK

f(t, u(t)) dµ+

∫

TK

f(t, u(t))dµ ≤ r

and therefore:
|TK | ≤

r

K
.

By assumptions ψ ∈ L1 and so, by the absolute continuity of the integrals, for each δ > 0
there exists mδ > 0 such that, given a measurable set G for which |G| ≤ mδ, we have
∫

G
ψ(t) dµ ≤ δ.

On the other hand ϕp′ ∈ L1; thus for all δ > 0 there exists cδ > 0 such that, given a
measurable set G for which |G| ≤ cδ, we get

∫

G
ϕp′(t) dµ ≤ δ.

Now, choose K to have

rp

Kp
+

r

K
< min

{

m(ε/3)

2
,
c(ε/3r)p′

2

}

. (10)

By hypothesis hausρ(f(t, ·), fn(t, ·)) → 0 for every ρ and almost every t; by the Severini-
Egoroff Theorem we have that if λ > 0 there exists a measurable set Eλ ⊂ T such that
|T \ Eλ| ≤ λ and hausρ(f(t, ·), fn(t, ·)) approaches 0 uniformly on Eλ. In particular,

choosing λ = min{m(ε/3)

2
,
c
(ε/3r)p

′

2
} we can find some measurable Eε such that:

|T \ Eε| ≤ min

{

m(ε/3)

2
,
c(ε/3r)p′

2

}

(11)
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and hausρ(f(t, ·), fn(t, ·)) goes to 0 uniformly on Eε. Let t ∈ Eε \ (SK ∪ TK), then:

{(u(t), f(t, u(t)))} ⊂ KU × [0, K].

From Lemma 4.2, when t ∈ Eε \ (SK ∪ TK), it’s possible to find un,ε(t) such that

|u(t)− un,ε(t)| < hn(K) +
1

2
min

{

ε

2|T |1/p
,

ε

6|T |

}

(12)

where hn(K) = supt∈G hausK(fn(t, ·), f(t, ·)) with G := Eε \ (SK ∪ TK) and

fn(t, un,ε(t)) < f(t, u(t)) + hn(K) +
1

2
min

{

ε

2|T |1/p
,

ε

6|T |

}

. (13)

On the other hand, from uniform convergence there exists ηε such that, given n > ηε, we
get:

hn(K) ≤ 1

2
min

{

ε

2|T |1/p
,

ε

6|T |

}

. (14)

Now, using (14), and rewriting (12) and (13), we obtain:

|u(t)− un,ε(t)| < min

{

ε

2|T |1/p
,

ε

6|T |

}

(15)

and

fn(t, un,ε(t)) < f(t, u(t)) + min

{

ε

2|T |1/p
,

ε

6|T |

}

. (16)

Consider the functions:

vn(t) := prox[u(t),max{0, fn(t, ·)− f(t, u(t))}].

Now fix n > ηε. For any t ∈ Eε \ (SK ∪ TK), by (15) and (16) we have:

0 ≤ |u(t)− vn(t)|+max{0, fn(t, vn(t))− f(t, u(t))}
≤ |u(t)− un,ε(t)|+max{0, fn(t, un,ε(t))− f(t, u(t))}

< min

{

ε

3|T |
,

ε

|T |1/p

}

(17)

Define CK,ε := (T \ Eε) ∪ SK ∪ TK and

wn(t) :=

{

vn(t) if t ∈ Eε \ (SK ∪ TK),

u(t) if t ∈ CK,ε.

By construction, the functions wn are measurable and we have

‖wn − u‖∞ <
ε

|T |1/p

which implies ‖wn − u‖p < ε.
Moreover, by (9), (10) and (11), we get:

|CK,ε| = |SK ∪ TK ∪ (T \ Eε)|

≤ rp

Kp
+

r

K
+ |T \ Eε|

≤ min{m(ε/3), c(ε/3r)p′}.
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Hence:
∫

CK,ε

ϕ(t)p
′
dµ ≤

(

ε

3r

)p′

and

∫

CK,ε

ψ(t) dµ ≤ ε

3
.

Then, using Hölder inequality and recalling (8) and (17), it follows that:

Fn(wn) =

∫

T

fn(t, wn(t)) dµ

=

∫

T\CK,ε

fn(t, vn(t)) dµ+

∫

CK,ε

fn(t, u(t)) dµ

≤
∫

T\CK,ε

(f(t, u(t)) +
ε

3|T |
) dµ+

∫

CK,ε

(ϕ(t)|u(t)|+ ψ(t)) dµ

≤
∫

T

f(t, u(t)) dµ+
ε

3
+

∫

CK,ε

ϕ(t)|u(t)| dµ+

∫

CK,ε

ψ(t) dµ

≤ F (u) +
ε

3
+

(∫

CK,ε

ϕ(t)p
′
dµ

)1/p′

‖u‖p +
ε

3

≤ F (u) + ε.

Therefore the condition (i) is satisfied.
(ii) Let un ∈ Lp(T ;Rm) such that ‖un‖p ≤ r and Fn(un) ≤ r. Considering Sn

K :=
{t ∈ T : |un(t)| ≥ K}, for each n it follows that: |Sn

K | ≤ rp/Kp. Similarly, defining
T n
K = {t ∈ T : fn(t, un(t)) ≥ K}, for each n it happens that |T n

K | ≤ r
K
.

Choose K such that
rp

Kp
+

r

K
≤ min

{

m(ε/3)

2
,
c(ε/3r)p′

2

}

for each n ∈ N.
Let Eε as in (i).
Following the same proof as in (i), since hausρ(fn(t, ·), f(t, ·)) → 0 uniformly with respect
to t on Eε for each ρ > 0, as a consequence of Lemma 4.2 there exists νε such that, given
n > νε, for all t ∈ Eε \ (Sn

K ∪ T n
K) we can find zn,ε(t) such that

|zn,ε(t)− un(t)| < min

{

ε

2|T |1/p
,

ε

6|T |

}

(18)

and

f(t, zn,ε(t)) ≤ fn(t, un(t)) + min

{

ε

2|T |1/p
,

ε

6|T |

}

. (19)

Define vn(t) := prox[un(t),max{0, f(t, ·)− fn(t, un(t))}].
Now fix n > νε. For any t ∈ Eε \ (Sn

K ∪ T n
K), by (18) and (19), we have:

0 ≤ |un(t)− vn(t)|+max{0, f(t, vn(t))− fn(t, un(t))}
≤ |un(t)− zn,ε(t)|+max{0, f(t, zn,ε(t))− fn(t, un(t))}

< min

{

ε

3|T |
,

ε

|T |1/p

}

. (20)

Let us construct the functions

yn(t) :=

{

vn(t) if t ∈ Eε \ (Sn
K ∪ T n

K)

un(t) if t ∈ (T \ Eε) ∪ Sn
K ∪ T n

K .
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For every n > νε we have:
‖un − yn‖p < ε

and

F (yn) =

∫

T

f(t, yn(t)) dµ

=

∫

Eε\(Sn
K∪Tn

K)

f(t, vn(t)) dµ+

∫

(T\Eε)∪Sn
K∪Tn

K

f(t, un(t)) dµ

≤
∫

T

(fn(t, un(t)) + 2
ε

6|T |
) dµ+

∫

(T\Eε)∪Sn
K∪Tn

K

(ϕ(t)|un(t)|+

+ψ(t)) dµ

≤ Fn(un) + ε.

Taking Nε = ηε + νε, the proof is complete.

Acknowledgements. The author wishes to thank T. Zolezzi for continuous advice and several

useful suggestions.

References

[1] H. Attouch, R. Wets: Quantitative stability of variational systems: I. The epigraphical
distance, Trans. Amer. Math. Soc. 3 (1991) 695–729.

[2] H. Attouch, R. Wets: Quantitative stability of variational systems: II. A framework for
nonlinear conditioning, SIAM J. Optim. 3 (1993) 359–381

[3] H. Attouch, R. Wets: Quantitative stability of variational systems: III. ε-approximate
solutions, Math. Programming 61 (1993) 197–214.

[4] G. Beer: Topologies on Closed and Closed Convex Sets, Kluwer, Dordrecht (1993).

[5] G. Beer, R. Lucchetti: Convex optimization and the epi-distance topology, Trans. Amer.
Math. Soc. 327 (1991) 795–813.

[6] A. L. Dontchev, T. Zolezzi: Well-Posed Optimization Problems, Lecture Notes in Mathe-
matics 1543, Springer-Verlag, Berlin (1993).

[7] M. Furi, A. Vignoli: About well-posed pptimization problems for functionals in metric
spaces, J. Optim. Theory Appl. 5 (1970) 225–229.

[8] J. L. Joly, F. De Thelin: Convergence of convex integrals in Lp spaces, J. Math. Anal. Appl.
54 (1976) 230–244.

[9] R. T. Rockafellar: Integral Functionals, Normal Integrands and Measurable Selections,
Lecture Notes in Mathematics 543, Springer-Verlag (1976).

[10] P. Shunmugaraj, D. V. Pai: On stability of approximate solutions of minimization problems,
Numer. Funct. Anal. Optim. 12 (1991) 593–610.


