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1. Introduction

The aim of this paper is to study and compare several notions of convex analysis which
proved to be useful in establishing convergence properties for fixed point and optimization
algorithms in infinite dimensional Banach spaces. Uniform convexity of functions at a
point and on bounded sets on one hand and total convexity at a point and sequential
consistency on the other hand are, respectively, similar, although nonequivalent, concepts
of strict convexity in the infinite dimensional setting. We establish connections between
these concepts and use these connections in order to obtain improved convergence results
concerning the outer Bregman projection algorithm for solving convex feasibility problems
and the generalized proximal point algorithm for optimization in Banach spaces.

The idea of using uniform convexity properties of functions for convergence analysis of
optimization algorithms goes back, as far as we know, to Polyak [30]. This idea was further
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developed by Levitin and Polyak [27] and was expanded by Zolezzi [38] into the area of
stability analysis of optimization procedures in infinite dimensional spaces. The literature
contains several slightly different definitions of uniform convexity of functions on a Banach
space X (see, for instance, [3], [23] and [22]). The notion of uniform convexity of a
function f : X → (−∞,+∞] at a point x ∈ dom (f) we use in this paper (see Subsection
2.2) is that introduced and studied in [36] as a local counterpart of the definition of
uniform convexity (on the whole domain) due to Vladimirov et al. [35]. Totally convex
functions, although not under this name, were considered in [36] too but their usefulness
for establishing convergence of fixed point, feasibility and optimization methods became
apparent in [12] and [13]. The definition of total convexity of f at x ∈ dom (f) we
consider here (see Subsection 2.1) is that introduced in [13]. In the process of exploiting
specific properties of totally convex functions in the convergence and stability analysis
of fixed point algorithms several questions concerning the connections between total and
uniform convexity naturally occurred:

1) If the function f is uniformly convex at x ∈ dom (f) , then it is also totally convex at
x; when is the converse implication true?

2) If X is a locally uniformly convex space, then the powers of the norm ‖·‖r , with
r ∈ (1,+∞), are uniformly convex at any x ∈ X; can we find reasonably good estimates
of the moduli of total convexity of these functions?

3) If f is a function which is totally convex at any point of X and Y is a dense subspace
of X provided with a norm ‖·‖Y which is stronger than the norm induced from X, is the
restriction of f to Y still totally convex at the points of Y (with respect to the norm
‖·‖Y )?
4) (Robert T. Rockafellar) If X is finite dimensional, then the function f is totally convex
at all points x ∈ Int (dom (f)) if and only if f is strictly convex on Int (dom (f)) and this
happens if and only if for any x ∈ Int (dom (f)) the conjugate function f ∗ is differentiable
on ∂f(x); do these implications hold true in spaces of infinite dimension?

5) (Simeon Reich) Functions f which are uniformly convex and have domains with
nonempty interior exist on reflexive spaces only; do sequentially consistent functions (i.e.,
uniformly totally convex functions) with solid domain exist on nonreflexive spaces?

6) (Yakov Alber) If f is uniformly convex on bounded sets, then it is sequentially consis-
tent; does the converse implication hold?

The aim of this paper is to answer these questions and to use the resulting information
in order to obtain improved convergence results for two algorithms: the outer Bregman
projection method for solving feasibility problems proposed in [18] and the generalized
proximal point method proposed by Censor and Zenios in [21] and whose convergence
in infinite dimensional Banach spaces was studied in [14]. Questions 1), 2) and 3) are
answered in Section 2. A partial answer to question 4) is given in Section 3. In Section 4 we
answer questions 5) and 6). Also in Section 4 we show that the outer Bregman projection
algorithm, previously known to converge in some special spaces only, is convergent in any
uniformly convex and smooth Banach space and prove that the generalized proximal point
algorithm is strongly convergent when applied to problems with totally convex objective
functions. Claiming that the generalized proximal point algorithm produces strongly
convergent sequences may raise some eyebrows: a well known example, due to Güler
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[25], shows that the classical proximal point algorithm for optimization [33], a particular
version of the generalized proximal point method discussed here, may happen to produce
sequences which are weakly, but not strongly, convergent. This aspect is clarified in
Subsection 4.6.

2. Total Convexity Versus Uniform Convexity at a Point

2.1. In this paper X denotes a Banach space and f : X → (−∞,+∞] denotes a
proper convex function whose domain, dom (f), is not a singleton. The right hand sided
derivative of f at x ∈ dom (f) in the direction d is given by

f ◦(x, d) := lim
t↘0

f(x+ td)− f(x)

t

and the Bregman distance with respect to f between the points x, y ∈ dom (f) (see [20])
is

Df (y, x) := f(y)− f(x)− f ◦(x, y − x). (1)

The modulus of total convexity of f at x ∈ dom (f) is the function νf (x, ·) : [0,+∞) →
[0,+∞] defined by

νf (x, t) = inf {Df (y, x) : y ∈ dom (f), ‖y − x‖ = t} . (2)

The function f is called totally convex at x ∈ dom (f) if νf (x, t) > 0 whenever t > 0 (see
[13]).

2.2. A notion strongly related to that of total convexity at x ∈ dom (f) was introduced
and studied in [36]: The function f is called uniformly convex at x ∈ dom (f) if the
function µf (x, ·) : [0,+∞) → [0,+∞] defined by

µf (x, t) = inf
y∈dom (f),‖y−x‖=t

λ∈(0,1)

{

λf(x) + (1− λ)f(y)− f [λx+ (1− λ)y]

λ(1− λ)

}

is positive whenever t > 0. The function µf (x, ·) was termed modulus of uniformly strict
convexity at x in [13] and gage of uniform convexity of f at x in [37]. According to
[13, Proposition 1.2.5], we have that νf (x, t) ≥ µf (x, t) for all t ≥ 0 and, therefore, if
f is uniformly convex at x ∈ dom (f), then it is totally convex at x ∈ dom (f). The
converse implication is not generally true, that is, a function f may be totally convex at
the point x ∈ dom (f) without being uniformly convex at that point. In order to show
that, consider x ∈ dom (f) and the function µf (x, ·) : [0,+∞) → [0,+∞] defined by

µf (x, t) = inf
y∈dom (f)
‖y−x‖=t

{

f(x) + f(y)− 2f
(

x+y
2

)}

.

This is usually called the modulus of locally uniform convexity of f at x ∈ dom (f) and
f is said to be locally uniformly convex at x if µf (x, t) > 0 for all t > 0. The following
result shows that locally uniform convexity of f at x and uniform convexity of f at x
are equivalent notions and, thus, answers a question posed in [13, p. 25]. Consequently,
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the example given in [13, Section 2.3] pointing to a function on `1 which is everywhere
GÝateaux differentiable on `1, totally convex at some points of `1, but not locally uniformly
convex at any point, also shows that total convexity and uniform convexity at a point are
not equivalent notions.

Lemma. For any x ∈ dom (f) and for any t ∈ [0,+∞) we have

µf (x, t) ≥ µf (x, t) ≥ 1
2
µf (x, t). (3)

Proof. It is clear that µf (x, t) ≤ 2µf (x, t). The other inequality in (3) is proved now.
Let y ∈ dom (f) be such that ‖y − x‖ = t > 0 and suppose that λ ∈ (0, 1

2
]. Then, we

have

f ((1− λ)x+ λy)

= f
[

(1− 2λ)x+ 2λ(1
2
(y + x))

]

≤ (1− 2λ)f(x) + 2λf(1
2
(y + x))

≤ (1− 2λ)f(x) + 2λ
[

1
2
(f(x) + f(y))− 1

2
µf (x, ‖y − x‖)

]

= (1− 2λ)f(x) + λ (f(x) + f(y))− λµf (x, t)

≤ (1− λ)f(x) + λf(y)− λ(1− λ)µf (x, t),

showing that

µf (x, t) ≤
(1− λ)f(x) + λf(y)− f ((1− λ)x+ λy)

λ(1− λ)
,

for all λ ∈ (0, 1
2
]. A similar argument shows that the previous inequality also holds when

λ ∈ (1
2
, 1]. Consequently, µf (x, t) ≤ µf (x, t).

2.3. The example in [13, Section 2.3], quoted above, shows that, even for GÝateaux dif-
ferentiable functions, uniform and total convexity at a point are not equivalent. However,
according to Proposition 1.3.10 in [13], if f is everywhere finite and Fréchet differentiable,
then f is totally convex at the point x ∈ X if and only if f is uniformly convex at x. This
equivalence holds under less restrictive conditions as follows from the next result.

Proposition. Suppose that f is lower semicontinuous. If x ∈ dom (f) and f is Fréchet
differentiable at x, then f is totally convex at x if and only if f is uniformly convex at
x.

Proof. Suppose that f is Fréchet differentiable and totally convex at x. Then x ∈
Int(dom (f)) and, therefore, there exists a positive number t such that the closed ball
of center x and radius t is contained in Int(dom (f)). For any y ∈ X with ‖y − x‖ = t/2
we have

f(y) ≥ f(x) + 〈f ′(x), y − x〉+ νf
(

x, t
2

)

.

Applying Theorem 3.3.2 in [37], one deduce that, since f is Fréchet differentiable at x,
there exists a selection γ : dom (∂f) → X∗ of ∂f which is continuous at x. Hence,
γ(x) = f ′(x) and there exists a number τ > 0 such that

‖z − x‖ ≤ τ ⇒ ‖γ(z)− f ′(x)‖ ≤ 1
t
νf

(

x, t
2

)

. (4)
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Let α ∈ (0, 1) be such that 1− α < 2τ
t
and assume that u ∈ X is such that ‖u− x‖ = t.

Define

w = x+ 1−α
2
(u− x).

Then,

‖w − x‖ = 1−α
2

‖u− x‖ = 1−α
2
t < min(t, τ),

showing that w ∈ Int(dom (f)) and that

‖γ(w)− f ′(x)‖ ≤ 1
t
νf

(

x, t
2

)

(5)

because of (4). Obviously, we have

f(x) ≥ f(w) + 〈γ(w), x− w〉 = f(w) +
〈

γ(w), 1−α
2

(x− u)
〉

(6)

and
1
2
(x+ u) = α

α+1
u+ 1

α+1
w. (7)

From (7) we deduce that

α
α+1

f(u) + 1
α+1

f(w) ≥ f
(

1
2
(x+ u)

)

,

that is,

αf(u) + f(w) ≥ (1 + α)f
(

1
2
(x+ u)

)

.

Summing up this inequality and (6) we get

f(x) + αf(u) ≥ (1 + α)f
(

1
2
(x+ u)

)

+
〈

γ(w), 1−α
2

(x− u)
〉

.

Consequently,

f(x) + f(u)− 2f
(

1
2
(x+ u)

)

≥ 1−α
α

[

f
(

1
2
(x+ u)

)

− f(x) + 1
2
〈γ(w), x− u〉

]

≥ 1−α
α

[

νf (x,
t
2
) + 1

2
〈γ(x), u− x〉+ 1

2
〈γ(w), x− u〉

]

= 1−α
α

[

νf (x,
t
2
) + 1

2
〈f ′(x)− γ(w), u− x〉

]

≥ 1−α
α

[

νf (x,
t
2
)− 1

2
‖f ′(x)− γ(w)‖ ‖u− x‖

]

= 1−α
α

[

νf (x,
t
2
)− t

2
‖f ′(x)− γ(w)‖

]

≥ 1−α
α

[

νf (x,
t
2
)− t

2

νf (x,
t
2 )

t

]

,

where the last inequality results from (5). Hence, we have

f(x) + f(u)− 2f
(

1
2
(x+ u)

)

≥ 1−α
2α

νf
(

x, t
2

)

,

for all u ∈ X with ‖u− x‖ = t and this implies that

µf (x, t) ≥ 1−α
2α

νf
(

x, t
2

)

> 0.

In view of Lemma 2.3, the proof is complete.
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2.4. It was emphasized in [15] that efficient applicability of various iterative algorithms
for solving feasibility and optimization problems in Banach spaces depends on the avail-
ability of large pools of totally convex functions and of good evaluations for their moduli
of total convexity. Theorem 1 of Asplund [3] establishes locally uniform convexity of the
function ‖·‖2 at any x ∈ X when X is locally uniformly convex. In [36, Theorem 4.1(i)]
this result was extended to a larger class of functions including the functions ‖·‖r with
r ∈ (1,+∞). These results are qualitative in the sense that they do not give estimates of
the moduli of local uniform convexity of the functions ‖·‖r to which they apply. Having
such estimates is of interest, among other things, for establishing convergence and/or de-
termining error upper bounds for algorithms like those discussed in [2] and in Section 4
below. Adaptation of Asplund’s proof in [3, Theorem 1] led to evaluations of the moduli
of total convexity of the functions ‖·‖r based on the local modulus of convexity of the
space δX : {x ∈ X : ‖x‖ = 1} × [0,+∞) → [0,+∞] defined by

δX(x, t) := inf
{

1− ‖x+y‖
2

: ‖y‖ = 1, ‖x− y‖ ≥ t
}

,

with the usual convention that inf ∅ = +∞. Clearly, δX(x, t) ∈ [0, 1] when t ∈ [0, 2]
and δX(x, t) = +∞, otherwise. Such an evaluation is given in [17] and presented in [13,
Remark 1.4.15] for the functions ‖·‖r with r ∈ [2,+∞). The next result gives evaluations
of the moduli of uniform convexity µf (x, t) for the functions f = ‖·‖r with r > 1 in
locally uniformly convex Banach spaces. In view of Lemma 2.3 and of the fact that
νf (x, t) ≥ µf (x, t) for all t ≥ 0, this is also an evaluation of νf (x, t). For uniformly convex
spaces sharper evaluations of νf (x, t) for f = ‖·‖r with r > 1 can be found in [16] and, in
the particular case of X = Lp, even better estimates are given in [26].

Proposition. If X is a locally uniformly convex Banach space, r ∈ (1,+∞), and if the
functions f : X → R and φ : R → R are defined by f(x) := ‖x‖r and φ(t) := |t|r,
respectively, then, for any t ≥ 0, we have

µf (0, t) =
(

1− 21−r
)

tr, (8)

and, when x 6= 0 and α is any number in (0, 1), we have

µf (x, t) ≥ ‖x‖r min
{

µφ

(

1, αt
‖x‖

)

, ζ(a)
}

, (9)

where ζ : [0, 1] → [0,∞) is the function

ζ(s) =

{

1−
[

2− (1− 2s)
r

r−1

]1−r

if s ∈ [0, 1
2
),

1− 21−r if s ≥ 1
2
,

µφ (1, s) = min {1 + (1 + s)r − 21−r(2 + s)r, 1 + |1− s|r − 21−r |2− s|r} ,

and
a := δX

(

x
‖x‖ , (1− α) t

‖x‖

)

.

Proof. According to the definition of µf , we have

µf (0, t) = inf
{

‖y‖r − 2
∥

∥
y
2

∥

∥

r
: ‖y‖ ≥ t

}

= (1− 21−r) tr,
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and this proves (8). Now, suppose that x ∈ X\ {0} . Observe that, in this situation,

µf (x, t) = ‖x‖r µf

(

x
‖x‖ ,

t
‖x‖

)

and, therefore, it is sufficient to prove (9) under the assumption that ‖x‖ = 1 and t > 0.
Assume that ‖x‖ = 1 and t > 0. Note that

µf (x, t) = inf
{

1 + βr − 2
∥

∥
x+βy

2

∥

∥

r
: ‖y‖ = 1, β ≥ 0, ‖x− βy‖ ≥ t

}

.

Fix α ∈ (0, 1). Suppose that β ≥ 0 and y ∈ X are such that ‖y‖ = 1 and ‖x− βy‖ ≥ t.
We distinguish two complementary cases.

Case 1. Suppose that |β − 1| ≥ αt. Then, since
∥

∥
x+βy

2

∥

∥ ≤ 1+β
2
, we deduce that

1 + βr − 2
∥

∥
x+βy

2

∥

∥

r ≥ 1 + βr − 2
(

1+β
2

)r ≥ µφ (1, αt) . (10)

Case 2. Suppose that |β − 1| < αt. Then, we have

‖x− y‖ = ‖x− βy + (β − 1) y‖ ≥ ‖x− βy‖ − |β − 1| > (1− α)t.

Denote a = δX (x, (1− α)t) . Now, we distinguish two possible situations. First, assume
that β ≥ 1. Since

a ≤ 1−
∥

∥
x+y
2

∥

∥ (11)

and since
‖x+ βy‖ = ‖x+ y + (β − 1) y‖ ≤ ‖x+ y‖+ β − 1

we get
∥

∥
x+βy

2

∥

∥ ≤ 1− a+ β−1
2
.

Therefore, we obtain

1 + βr − 2
∥

∥
x+βy

2

∥

∥

r ≥ 1 + βr − 2
(

β+1
2

− a
)r

. (12)

The function ψ : [1,+∞) → R defined by

ψ(u) = 1 + ur − 2
(

u+1
2

− a
)r

,

is differentiable and its derivative ψ′(u) is nonnegative when u ≥ 1. Hence, ψ is nonde-
creasing on [1,+∞) and, therefore, for any u ≥ 1,

ψ(u) ≥ ψ(1) = 2 [1− (1− a)r] .

This and (12) imply that

1 + βr − 2
∥

∥
x+βy

2

∥

∥

r ≥ 2 [1− (1− a)r] , (13)

whenever β ≥ 1.

Consider now β ∈ [0, 1). Note that, according to (11),

‖x+ βy‖ = ‖β(x+ y) + (1− β)x‖ ≤ β ‖x+ y‖+ 1− β

≤ 2β(1− a) + 1− β = 1 + β − 2aβ.
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Consequently, we get

1 + βr − 2
∥

∥
x+βy

2

∥

∥

r ≥ 1 + βr − 2
[

1
2
+
(

1
2
− a

)

β
]r
. (14)

The function
χ(u) = 1 + ur − 2

[

1
2
+
(

1
2
− a

)

u
]r

attains its minimum on the interval [0, 1] at the point

u0 =

{

(1−2a)
1

r−1

2−(1−2a)
r

r−1
if a < 1

2
,

0 if a ≥ 1
2
.

Thus, according to (14), if a ≥ 1
2
, then

1 + βr − 2
∥

∥
x+βy

2

∥

∥

r ≥ χ(0) = 1− 21−r. (15)

If a < 1
2
, then

1 + βr − 2
∥

∥
x+βy

2

∥

∥

r ≥ χ(u0) = 1−
[

2− (1− 2a)
r

r−1

]1−r

. (16)

Taking into account that

2 [1− (1− a)r] = χ(1) ≥ χ(u0),

and the inequalities (10), (13), (15) and (16) one deduces (9).

2.5. A question which naturally occurs in the applications of totally convex functions
to studying convergence properties of feasibility algorithms like those presented in [13] is
whether a function f which is totally convex at some points of the space X is still totally
convex at those points when restricted to a linear subspace Y containing those points and
provided with a stronger norm than the restriction of ‖·‖ to Y . The following example
shows that this is not the case even if Y is dense in X (with respect to the norm of X).
Consider X = L2[0, 1] provided with its usual norm ‖·‖2 and Y = Lp[0, 1] with its norm
‖·‖p for some p ∈ (2,+∞). Take f : X → R given by f(x) = ‖x‖r2 for a real number
r > 1. The function f is totally convex at any point x ∈ X as noted in Subsection 2.4.
Let a ∈ X\Y and note that Y is dense in X. Therefore, there exists a sequence

{

xk
}

k∈N

contained in Y such that limk→∞
∥

∥xk − a
∥

∥

2
= 0. We claim that limk→∞

∥

∥xk
∥

∥

p
= +∞.

Indeed, if we assume otherwise, then there exists a subsequence {xik}k∈N which converges
weakly in Y to some x ∈ Y ; thus, {xik}k∈N converges weakly in X to x (because X∗ is a
subspace of Y ∗) and, therefore, we have

0 ≤ ‖x− a‖2 ≤ lim inf
k→∞

∥

∥xik − a
∥

∥

2
= lim

k→∞

∥

∥xk − a
∥

∥

2
= 0,

showing that a = x ∈ Y, a contradiction. Since a cannot be zero we may assume without
loss of generality that xk 6= 0 for all k ∈ N. Let zk = xk

‖xk‖
p

. Then,

limk→∞Df (z
k, 0) = limk→∞

‖xk‖r

2

‖xk‖r

p

= 0,
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because the sequence
{∥

∥xk
∥

∥

2

}

k∈N is bounded and limk→∞
∥

∥xk
∥

∥

p
= +∞. The restriction

of f to Y, denoted h, has

0 ≤ νh(0, 1) = inf
{

Dh(y, 0) : ‖y‖p = 1
}

≤ inf
k∈N

Df (z
k, 0) = lim

k→∞
Df (z

k, 0) = 0,

showing that, in contrast with f, the function h is not totally convex at zero.

3. Characteristic Properties of Totally Convex Functions

3.1. If X is a space of finite dimension and if f is a lower semicontinuous function, then
f is totally convex at any point x ∈ Int(dom (f)) if and only if f is strictly convex on
Int(dom (f)). This follows by an easy adaptation of the proof of Proposition 1.2.6 in [13].
On the other hand, Theorem 26.3 in [31] shows that, when X = Rn, strict convexity of
f on Int(dom (f)) is equivalent to Fréchet differentiability of the conjugate function f ∗

at the points x∗ ∈ Int(dom (f ∗)). In the light of these facts, Professor R. T. Rockafellar
raised the question1 whether a similar connection still holds for totally convex functions
in general spaces (which may have infinite dimension). We are aiming now towards an
answer to this question.

3.2. To this end, let F be the set of functions ψ : [0,+∞) → [0,+∞] which satisfy the
following conditions:

(i) Int(dom (ψ)) 6= ∅;
(ii) ψ is convex and lower semicontinuous;

(iii) ψ(0) = 0 and ψ(t) > 0 whenever t > 0.

Note that any ψ ∈ F has sup (dom (ψ)) > 0 and it is continuous on the interval
[0, sup (dom (ψ))) as follows from [37, Proposition 2.1.6].

Recall (see [37, Section 3.3]) that whenever a function ϕ : [0,+∞) → [0,+∞] has ϕ(0) =
0, its pseudo-conjugate ϕ# : [0,+∞) → [0,+∞], defined by

ϕ#(t) = sup {st− ϕ(s) : s ≥ 0} ,

is lower semicontinuous, convex, has

ϕ## := (ϕ#)# = coϕ ≤ ϕ,

and ϕ#(0) = 0. If ϕ ∈ F , then ϕ## = ϕ. Also, if ϕ is increasing and has lim inft→∞
ϕ(t)
t

>
0, then ϕ## ∈ F as follows from [36, Proposition A5].

3.3. The following characterization of the total convexity at a point will be of use in
what follows.

Lemma. Suppose that x ∈ dom (f) and ∂f(x) 6= ∅. The function f is totally convex at
x if and only if there exists a function ϕ ∈ F such that, for any y ∈ X, we have

f(y)− f(x) ≥ f ◦(x, y − x) + ϕ (‖y − x‖) . (17)

1This question was raised by Prof. R. T. Rockafellar during the Conference on Continuous Optimization
held in Rio de Janeiro, Brazil, June 1999.
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Proof. According to [36, Theorem 2.1], if there exists ϕ ∈ F such that (17) is satisfied
for all y ∈ X, then f is totally convex at x. Conversely, suppose that f is totally convex
at x ∈ dom (f). By [13, Proposition 1.2.2(ii)], we have that νf (x, ·) is nondecreasing and

lim inf
t→∞

νf (x, t)

t
≥ νf (x, 1) > 0.

Therefore, Proposition A5 in [36] applies and shows that the (necessarily nonnegative)
lower semicontinuous convex function ϕ := coνf (x, ·) is positive on (0,+∞). Clearly,
ϕ(t) ≤ νf (x, t), for all t ≥ 0. Hence, ϕ(0) = 0, dom (ϕ) ⊇ dom (νf (x, ·)) and we have

f(y)− f(x) ≥ f ◦(x, y − x) + νf (x, ‖y − x‖) (18)

≥ f ◦(x, y − x) + ϕ (‖y − x‖) ,

for all y ∈ X. Since dom (f) contains at least two points and ∂f(x) 6= ∅, it results that,
for some y ∈ dom (f)\{x}, the right hand sided derivative f ◦(x, y−x) is finite. Hence, by
writing (18) for y = y we deduce that, for t0 = ‖y − x‖ > 0, we have νf (x, t0) < +∞, that
is, [0, t0) ⊆ dom (νf (x, ·)) which implies that Int[dom (ϕ)] 6= ∅. Consequently, ϕ ∈ F and
satisfies (17).

3.4. With these in mind we give a partial answer to Professor Rockafellar’s question
stated in Subsection 3.1 above. The next result, establishing basic properties of a function
f which is totally convex and subdifferentiable at a point x ∈ dom (f), was repeatedly
proved under more restrictive conditions. It appears in [36, Theorem 2.1] under the
assumptions that f should be lower semicontinuous and X reflexive. The reflexivity of X
was dropped in [37, Corollary 3.4.4]. We show now that some of these properties are still
satisfied even if f is not lower semicontinuous.

Proposition. If the function f is totally convex at x ∈ dom (f) and if x∗ ∈ ∂f(x), then
x∗ ∈ Int (dom (f ∗)) and any of the following equivalent conditions are satisfied:

(i) There exists ϕ ∈ F such that, for any y ∈ X, we have

f(y)− f(x) ≥ 〈x∗, y − x〉+ ϕ (‖y − x‖) ;

(ii) There exists ϕ ∈ F such that, for any y∗ ∈ X∗, we have

f ∗(y∗)− f ∗(x∗) ≤ 〈y∗ − x∗, x〉+ ϕ# (‖y∗ − x∗‖) ;

(iii) The function f ∗ is Fréchet differentiable at x∗.

If, in addition, f is lower semicontinuous, then these conditions are also equivalent to
each of the following requirements:

(iv) There exists ϕ ∈ F such that, for any pair (y, y∗) ∈ X × X∗ with y∗ ∈ ∂f(y), we
have

〈y∗ − x∗, y − x〉 ≥ ϕ (‖y − x‖) ;
(v) There exists a nondecreasing function θ : [0,+∞) → [0,+∞] with limt↘0 θ(t) = 0

such that, for any pair (y, y∗) ∈ X ×X∗ with y∗ ∈ ∂f(y), we have

‖y − x‖ ≤ θ (‖y∗ − x∗‖) .
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Proof. Suppose that f is totally convex at x ∈ dom (f) and x∗ ∈ ∂f(x). Since f ◦(x, y−
x) ≥ 〈x∗, y − x〉 , Lemma 3.3 shows that (i) holds. The equivalence (ii)⇔(iii) and the
equivalence (iv)⇔(v) can be proved exactly as the corresponding implications in Theorem
2.1 of [36]. For proving (i)⇒(ii) note that, whenever (i) holds and y∗ ∈ X∗, we have that

f ∗(y∗) = sup
y∈X

{〈y∗, y〉 − f(y)}

≤ sup
y∈X

{〈y∗, y〉 − f(x)− 〈x∗, y − x〉 − ϕ(‖y − x‖)}

= f ∗(x∗) + sup
y∈X

{〈y∗ − x∗, y〉 − ϕ(‖y − x‖)}

= f ∗(x∗) + 〈y∗ − x∗, x〉+ sup
y∈X

{〈y∗ − x∗, y − x〉 − ϕ(‖y − x‖)}

= f ∗(x∗) + 〈y∗ − x∗, x〉+ sup
‖y−x‖=t

t≥0

{〈y∗ − x∗, y − x〉 − ϕ(t)}

= f ∗(x∗) + 〈y∗ − x∗, x〉+ sup
t≥0

{t ‖y∗ − x∗‖ − ϕ(t)}

= f ∗(x∗) + 〈y∗ − x∗, x〉+ ϕ#(‖y∗ − x∗‖).

Conversely, suppose that (ii) holds. Let f be the lower semicontinuous envelope of f.
According to [8, Proposition 2.118] we have f

∗
= f ∗, f(x) = f(x) and ∂f(x) = ∂f(x).

Hence, we have
f
∗
(y∗)− f

∗
(x∗) ≤ 〈y∗ − x∗, x〉+ ϕ# (‖y∗ − x∗‖) ,

for all y∗ ∈ X∗. This and [37, Corollary 3.4.4] imply that

f(y)− f(x) ≥ 〈x∗, y − x〉+ ϕ (‖y − x‖) ,

for all y ∈ X. Since f(y) ≤ f(y) and f(x) = f(x), the inequality in (i) results. The
implication (ii)⇒(iv) can be proved (without requiring that f is lower semicontinuous) in
the same way in which the analogous implication was proven in [36, Theorem 2.1]. When
f is lower semicontinuous the implication (v)⇒(ii) results from [37, Corollary 3.4.4].

3.5. Note that Proposition 3.4 does not require that x should be a point in the inte-
rior of the domain of f. When this happens, Proposition 3.4 can be converted into a
characterization of total convexity at x.

Proposition. Suppose that f is continuous at the point x ∈ Int (dom (f)) . Then, f
is totally convex at x if and only if any of the following three equivalent conditions is
satisfied:

(i′) There exists ϕ ∈ F such that, for any y ∈ X and for any x∗ ∈ ∂f(x) we have

f(y)− f(x) ≥ 〈x∗, y − x〉+ ϕ (‖y − x‖) ; (19)

(ii′) There exists ϕ ∈ F such that, for any y∗ ∈ X∗ and for any x∗ ∈ ∂f(x) we have

f ∗(y∗)− f ∗(x∗) ≤ 〈y∗ − x∗, x〉+ ϕ# (‖y∗ − x∗‖) ; (20)

(iii′) ∂f(x) ⊆ Int (dom (f ∗)) and the function f ∗ is uniformly Fréchet differentiable on
∂f(x).
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If, in addition, the function f is lower semicontinuous, then these conditions are equivalent
to each of the following requirements:

(iv′) There exists ϕ ∈ F such that, for any x∗ ∈ ∂f(x) and for any pair (y, y∗) ∈ X×X∗

with y∗ ∈ ∂f(y), we have

〈y∗ − x∗, y − x〉 ≥ ϕ (‖y − x‖) ;

(v′) There exists a nondecreasing function θ : [0,+∞) → [0,+∞] with limt↘0 θ(t) = 0
such that, for any pair (y, y∗) ∈ X ×X∗ with y∗ ∈ ∂f(y), we have

‖y − x‖ ≤ θ (‖y∗ − x∗‖) .

Proof. The function f is continuous at x ∈ Int (dom (f)) and, therefore, ∂f(x) 6= ∅.
Also, we have

f ◦(x, y) = max {〈x∗, y〉 : x∗ ∈ ∂f(x)} ,

for all y ∈ X. Consequently, (i′) holds if and only if (17) is satisfied, that is, f is totally
convex at x if and only if (i′) is true. The equivalence of (i′) and (ii′) follows from that
of (i) and (ii) in Proposition 3.4 written for each x∗ ∈ ∂f(x). Suppose that (ii′) holds.
Then, for any y∗ ∈ X∗ and for each x∗ ∈ ∂f(x), we have

0 ≤ f ∗(y∗)− f ∗(x∗)− 〈y∗ − x∗, x〉
‖y∗ − x∗‖

≤ ϕ# (‖y∗ − x∗‖)
‖y∗ − x∗‖

. (21)

Since ϕ ∈ F one can use Proposition A2(ii) from [36] in order to deduce that limt↘0
ϕ#(t)

t
=

0. Hence, letting ‖y∗ − x∗‖ → 0 in (21), we deduce that f ∗ is uniformly Fréchet differen-
tiable on ∂f(x), i.e., (iii′) holds. Now, suppose that (iii′) is satisfied. Define the function
ψ : [0,+∞) → [0,+∞] by

ψ(t) = sup {f ∗(x∗ + ty∗)− f ∗(x∗)− t 〈y∗, x〉 : ‖y∗‖ = 1, x∗ ∈ ∂f(x)} .

The convexity of f ∗ and the fact that x ∈ ∂f ∗(x∗) whenever x∗ ∈ ∂f(x), imply that
ψ is nonnegative, lower semicontinuous, convex and has ψ(0) = 0. From (iii′) it results

that limt↘0
ψ(t)
t

= 0. Taking ϕ := ψ# and applying Proposition A2(ii) from [36] to it one
deduces that ϕ ∈ F . From the definition of ψ we deduce that (ii′) holds with ϕ = ψ#.
Hence, (ii′) and (iii′) are equivalent.

Suppose that f is lower semicontinuous. Then, the equivalence of (iv′) and (v′), as
well as the implication (v′)⇒(ii′) in the case that f is lower semicontinuous, result from
Proposition 3.4. If (ii′) holds, then the function θ : [0,+∞) → [0,+∞] given by

θ(t) =







ϕ#(t)
t

if t ∈ (0,+∞)\
{

sup
(

dom
(

ϕ#
))}

,
0 if t = 0,
+∞ if t = sup

(

dom
(

ϕ#
))

< +∞,

for ϕ from (ii′), satisfies (v′), i.e., (ii′) and (v′) are also equivalent.
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3.6. The characterization of total convexity at interior points of the domain of f con-
tained in Proposition 3.5 allows us to give an answer to a question which occurred in
our discussions with Yakov Alber concerning the existence on an arbitrary Banach space
X of functions f which, at any point x ∈ Int (dom (f)) , are totally convex and have
νf (x, t) ≥ cf (x)t

2 for all t ∈ [0, 1], where cf (x) is a positive number. Our answer is
contained in the following result.

Proposition. Let g : X∗ → (−∞,+∞] be a convex function which is weak∗ lower
semicontinuous and strictly convex on its domain. Suppose that there exists an open ball
B(x∗, r), of center x∗ and radius r > 0, such that B(x∗, r) ⊂ Int (dom (g)) and such that

(i) The function g is GÝateaux differentiable on B(x∗, r);

(ii) There exists a real number k > 0 such that, for each y∗ ∈ B(x∗, r), the GÝateaux
derivative g′ satisfies

‖g′(y∗)− g′(x∗)‖ ≤ k ‖y∗ − x∗‖ .
Then the vector x := g′(x∗) belongs to X and the function f := g∗ : X → (−∞,+∞] is
totally convex at x and has

νf (x, t) ≥
{

t2

2k
if t ∈ [0, kr] ,

r
2

(

t− kr
2

)

if t > kr.
(22)

Proof. Using [6, Lemma 5.1] one obtains that the mapping ∂f is single valued on its
domain. The Asplund-Rockafellar Theorem (see [4] or [37, Corollary 3.3.4]) ensures
that, in the current circumstances, x = g′(x∗) = (f ∗)′(x∗) ∈ X. Define the function
θ : [0,+∞) → [0,+∞] by

θ(t) =

{

kt if t ∈ [0, r),
+∞ if t ≥ r.

(23)

Observe that, if y∗ ∈ B(x∗, r), then, according to hypothesis (ii), we have

‖g′(y∗)− g′(x∗)‖ ≤ θ (‖y∗ − x∗‖) . (24)

If y ∈ X and y∗ ∈ ∂f(y), then

‖y − x‖ ≤ θ (‖y∗ − x∗‖) , (25)

since this is exactly (24) when y∗ ∈ B(x∗, r) and, otherwise, θ (‖y∗ − x∗‖) = +∞. In
other words, the function f satisfies condition (v′) of Proposition 3.5. This implies that
the function f also satisfies (20) for some ϕ ∈ F . Analyzing the proof of Proposition 3.5
(see the part concerning the implication (v′)⇒(ii′) in the proof of Theorem 2.1 from [36])
it follows that, if (25) holds, then the inequality (20) is satisfied for some ϕ ∈ F such that

ϕ#(t) =

∫ t

0

θ(s)ds

Hence, taking into account (23), we get that ϕ#(t) = 1
2
kt2 for t ∈ [0, r], and ϕ#(t) = +∞,

otherwise. Since ϕ = ϕ##, we deduce that

ϕ(s) =

{

s2

2k
if s ∈ [0, kr],

r
2

(

s− kr
2

)

if s > kr.

Observing that (19) holds with ϕ given here and that this implies νf (x, s) ≥ ϕ(s) for all
s ≥ 0, we deduce (22).
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3.7. In order to guarantee convergence of some infinite dimensional optimization algo-
rithms in a Banach space X (see [28, Section 4], [2], [1] and [13, Section 3.5.2]) one has
to ensure existence on X of a convex function f with the following property:

(A) Whenever the set E ⊂ Int (dom (f)) is bounded, there exists a positive constant
cf (E) such that

inf
x∈E

νf (x, t) ≥ cf (E)t2,

for all t ∈ [0, 1].

Obviously, condition (A) is a stronger requirement than this occurring in Yakov Alber’s
question (see Subsection 3.6). For spaces Lq = Lq(Ω), where Ω is a space of finite measure
and q ∈ (1, 2], validity of condition (A) for the function f = ‖·‖2 was established in the
proof of [13, Corollary 3.5.9]. We will show next, using Proposition 3.6, that in the space
X = `q with q ∈ (1, 2] the q-th power of the norm has this property. Precisely, we have
the next result:

Corollary. For any q ∈ (1, 2] the function f(x) = 1
q
‖x‖qq on X = `q satisfies condition

(A).

Proof. We first prove the following result, which is probably known but we do not have
a reference for it.

Claim 1. Let p ∈ [2,+∞) be such that q = p/(p − 1) and h : Rn → R be defined by
h(x) := 1

p
‖x‖pp . Then

‖h′(x)− h′(y)‖q ≤ (p− 1)
(

‖x‖p + ‖y‖p
) p−2

p ‖x− y‖p ∀x, y ∈ Rn. (26)

In order to prove this claim, consider the function ϕ : R → R defined by ϕ(t) = 1
p
|t|p .

We have that
ϕ′(t) = |t|p−1 sgn t and ϕ′′(t) = (p− 1) |t|p−2 ,

for every t ∈ R. Note that for any two real numbers t and s, there exists a real number θ
between t and s such that

ϕ′(t)− ϕ′(s) = ϕ′′(θ)(t− s).

Let x = (x1, ..., xn) ∈ Rn and y = (y1, ..., yn) ∈ Rn be fixed. Then, for each integer k
between 1 and n, there exists ξk between xk and yk such that

ϕ′(xk)− ϕ′(yk) = (p− 1) |ξk|p−2 (xk − yk).

Since
h′(x) =

(

|x1|p−1 sgnx1, . . . , |xn|p−1 sgnxn

)

,

we have that

‖h′(x)− h′(y)‖qq = |ϕ′(x1)− ϕ′(y1)|q + . . .+ |ϕ′(xn)− ϕ′(yn)|q (27)

= (p− 1)q
(

|ξ1|q(p−2) |x1 − y1|q + . . .+ |ξn|q(p−2) |xn − yn|q
)

≤ (p− 1)q (|ξ1|p + . . .+ |ξn|p)
p−2
p−1 (|x1 − y1|p + . . .+ |xn − yn|p)

q
p ,



D. Butnariu, A. N. Iusem, C. Zălinescu / On Uniform Convexity, Total ... 49

where the last inequality results from Hölder’s inequality written for the conjugate num-
bers p−1

p−2
= p

q(p−2)
and p

q
. Taking into account that |ξk| ≤ |xk|+ |yk| , we get (26) from (27)

and Claim 1 is proved.

Now, let q ∈ (1, 2], p = q/(q − 1) and define the function g : `p → R by g(x) := 1
p
‖x‖pp .

Then g is Fréchet differentiable on `p and we have

g′(x) =
(

|x1|p−1 sgnx1, |x2|p−1 sgnx2, . . .
)

∈ `q.

Moreover

‖g′(x)‖q = ‖x‖p−1
p ∀x ∈ `p. (28)

Let x = (x1, x2, . . .) and y = (y1, y2, . . .) be sequences in `p. Applying (26) to the vectors
x[n] = (x1, ..., xn) and y[n] = (y1, ..., yn) and then passing to the limit for n → ∞ we get

‖g′(x)− g′(y)‖q ≤ (p− 1)
(

‖x‖p + ‖y‖p
) p−2

p ‖x− y‖p ∀x, y ∈ `p.

This inequality shows that g′ is Lipschitz on bounded subsets of `p. Also, it shows that if
r is a positive real number, E ⊂ `p is a nonempty bounded set and x ∈ E, then for any
y ∈ B(x, r) we have

‖g′(x)− g′(y)‖q ≤ (p− 1)
(

2 ‖x‖p + r
) p−2

p ‖x− y‖p .

As a consequence, for any x ∈ E and for any y ∈ `p with ‖x− y‖p < r, we have

‖g′(x)− g′(y)‖q ≤ k(E, r) ‖x− y‖p , (29)

where

k(E, r) := (p− 1)

(

2 sup
x∈E

‖x‖p + r

) p−2
p

.

Recall (see, for instance, [8]) that g∗ = f and, therefore,

f ′ = g∗′ = (g′)−1. (30)

Take a nonempty bounded set F ⊂ `q and denote E = f ′(F ). Clearly, E is a bounded
subset of `p (cf. (28)). Fix r > 0 such that k := k(E, r) has kr ≥ 1. If x ∈ F, then
x = g′(x∗) for some x∗ ∈ E because f ′ and g′ are inverse to each other (cf. (30)). In view
of (29), application of Proposition 3.6 gives

νf (x, t) ≥
1

2k
t2,

for all x ∈ F and for all t ∈ [0, kr] ⊃ [0, 1].
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4. Sequentially Consistent Functions and Convergence of Some Iterative Al-
gorithms

4.1. The aim of this section is to establish connections among the notions of (locally)
uniform convexity on bounded sets, total convexity on bounded sets and sequential con-
sistency of convex functions. These connections are used in order to improve upon ex-
isting convergence results concerning algorithms for feasibility and optimization in in-
finite dimensional Banach spaces. To precise the terminology, recall that the function
f : X → (−∞,+∞] is called uniformly convex on bounded sets if for each bounded
nonempty subset E of X the function µf (E, ·) : X → [0,+∞] given by

µf (E, t) = inf
{

µf (x, t) : x ∈ E ∩ dom (f)
}

,

is positive whenever t > 0. It can be easily seen that f is uniformly convex on bounded
sets if and only if f is uniformly strictly convex in the sense given to this term by Asplund
in [3, p. 231]. Also, Lemma 2.3 shows that f is uniformly convex on bounded sets if and
only if for any bounded set E ⊂ X we have

µf (E, t) := inf {µf (x, t) : x ∈ E ∩ dom (f)} > 0,

for all t > 0. The function f is called totally convex on bounded sets if for each bounded
nonempty subset E of X the function νf (E, ·) : X → [0,+∞) defined by

νf (E, t) = inf {νf (x, t) : x ∈ E ∩ dom (f)} ,

is positive on (0,+∞). The notion termed in [13] sequential consistency occurred first
in [20] was also studied in [10] and [11]. The function f is called sequentially consistent
(with the norm topology of the space X) if for any two sequences

{

xk
}

k∈N and
{

yk
}

k∈N

contained in dom (f) such that
{

xk
}

k∈N is bounded and limk→∞Df (y
k, xk) = 0 one has

limk→∞
∥

∥xk − yk
∥

∥ = 0.

4.2. We have noted in Section 2 that, in general, total convexity of f at a point
x ∈ dom (f) does not imply uniform convexity of f at x. The next result shows that,
by contrast, for lower semicontinuous convex functions, uniform and total convexity on
bounded sets are equivalent notions and, in this way, we answer a question raised by
Yakov Alber. Even if f is not lower semicontinuous, total convexity of f on bounded sets
is still equivalent to sequential consistency of f as well as to the property ( ∗) considered
in [18] in the context of the theory of outer Bregman projection algorithms for solving
convex feasibility problems.

Proposition. If f : X → (−∞,+∞] is a convex function whose domain contains at
least two different points, then the following conditions are equivalent:

(i) The function f is totally convex on bounded sets;

(ii) The function f is sequentially consistent;

(iii) The function f has the following property:

(∗) For any nonempty bounded set E ⊂ X, there exists a function ηE : [0,+∞) ×
[0,+∞) → [0,+∞) such that, for each real number a > 0, the function ηE(a, ·) is strictly
increasing, continuous, convex, and νf (E, t) ≥ ηE(a, t) whenever t ∈ [0, a).
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Moreover, if f is lower semicontinuous, then these conditions hold if and only if the
function f is uniformly convex on bounded sets.

Proof. The equivalence of conditions (i) and (ii) follows from [13, Lemma 2.1.2] by
taking there C = dom (f) . In order to show that (i)⇔(iii), let E ⊂ X be a bounded set
such that E ∩ dom (f) 6= ∅. According to Lemma 2.4 in [18], the function νf (E, ·) has
νf (E, ct) ≥ cνf (E, t) whenever c ≥ 1 and t ≥ 0, it is nondecreasing and it is increasing on
its domain if and only if it is positive for all t > 0. Suppose that (i) holds. Then, νf (E, ·)
is increasing on its domain and

lim inf
t→∞

νf (E, t)

t
≥ νf (E, 1) > 0.

Hence, applying Proposition A5 from [36] to νf (E, ·), one deduces that coνf (E, ·) is lower
semicontinuous, convex and positive on (0,+∞). Define ηE : [0,+∞)×[0,+∞) → [0,+∞]
by ηE(a, t) = coνf (E, t) whenever a ≥ 0 and, then, property (∗) holds. Conversely,
suppose that condition (iii) holds. Then, we have that νf (E, t) ≥ ηE(1, t) > 0 whenever
t ∈ (0, 1]. For t > 1 we have that νf (E, t) ≥ νf (E, 1) > 0 because νf (E, ·) is nondecreasing.
Hence, f is totally convex on bounded sets.

Now, let f be lower semicontinuous. Suppose that f is uniformly convex on bounded sets.
Take E a bounded set such that E ∩ dom (f) 6= ∅. Denote by B the closed convex hull
of E and C := {x ∈ X : d(x,B) ≤ 1} . Obviously, C is closed, convex and bounded and
B ⊂ Int (C) . Let ιC be the indicator function of C and define g = f + ιC . The function
g is uniformly convex (i.e., µg(X, t) > 0 for all t > 0) because f is uniformly convex on
bounded sets. Therefore, one can apply [36, Theorem 2.2] in order to deduce that there
exists a function ψ ∈ F such that

g(y)− g(x) ≥ g◦(x, y − x) + ψ (‖y − x‖) ,

for all x, y ∈ dom (g) . Therefore, we have

f(y)− f(x) ≥ g◦(x, y − x) + ψ (‖y − x‖) ,

for all x ∈ B ∩ dom (f) and all y ∈ C ∩ dom (f) . Note that, by the definition of g,
whenever x ∈ B ∩dom (f) and y ∈ C ∩dom (f) we have g◦(x, y−x) = f ◦(x, y−x) and,
thus,

f(y)− f(x) ≥ f ◦(x, y − x) + ψ (‖y − x‖) .

Hence, if x ∈ B ∩ dom (f) , y ∈ dom (f) and ‖y − x‖ = t ∈ (0, 1], then

f(y)− f(x) ≥ f ◦(x, y − x) + ψ (t) ,

showing that νf (E, t) ≥ νf (B, t) ≥ ψ(t) > 0, for all t ∈ (0, 1]. Since νf (E, ·) is nonde-
creasing, it results that νf (E, t) > 0 for all t > 0, i.e., f is totally convex on bounded sets.
Conversely, assume that f is totally convex on bounded sets. Then, for all x ∈ B∩dom (f)
and all y ∈ dom (f) with ‖y − x‖ = t, we have

f(y)− f(x) ≥ f ◦(x, y − x) + νf (B, t).
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Therefore, the function h = f + ιB has

h(y)− h(x) ≥ h◦(x, y − x) + νf (B, ‖y − x‖)
≥ h◦(x, y − x) + coνf (B, ‖y − x‖),

whenever x, y ∈ dom (h) . According to [37, Theorem 3.5.10(ii)], this implies that h
is uniformly convex (i.e., µh(X, t) > 0 for all t > 0) and this implies that µf (E, t) ≥
µf (B, t) ≥ µh(X, t) > 0, for all t > 0.

4.3. In the analysis of various iterative algorithms for feasibility and optimization in Ba-
nach spaces (see, for instance, [13, Chapters 2 and 3]) two conditions are simultaneously
imposed upon the space X for ensuring that the sequences these algorithms produce exist
and converge weakly: (a) reflexivity of X and (b) existence on X of a lower semicontin-
uous, sequentially consistent, convex function f with Int (dom (f)) 6= ∅. The reflexivity
of X is required because it guarantees weak sequential compactness of the unit ball and
this is used in the convergence proofs. In some cases, one can prove that the sequences
generated by such algorithms converge weakly without involving weak sequential com-
pactness of the unit ball of the space. Instead, one may take advantage of the properties
of a sequentially consistent function f in the interior of the domain of which the sequences
are necessarily contained. This suggests that it may be possible to ensure convergence
of those algorithms and, hence, their applicability in non reflexive Banach spaces under
condition (b) only. The following consequence of Proposition 4.2 shows that this is not
the case and, in this way, answers a question posed by Simeon Reich: requiring existence
of a sequentially consistent, lower semicontinuous, convex function f on X such that
Int (dom (f)) 6= ∅, one implicitly requires reflexivity of X.

Corollary. If there exists a lower semicontinuous convex function f : X → (−∞,+∞]
which is sequentially consistent and has Int (dom (f)) 6= ∅, then the Banach space X is
reflexive.

Proof. Observe that there exists a closed ball B ⊆ Int (dom (f)) and that, according to
Proposition 4.2, the function f is uniformly convex on bounded sets. Consequently, the
function g = f + ιB is uniformly convex, lower semicontinuous and proper and, therefore,
Theorem 3.5.13 in [37] applies showing that X is reflexive.

4.4. Proposition 4.2 allows us to show that the so called Outer Bregman Projection
Method (OBPM) for finding solutions of consistent stochastic convex feasibility problems
in smooth, uniformly convex Banach spaces converges in more general conditions than
previously known. Recall that a stochastic convex feasibility problem requires finding
x ∈ X such that

g(ω, x) ≤ 0, ρ - a.e. (Ω), (31)

where (Ω,A, ρ) is a complete probability space and g : Ω×X→R is a convex Charathéodory
function, that is, g(·, x) is measurable for each x ∈ X and g(ω, ·) is convex and continuous
for each ω ∈ Ω. Some significant problems of applied mathematics can be equivalently
rewritten in the form (31) and solved as such. This is the case of constrained convex
optimization problems as well as of problems of finding Nash equilibria as shown in [19]
where the convergence of particular versions of OBPM was proved and their computa-
tional behavior was discussed and illustrated. The fact that any linear Fredholm (and,
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implicitly, Volterra) equation in Lp can be equivalently rewritten in the form (31) was
shown in [16, Section 3]. In [18], where the OPBM was first proposed and studied in
its general form, it is also shown how OBPM typically behaves when applied to finding
subsolutions of nonlinear integral equations in L3/2.

The OBPM is the following iterative procedure of generating sequences in X, provided
that X is separable, smooth and uniformly convex and r ∈ (1,+∞) :

xk+1 :=

∫

Ω

J−1
r

[

sk(ω)Γk(ω) + Jrx
k
]

dρ(ω), (32)

where Jr : X → X∗ is the duality mapping of weight t → rtr−1, J−1
r stands for the

inverse of Jr (which exists because X is smooth and uniformly convex), Γk : Ω → X is a
(necessarily existing) measurable selector of the point-to-set mapping ω → ∂g(ω, ·)(xk) :
Ω → X and sk(ω) is a (necessarily existing) solution of the equation

〈

Γk(ω), J
−1
r

[

sΓk(ω) + Jrx
k
]

− xk
〉

= −g(ω, xk) (33)

when g(ω, xk) > 0, and sk(ω) = 0, otherwise. Theorem 2.1(I) in [18] gives sufficient
conditions ensuring that, no matter how the point x0 is chosen inX, the sequence

{

xk
}

k∈N ,

recursively defined by (32) and (33) with x0 as initial point, is well defined, bounded,
has weak accumulation points, any weak accumulation point of it is a solution of (31)
and limk→∞

∥

∥xk+1 − xk
∥

∥ = 0. Also, Theorem 2.1(II) in [18] shows that, if the function
f(x) = ‖x‖r has the property (∗) given in Proposition 4.2(iii), then the size of the
constraint violations at each iterative step converges in mean to zero, that is,

lim
k→∞

∫

Ω

max
[

0, g(ω, xk)
]

dρ(ω) = 0. (34)

Combining these facts and the results in [18, Section 3] one deduces that (34) holds in
Hilbert spaces, Lebesgue spaces and Sobolev spaces. We are in position to complete this
result and prove that these properties of the sequences

{

xk
}

k∈N generated by the OBPM
are valid in any separable, smooth and uniformly convex Banach space.

Theorem. Suppose that X is a separable, smooth and uniformly convex Banach space,
(Ω, A, ρ) is a complete probability space, r ∈ (1,+∞) and g : Ω × X → R is a convex
Charathéodory function such that the problem (31) has at least one solution x∗ for which
the function ϕ(x∗, ·) : X → R defined by

ϕ(x∗, y) := (r − 1) ‖y‖r − 〈Jr(y), x∗〉

is convex. Then, for any initial point x0, the sequence
{

xk
}

k∈N generated by the OBPM
is well defined, bounded, has weak accumulation points, each weak accumulation point of
{

xk
}

k∈N is a solution of the problem (31), limk→∞
∥

∥xk+1 − xk
∥

∥ = 0, and the constraint
violations converge in mean to zero, i.e., (34) holds.

In particular, this happens in each of the following situations:

(i) The problem (31) has x∗ = 0 among its solutions;

(ii) X is a Hilbert space and r = 2;
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(iii) X is one of the Lebesgue spaces Lp or one of the Sobolev spaces Wm,p with p ∈ (1, 2]
and m > 1, r = p and the problem (31) has a solution x∗ which is almost everywhere
nonnegative.

Proof. According to [18, Theorem 2.1] it is sufficient to show that, in the given circum-
stances, the function f(x) = ‖x‖r has the property (∗). This follows from Proposition
4.2 because, when X is uniformly convex, the function f(x) = ‖x‖r is lower semicontin-
uous and uniformly convex on bounded sets. Note that ϕ(0, ·) is convex and this shows
that the conclusion holds when (i) is satisfied. If X is a Hilbert space and r = 2, then
ϕ(x∗, y) = ‖y‖2 − 2 〈x∗, y〉 is convex for any x∗ ∈ X. Under condition (iii) convexity of
ϕ(x∗, ·) when x∗ is almost everywhere nonnegative follows from [15, Lemma 6.3].

4.5. Let X be a reflexive Banach space and consider a function g : X → (−∞,+∞]
which is convex, lower semicontinuous and whose domain, dom (g) , is closed. Suppose
that g has a minimizer and that there exists a convex function f : X → (−∞,+∞] such
that

(a) dom (g) ⊆ Int (dom (f)) ;

(b) For any α ∈ (0,+∞) and x ∈ dom (g) , the set

Rf
α(x) := {y ∈ dom (g) : Df (x, y) ≤ α}

is bounded;

(c) f is Fréchet differentiable and totally convex at any point x ∈ dom (g) .

The following procedure, which we call in what follows the generalized proximal point
algorithm, was first studied by Censor and Zenios [21] in Rn; its convergence in infinite
dimensional Banach spaces was discussed in [14]:

xk+1 = argmin
{

g(x) + ωkDf (x, x
k)
}

, (35)

where x0 ∈ dom (g) and {ωk}k∈N is a bounded sequence in (0,+∞). Rockafellar’s [33]
proximal point algorithm is the particular version of (35) in whichX is a Hilbert space and
f(x) = 1

2
‖x‖2 . However, if X is not Hilbertian but still uniformly smooth and uniformly

convex, then the generalized proximal point method even with f(x) = 1
2
‖x‖2 essentially

differs from Rockafellar’s algorithm due to the fact that the equalityDf (x, y) =
1
2
‖x− y‖2

is equivalent to the parallelogram law. It was shown in [14, Corollary 1] that, in spite
of this fact, the generalized proximal point method preserves most of the well known
properties of the proximal point algorithm: the sequence

{

xk
}

k∈N is well defined, bounded,
has weak accumulation points, all its weak accumulation points are minimizers of g, the
sequence

{

g(xk)
}

k∈N converges nonincreasingly,

g(xk)− g(xk+1) ≥ ωkDf (x
k+1, xk)

and
lim
k→∞

g(xk) = inf g(x).

An easy adaptation of the proof of Lemma 5 in [14] shows that, if f is uniformly convex
on bounded sets, then we also have limk→∞

∥

∥xk+1 − xk
∥

∥ = 0. All these do not necessarily
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mean that the sequences generated by the generalized proximal point method converge
(even weakly) to a minimizer of g (even if a minimizer of g is presumed to exist). Theorem
2 in [14] shows that if it is possible to choose the function f such that, in addition to
the conditions (a), (b) and (c) above, will satisfy some quite restrictive requirements,
then the sequences generated by the generalized proximal point method converge weakly,
and sometimes even strongly, to minimizers of g. To the best of our knowledge, existence
of functions like those required in [14, Theorem 2] can be ensured in Hilbert spaces
and in very special non Hilbertian spaces like, for instance, the Lebesgue space `p with
p ∈ (1,+∞). Using the properties of totally convex functions established above, we are in
position to prove the next result which is a strong convergence criterion for the generalized
proximal point method. It can be applied in any uniformly convex and uniformly smooth
Banach space because, in such spaces, the functions f(x) = ‖x‖r with r ∈ (1,+∞)
not only satisfy the conditions (a), (b) and (c), but they also are uniformly convex and
uniformly smooth (in the sense that their GÝateaux derivatives are uniformly continuous)
on bounded sets (cf. [36, Corollary 4.2]). In order to state our result, recall (see [29])
that the greatest quasi-inverse of the function t → νg(x

∗, t)/t is the function ξg (x
∗, ·) :

[0,+∞) → [0,+∞] given by

ξg (x
∗, t) = sup {s ≥ 0 : νg(x

∗, s) ≤ st} . (36)

Also, observe that in the next theorem reflexivity of X is essential because functions
f which satisfy the hypothesis exist on reflexive spaces only (see Proposition 4.2 and
Corollary 4.3).

Theorem. Let X be a reflexive Banach space and g : X → (−∞,+∞] be a lower
semicontinuous function with closed domain which is totally convex at any point x ∈
dom (g) . Suppose that the function g has a minimizer and that the function f : X →
(−∞,+∞] is lower semicontinuous, convex, satisfies the conditions (a) and (b) above,
and is uniformly convex and uniformly smooth on bounded subsets of dom (g) . Then,
for any initial point x0 ∈ dom (g) , the sequence

{

xk
}

k∈N recursively generated by the
generalized proximal point algorithm (35) is well defined, contained in dom (g) , and has
the following properties provided that the sequence {ωk}k∈N is bounded:

(i)
{

xk
}

k∈N converges strongly to a minimizer x∗ of g and, for any nonnegative integer

k, the distance of xk+1 to x∗ can be estimated by

∥

∥xk+1 − x∗∥
∥ ≤ ξg

(

x∗, b
∥

∥f ′(xk+1)− f ′(xk)
∥

∥

)

, (37)

where b = supk∈N ωk and ξg (x
∗, ·) is the greatest quasi-inverse of the function t →

νg(x
∗, t)/t;

(ii) The sequence
{

g(xk)
}

k∈Nconverges, limk→∞ g(xk) = g(x∗) and

g(xk)− g(xk+1) ≥ ωkDf (x
k+1, xk).

(iii) If X = Rn and f is twice continuously differentiable on Int (dom (f)) , or if X is
a Hilbert space and f = ‖·‖2 , then there exists a constant Q > 0 such that

∥

∥xk+1 − x∗∥
∥ ≤ ξg

(

x∗, Q
∥

∥xk+1 − xk
∥

∥

)

,

for all k ∈ N.
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Proof. Well definedness of the sequence
{

xk
}

k∈N and the fact that it is contained in
dom (g) result from [14, Lemma 1]. Let x∗ be a minimizer of g. Then, according to [14,
Lemma 2], for each nonnegative integer k, we have

Df (x
∗, xk)−Df (x

∗, xk+1)−Df (x
k+1, xk) ≥ 1

ωk

[

g(xk+1)− g(x∗)
]

≥ 1

b

[

g(xk+1)− g(x∗)
]

≥ 0.

Taking into account (1) and (2), this implies

〈

f ′(xk+1)− f ′(xk), x∗ − xk+1
〉

≥ 1

b

[

g(xk+1)− g(x∗)
]

≥ 1

b

[

g◦(x∗, xk+1 − x∗) + νg(x
∗,
∥

∥xk+1 − x∗∥
∥)
]

.

Since x∗ is a minimizer of g, we also have g◦(x∗, xk+1 − x∗) ≥ 0 and, thus, we obtain

b
∥

∥f ′(xk+1)− f ′(xk)
∥

∥

∥

∥x∗ − xk+1
∥

∥ ≥ νg(x
∗,
∥

∥xk+1 − x∗∥
∥)

which, according to (36), implies (37). Corollary 1 in [14] guarantees that

lim
k→∞

Df (x
k+1, xk) = 0

and that the sequence
{

xk
}

k∈N is bounded. Hence, for the bounded set E consisting of
all the terms of the sequence we have

0 = lim
k→∞

Df (x
k+1, xk) ≥ lim sup

k→∞
νf

(

E,
∥

∥xk+1 − xk
∥

∥

)

≥ lim inf
k→∞

νf
(

E,
∥

∥xk+1 − xk
∥

∥

)

≥ 0,

that is,
lim
k→∞

νf
(

E,
∥

∥xk+1 − xk
∥

∥

)

= 0. (38)

The function f is uniformly convex on bounded sets. Therefore, νf (E, ·) is positive and
increasing on its domain and is continuous from the right at 0 (cf. [18, Lemma 2.4]).
Hence, the equality (38) can not hold unless limk→∞

∥

∥xk+1 − xk
∥

∥ = 0. The function f
being uniformly smooth on the bounded set E, one obtains that

lim
k→∞

∥

∥f ′(xk+1)− f ′(xk)
∥

∥ = 0. (39)

It follows from Lemma 3.3.1 in [37] that limt↘0 ξg(x
∗, t) = 0 because νg(x

∗, t) > 0 and
νg(x

∗, ct) ≥ cνg(x
∗, t) when t > 0 and c ≥ 1. Consequently, using (37) and (39), we deduce

that
lim
k→∞

∥

∥xk+1 − x∗∥
∥ = 0,

i.e., the sequence
{

xk
}

k∈N converges strongly to x∗. This completes the proof of (i). The
proof of (ii) follows directly from [14, Corollary 1]. Combining (37) with [7, Proposition
2.10] one obtains (iv).
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4.6. In connection with Theorem 4.5, it is worthwhile to mention that the issue of
strong convergence of the sequences generated by the proximal point method was already
raised by Rockafellar in [33] and has been treated by several authors (see, for instance,
[9]). Among the results in this direction, a well known example due to Güler [25] seems
to disagree with Theorem 4.5. This example shows that, even if X is a Hilbert space
and f(x) = ‖x‖2 , it may happen that the generalized proximal point algorithm for op-
timization (35) produces sequences

{

xk
}

k∈N which converge weakly without converging

strongly. Precisely, in Güler’s example X = `2, f(x) = ‖x‖22 and the function to minimize
g : X → (−∞,+∞] is given by

g(x) =











∑∞
k=1 αk

[

arctan
(

xk

xk+1

)]βk
√

x2
k + x2

k+1 if x ∈ `2+,

+∞ otherwise,

(40)

with the conventions that arctan(t/0) = π/2 for all t ≥ 0; here, `2+ denotes the subset
of `2 consisting of sequences with nonnegative terms only, βk = π22k−2, and the αk’s are
positive real numbers recursively defined so as to ensure, e.g., that g(x) is finite for all
x ∈ `2+. Using previous results due to Baillon [5], Güler [25] shows that, for some x0 ∈ `2,
the sequence generated by (35) with g defined in (40) is weakly but not strongly conver-
gent, independently of how the bounded sequence of regularization coefficients {ωk}k∈N is
chosen. Clearly, the space X and the function f involved in Güler’s argument satisfy the
corresponding requirements of Theorem 4.5. In this example it is the function g which
does not satisfy the conditions of Theorem 4.5. One should observe that the function g
defined at (40) is positively homogeneous of degree 1, and henceforth linear on half lines
through the origin. Thus, g is neither strictly convex, nor, “a fortioriÔ, totally convex at
all the points of its domain (as required by Theorem 4.5).

4.7. A problem more general than this of minimizing a convex function is that of finding
zeroes of maximal monotone operators: Let T : X → P(X∗) be a maximal monotone
operator; find x̄ ∈ X such that 0 ∈ T (x̄). The generalized proximal point algorithm for
this problem recursively generates sequences

{

xk
}

k∈N in X through the iteration

ωk

[

f ′(xk)− f ′(xk+1)
]

∈ T (xk+1), (41)

where the initial point x0 ∈ dom (T ) is arbitrarily chosen, the sequence of positive real
numbers {ωk}k∈N is bounded and f : X → (−∞,+∞] is such that

(a′) dom (T ) ⊆ Int (dom (f)) ;

(b′) For any α ∈ (0,+∞) and x ∈ dom (T ) , the set

Rf
α(x) := {y ∈ dom (T ) : Df (x, y) ≤ α}

is bounded;

(c′) f is uniformly convex and uniformly smooth on bounded subsets of dom (T ) .

Note that, if T = ∂g for some lower semicontinuous convex function g : X → (−∞,+∞],
then (35) and (41) are equivalent, because (41) is just the necessary and sufficient condi-
tion for the minimization subproblem (35).
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For X a Hilbert space provided with f(x) = ‖x‖2, it was proved by Rockafellar in [33] that
the sequence

{

xk
}

k∈N generated by (41) is weakly convergent to a zero of T if T has zeroes,
and it is unbounded otherwise. Also in [33], it is shown that, in these circumstances, the
algorithm (41) produces sequences which are necessarily strongly convergent to zeroes of
T provided that the inverse operator T−1 is Lipschitz continuous near 0, that is, there
exist two positive constants M and ε such that

‖x− y‖ ≤ M ‖u− v‖

for all x, y ∈ dom (T ) and all u ∈ T (x) and all v ∈ T (y) such that ‖u‖ , ‖v‖ ≤ ε. This
happens because, in such a case, the sequence

{

xk
}

k∈N is linearly convergent to its limit

x∗ which is the unique zero of T , and henceforth limk→∞
∥

∥xk − x∗
∥

∥ = 0.

There exists yet another option to force strong convergence upon the sequences generated
by the proximal point algorithm (41) when T is a maximal monotone operator with zeros
in the particular case that X is a Hilbert space and f(x) = 1

2
‖x‖2 . It was proposed by

Solodov and Svaiter in [34] and it consists of modifying the algorithm (41) by introducing
an additional step: after finding the vector yk ∈ X such that

ωk

(

xk − yk
)

∈ T (yk),

one defines xk+1 as being the projection of yk onto the intersection of the sets {x ∈ X :
〈

x, x0 − xk
〉

≤ 0} and
{

x ∈ X :
〈

x, xk − yk
〉

≤ 0
}

. The sequence
{

xk
}

k∈N produced in

this way converges strongly to a zero of T even if T−1 is not Lipschitz continuous near 0
as required in Rockafellar’s previously quoted result (and, for that matter, even if T does
not satisfy condition (i) of the proposition proved below).

The algorithm (41) in Banach spaces which are not necessarily Hilbertian was considered
in [11], and an analysis for the case of inexact solutions of (41) appears in [24]. In these
two references, Rockafellar’s weak convergence result is extended to Banach spaces, under
assumptions on f similar to (a′), (b′) and (c′) above.

Let us now look at the result of Theorem 4.5, and some consequences for the method
applied to finding zeroes of maximal monotone operators (41). Theorem 4.5 ensures
strong convergence for the optimization case when g is totally convex at any point of
its domain. In view of Proposition 3.4, this assumption implies differentiability of the
conjugate g∗ at the points of the range of ∂g. Since ∂g∗(x∗) = (∂g)−1(x∗) whenever
x∗ is in the range of the operator ∂g, differentiability of g∗ at the points of the range
is equivalent to (∂g)−1 being point-to-point. Thus, application of Theorem 4.5 suggests
that strong convergence of the sequence generated by (41) might hold when the inverse
operator T−1 of the maximal monotone operator T is point-to-point near zero. This is
of course a weaker condition than the local Lipschitz continuity of T−1 required in the
strong convergence criterion, due to Rockafellar and mentioned above, but it still implies
uniqueness of the zero of T . We prove next a result related to this conjecture. We
mention that Corollary 1.1 of [32] establishes that a maximal monotone operator which
is point-to-point in a open set U is norm-to-weak continuous in U ; our next proposition
requires strong continuity of T−1, which does not follow, as far as we know, from being
point-to-point. Also, one should observe that condition (ii) below is satisfied quite often
in practical situations as follows from [11, Theorem 3.2(b)].
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Proposition. Let T : X → P(X∗) be a maximal monotone operator with zeroes. Suppose
that

{

xk
}

k∈N is a sequence generated by the algorithm (41) with a bounded sequence of
positive regularization coefficients {ωk}k∈N and a function f satisfying the conditions (a′),
(b′) and (c′). If

(i) T−1 is point-to-point and norm-to-norm continuous in a neighborhood of 0 ∈ X∗

and

(ii) limk→∞
∥

∥f ′(xk)− f ′(xk+1)
∥

∥ = 0,

then
{

xk
}

k∈N is strongly convergent to T−1(0).

Proof. Since {ωk}k∈N is bounded, we get

lim
k→∞

ωk[f
′(xk)− f ′(xk+1)] = 0.

Since T−1 is point-to-point near 0, (41) implies that

xk+1 = T−1
(

ωk[f
′(xk)− f ′(xk+1)]

)

,

and this and the norm-to-norm continuity of T−1 imply that
{

xk
}

k∈N is strongly conver-

gent to T−1(0).
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