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We study the lower semicontinuous envelope of variational functionals given by
∫

f(x,Du) dx for smooth
functions u, and equal to +∞ elsewhere, under nonstandard growth conditions of (p, q)-type: namely, we
assume that

|z|p(x) ≤ f(x, z) ≤ L(1 + |z|p(x)) .

If the growth exponent is piecewise constant, i.e., p(x) ≡ pi on each set of a smooth partition of the
domain, we prove measure and representation property of the relaxed functional. We then extend the
previous results by considering p(x) uniformly continuous on each set of the partition. We finally give an
example of energy concentration in the process of relaxation.

Introduction

The aim of this paper is the study of measure property and integral representation of the
L1 (Ω;RN)-lower semicontinuous envelope of variational functionals of the type

F (u) :=







∫

Ω

f(x,Du(x)) dx if u ∈ C1 (Ω;RN)

+∞ elsewhere on L1 (Ω;RN)
(1)

where Ω is an open subset of Rn and f is a non-negative Borel function defined on Ω×RnN

and satisfying a nonstandard growth condition.

Under the assumption of p-growth

|z|p ≤ f(x, z) ≤ L(1 + |z|p) (2)

existence and integral representation of the lower semicontinuous envelope was proved in
[9].

In case of nonstandard (p, q)-growth

|z|p ≤ f(x, z) ≤ L(1 + |z|q) , q > p > 1 , (3)

introduced by Marcellini [22] in the context of regularity theory for minimizers, dealing
with the passage to the limit for variational problems, Zhikov [26] provided several results,
in the context of Γ-convergence, when N = 1 and f(x, ·) is convex.
Actually, the difference between the space of coercivity, W 1,p (Ω;RN), and the smaller
space of boundedness, W 1,q (Ω;RN), is responsible for the presence of the so called Lavren-
tiev effect, due to the lack of W 1,q-density of smooth functions in W 1,p (Ω;RN), see [27].
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For example, let Ω = B1, the unit ball in R2, N = 1 and

f(x,Du) :=

{

|Du|p if x1x2 > 0
|Du|q if x1x2 < 0

x = (x1, x2) ∈ B1 (4)

where 1 < p < 2 < q. Zhikov showed that if u0 : B1 → R is given by

u0(x) :=















x1/‖x‖ if x1 > 0 and x2 > 0
0 if x1 < 0 and x2 > 0
−x2/‖x‖ if x1 < 0 and x2 < 0
1 if x1 > 0 and x2 < 0

‖x‖ :=
√

x1
2 + x2

2 , (5)

then u0 has finite (p, q)-energy,
∫

B1
f(x,Du0) dx < +∞, but it cannot exist a sequence

{uj} ⊂ C1(B1), or in W 1,q(B1), which converges to u0 in (p, q)-energy, i.e., such that
∫

B1
f(x,Duj) dx →

∫

B1
f(x,Du0) dx.

In the context of cavitation and related theories, described by functionals of the type (1), if
the integrand f is satisfying a q-growth condition from above, the measure representation
of the relaxed functional with respect to the weak W 1,p convergence is obtained in [18],
[6] and [1], assuming z 7→ f(x, z) quasi-convex (f convex in [1]) and p > q − q/n. As to
regularity of minimizers of relaxed functionals with (p, q)-growth see [16].

A borderline case lying between (2) and (3) is the one of p(x)-growth

|z|p(x) ≤ f(x, z) ≤ L(1 + |z|p(x)) , p(x) > 1 . (6)

This kind of growth was first considered by Zhikov in the context of homogeneization, see
[29], and in recent years the subject gained importance by providing variational models
for many problems from Mathematical Physics: for instance, dealing with electrostatic
fields in which conductivity depends on the intensity of the field, or thermal equilibrium
in composite nonlinearly conductive materials, Zhikov’s thermistor problem [28], or, more
recently, the mathematical theory of electrorheological fluids developed by Rajagopal and
Růžička, see [25].

In this paper, we will suppose the growth exponent p(x) to be piecewise constant in a
suitable way, the simplest non trivial example being the one described in (4). This cor-
responds to the physical model of a conductor made by different homogeneous materials,
compare [2] for a regularity result in this context.

More precisely, we will suppose the open set Ω to be partitioned by an at most countable
family of open sets {Ωi} with Lipschitz boundary, so that the transition set

Σ := Ω \
+∞
⋃

i=1

Ωi (7)

is negligible, i.e., |Σ| = 0. We will suppose p(x) to be constant on each Ωi

p(x) ≡ pi > 1 if x ∈ Ωi , ∀ i , (8)

and that the number of different phases pi of p(x) is locally finite.
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Since we will make use of the localization method, we define

F (u,A) :=







∫

A

f(x,Du(x)) dx if u ∈ C1 (A;RN)

+∞ elsewhere on L1 (Ω;RN)
(9)

for every open subset A of Ω, and denote by F (·, A) the lower semicontinuous envelope
of F (·, A) with respect to the L1 (Ω;RN) topology, given for all u ∈ L1 (Ω;RN) by

F (u,A) := sup {G(u) | G is L1 (Ω;RN)-l.s.c. and G(u) ≤ F (u,A)} . (10)

We will show measure and representation property of the relaxed functional (10), under
the hypotheses (8), (9) and (6).

We will then weaken condition (8), considering the more general case of growth exponents
which are uniformly continuous on each set Ωi, provided the following estimate about the
modulus of continuity ω(R) of p(x) holds locally on each set Ωi:

lim sup
R→0+

ω(R) log(1/R) < +∞ . (11)

This condition was introduced by Zhikov to prove higher integrability of the gradient
of minimizers of functionals with p(x)-growth, see [27]; note that (11) is sharp since, in
general, dropping it causes the loss of any type of regularity, see [28]. Regularity results
in this and in related contexts are obtained in [3], [4], [2] and [16].

Moreover, condition (11) seems to play a central role in the theory of functionals with
p(x)-growth since Zhikov proved in [28] that such functionals exhibit the Lavrentiev phe-
nomenon if (11) is violated.

On the other side, in [1] it is proved that the singular part of the measure representation
of relaxed functionals with growth (6) disappears if (11) holds true.

Finally, in [11] it is shown Γ-compactness and integral representation of the Γ-limit of
integral functionals with p(x)-growth, provided a local the estimate of the type (11) holds
for the modulus of continuity of p(x). A crucial role here is played by the density result
in the class W 1,p(x) (Ω;RN), see Proposition 4.2.

This paper is organized as follows. After giving notation and statements in Sec. 1, and
preliminary results in Sec. 2, in Sec. 3 we will prove (Theorem 1.8) that, for every function
u ∈ L1 (Ω;RN), the relaxed functional F (u, ·) satisfies the so called measure property.
Thanks to the standard pi-growth condition on each Ωi, see (8), we will then represent
(Theorem 1.9) the measure F (u, ·), writing its absolute continuous part as the integral
of a quasi-convex function, satisfying the same p(x)-growth condition (6), plus a singular
measure with support concentrated in the transition set Σ, see (7).

In Sec. 4 we will extend the previous results to growth exponents which are uniformly
continuous on each set Ωi, provided the estimate (11) about the modulus of continuity of
p(x) holds locally on each set Ωi, see Theorems 1.13 and 1.14. The proof is modeled on
the case of p(x) piecewise constant, taking account of a Rellich’s type result for W 1,p(x)

functions (Lemma 4.1), of the density of smooth maps in the classW 1,p(x) (Proposition 4.2)
and of an integral representation result for local functionals with p(x)-growth (Theorem
4.3), for the proof of which we refer to [11].
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Finally, in Sec. 5, starting from Zhikov’s example (4), we will prove existence of energy
concentration in the process of relaxation (Example 1.15), showing that, if 1 < p < 2 < q
(and n = 2 ) the singular part of the measure F (u, ·) is an atomic mass of infinite energy
supported in the origin 0R2 , provided u behaves like the function in (5). Other model
examples in the same context are studied in [23].

We will show, in conclusion, that the measure property of the relaxed functional may fail
if the localization method is not performed in the suitable way, see Remark 1.16.

Acknowledgements. The author thanks N. Fusco for addressing this investigation and also

E. Acerbi and G. Mingione for reading the paper. He also thanks the referees for some useful

suggestions.

1. Notation and statements

In the sequel Ω is a bounded open set of Rn with Lipschitz boundary and A is the family
of its open subsets; similarly, if B ∈ A, we denote A(B) the family of open subsets of
B; by A ⊂⊂ B we mean that the closure A of A is a compact set contained in B, and
by A0 we denote the class of all A ∈ A such that A ⊂⊂ Ω; a similar notation is given
for A0(B). If A′, A ∈ A with A′ ⊂⊂ A, a cut-off function between A′ and A is a smooth
function ϕ ∈ C∞

0 (Ω) with 0 ≤ ϕ ≤ 1, such that ϕ ≡ 1 on A′ and sptϕ ⊂ A. Also, Bδ(x)
denotes the ball of radius δ > 0 centred at x ∈ Rn and Bδ := Bδ(0Rn). As usual, RnN is
identified with the set of real valued (N × n)-matrices. Finally we denote by Hk is the
k-dimensional Hausdorff measure on Rn, see [17].

We will consider the relaxation of non-negative variational functionals F : L1 (Ω;RN) →
[0,+∞] of the type

F (u) =







∫

Ω

f(x,Du(x)) dx if u ∈ C1 (Ω;RN)

+∞ elsewhere on L1 (Ω;RN)

where f : Ω × RnN → [0,+∞) is a Borel measurable function satisfying a nonstandard
growth condition of the form

α|z|p(x) ≤ f(x, z) ≤ a(x) + β|z|p(x) (12)

for a.e. x ∈ Ω and all z ∈ RnN , where 0 < α ≤ β < +∞ and a(x) ∈ L1(Ω), with
a(x) ≥ 0. We are interested in the study of the relaxed functional of F with respect
to the strong L1 (Ω;RN) convergence, i.e., the lower semicontinuous envelope of F with
respect to the L1 (Ω;RN) topology.

The growth exponent p(x) > 1 is supposed to be piecewise constant, locally bounded
and discontinuous on a transition set Σ of null measure, with Σ sufficiently smooth. More
precisely, we introduce the following assumptions.

Definition 1.1. A family {Ωi} is a locally finite regular partition of an open set Ω if
each Ωi is an open set with Lipschitz boundary, Ωi ∩ Ωj = ∅ for i 6= j,

Ω = Σ ∪
+∞
⋃

i=1

Ωi , (13)

where |Σ| = 0, and if A ∈ A0 yields A ∩ Ωi = ∅ except for a finite number of indices.
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Definition 1.2. A function p : Ω → (1,+∞) is a regular piecewise constant exponent if
there exist a locally finite regular partition {Ωi} of Ω and, for every i, a constant pi > 1
such that

p(x) ≡ pi > 1 ∀x ∈ Ωi , ∀ i . (14)

Remark 1.3. If p(x) is a regular piecewise constant exponent, by (14) we infer that p(x)
is locally finite and distant from 1, i.e., taking essential infimum and supremum,

1 < inf
x∈A

p(x) ≤ sup
x∈A

p(x) < +∞ ∀A ∈ A0 . (15)

Actually, growth condition (12) leads us to consider the class of Sobolev functions with
summability of the p(x) power of the gradient, which coincides with the standard one if
p(x) ≡ p ≥ 1 on Ω. We then introduce for every A ∈ A on L1 (A;RN) the class

Lp(x) (A;RN) := {u : A → RN |
∫

A

|u|p(x) dx < +∞}

of measurable functions with p(x) summability. Similarly, we introduce on the Sobolev
space W 1,1 (A;RN) the class

W 1,p(x) (A;RN) := {u ∈ Lp(x) (A;RN) | Du ∈ Lp(x)(A;RnN)} .

Therefore, denoting Ai := A∩Ωi, if u ∈ W 1,p(x) (A;RN), by (14) the restriction u|Ai
of u

to Ai is in the Sobolev space W 1,pi(Ai;RN) whereas, if p is the smallest of the exponents
pi for which Ai 6= ∅ (and |A| < +∞ ), then W 1,p(x) (A;RN) ⊂ W 1,p (A;RN). Moreover,
we set

W
1,p(x)
loc (A;RN) := {u : A → RN | u|B ∈ W 1,p(x)(B;RN) ∀B ∈ A , B ⊂⊂ A}

and we say that {uj} ⊂ W
1,p(x)
loc (A;RN) converges to u ∈ W

1,p(x)
loc (A;RN) strongly in

W
1,p(x)
loc (A;RN) if

lim
j→+∞

∫

B

(|uj − u|p(x) + |Duj −Du|p(x)) dx = 0

for every B ∈ A, B ⊂⊂ A. For the general properties of the function spaces Lp(x) and
W 1,p(x) we refer to [20] and [15]. We will also denote

C1,p(x) (A;RN) := C1 (A;RN)∩W 1,p(x) (A;RN)

(to be distinguished from the standard class C1,α of functions with Hölder derivatives)
the class of smooth functions in W 1,p(x). If X = Lp(x), W 1,p(x) or C1,p(x), then it is easy
to show that X (A;RN) is always a convex set. Due to (15), X (A;RN) becomes a vector
space if A ∈ A0. Finally, in the sequel the target space RN will be omitted when it is
clear from the context, for example inside proofs.

To show measure property and integral representation of the relaxed functional we make
use of the localization method, which consists in considering at the same time the de-
pendence on the function and on the open set. To this aim, we will always consider non
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negative variational functionals F : L1 (Ω;RN)×A → [0,+∞] of the form

F (u,A) :=







∫

A

f(x,Du(x)) dx if u ∈ C1,p(x) (A;RN)

+∞ elsewhere on L1 (Ω;RN)
(16)

for any open set A ∈ A, where f : Ω × RnN → [0,+∞) is a Borel function satisfying
growth condition (12). Also, for every A ∈ A, we denote by F (·, A) the relaxed functional
of F (·, A) with respect to the strong L1 (Ω;RN) convergence, see (10), given for all u ∈
L1 (Ω;RN) by

F (u,A) := inf{lim inf
k→+∞

F (uk, A) | {uk} ⊂ L1 (Ω;RN) , uk → u in L1 (Ω;RN)} . (17)

Remark 1.4. Since each sequence {uk} ⊂ L1 (A;RN) converging to u in L1 (A;RN) can
be extended to a sequence L1 (Ω;RN)-converging to u, if F (u,A) < +∞, by (16) we have

F (u,A) = inf{lim inf
k→+∞

∫

A

f(x,Duk(x)) dx | {uk} ⊂ C1,p(x) (A;RN) ,

uk → u in L1 (A;RN)} .

We now recall some well known facts about set functions.

Definition 1.5. A function α : A → [0,+∞] is called an increasing set function if
α(∅) = 0 and α(A) ≤ α(B) if A ⊆ B. An increasing set function α is said to be
subadditive if

α(A ∪B) ≤ α(A) + α(B)

for all A,B ∈ A, and it is said to be superadditive if

α(A ∪B) ≥ α(A) + α(B)

for all A,B ∈ A with A ∩B = ∅; finally α is said to be inner regular if for all A ∈ A

α(A) = sup{α(B) | B ∈ A , B ⊂⊂ A} .

Remark 1.6. Since f ≥ 0, then F (u, ·) is an increasing set function for every u ∈
L1 (Ω;RN). Moreover, by definition of relaxation one directly obtains that F (u, ·) is
superadditive. Finally, we will denote by F−(u, ·) the inner regular envelope of F (u, ·),
given by

F−(u,C) := sup{F (u,B) | B ∈ A , B ⊂⊂ C} (18)

for every C ∈ A, so that F (u, ·) is inner regular if F (u, ·) ≡ F−(u, ·) on A.

We will apply the following criterion due to De Giorgi-Letta [14], compare also [7, 10.2].

Proposition 1.7 (Measure property criterion). Let α : A → [0,+∞] be an increas-
ing set function. Then the following statements are equivalent:

i) α is the trace on A of a Borel measure on Ω;

ii) α is subadditive, superadditive and inner regular;

iii) the set function α̃(E) := inf{α(A) | A ∈ A, E ⊂ A} defines a Borel measure on Ω.
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The first result of this paper is the following

Theorem 1.8. Let p : Ω → (1,+∞) be a regular piecewise constant exponent satisfying
(15), according to Definition 1.2. Let F : L1 (Ω;RN)×A → [0,+∞] be a variational
functional of the type (16), where f : Ω × RnN → [0,+∞] is a Borel function satisfying
growth condition (12) for a.e. x ∈ Ω and all z ∈ RnN , for some 0 < α ≤ β < +∞ and
a(x) ∈ L1(Ω), with a(x) ≥ 0. Then, for every function u ∈ L1 (Ω;RN), the L1 (Ω;RN)-
relaxed functional F (u, ·), see (17), is the trace on A of a Borel measure on Ω.

Since on each Ωi the integrand f satisfies a standard pi growth condition, see (14), as a
consequence we are able to prove a representation result for the relaxed functional. To
this aim, we first recall that a continuous function g : RnN → R is called quasi-convex in
the sense of Morrey [24] if for every z ∈ RnN , every bounded open set A of Rn and every
function φ ∈ C1

0 (A;RN) we have

|A| g(z) ≤
∫

A

g(z +Dφ(x)) dx .

A Carathéodory function f : Ω×RnN → [0,+∞] is called quasi-convex if z → f(x, z) is
quasi-convex for a.e. x ∈ Ω. Moreover, the quasi-convex envelope Qf(x, z) (with respect
to z) of a Borel function f(x, z) is the greatest Carathéodory function which is quasi-
convex in z and less than or equal to f(x, z) for a.e. x ∈ Ω, see [12]. For quasi-convex
functionals with p(x)-growth we refer to [4].

Theorem 1.9. Under the hypotheses of Theorem 1.8, for each open set A ∈ A we have

F (u,A) =







∫

A

ϕ(x,Du(x)) dx+ µ(u,A) if u ∈ W
1,p(x)
loc (A;RN)

+∞ elsewhere on L1 (Ω;RN)
(19)

where ϕ : Ω×RnN → [0,+∞) is a quasi-convex function satisfying growth condition (12)
for a.e. x ∈ Ω and all z ∈ RnN , and µ(u, ·), for any u ∈ L1 (Ω;RN), is a non negative
Borel measure on Ω concentrated in the transition set Σ of p(x), see (13). Finally, if

u ∈ L1 (Ω;RN) is such that u|A ∈ W
1,p(x)
loc (A;RN) for some A ∈ A, then µ(u,A) = 0 in

(19) if there exists a sequence of smooth functions {uk} ⊂ C1 (A;RN) such that uk → u

in W
1,p(x)
loc (A;RN).

Arguing as in [8, 4.4.5], we finally obtain the following

Corollary 1.10. Under the hypotheses of Theorem 1.9, if f is a Carathéodory function,
or f(x, ·) is upper semicontinuous in RnN for a.e. x ∈ Ω, then we have ϕ(x, z) = Qf(x, z),
the quasi-convex envelope of f .

In Sec. 4 we will then extend the previous results to a more general class of growth
exponents. We first introduce the following assumptions.

Definition 1.11. A function p : Ω → (1,+∞) is a regular piecewise continuous exponent
if there exist a locally finite regular partition {Ωi} of Ω , see Definition 1.1, and, for every
i, a uniformly continuous function pi : Ωi → [1,+∞) such that p(x) = pi(x) for every
x ∈ Ωi.
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Remark 1.12. If p(x) is a regular piecewise continuous exponent satisfying

inf
x∈Ωi

pi(x) > 1 ∀ i (20)

then (15) holds again.

We first extend Theorem 1.8 by the following

Theorem 1.13. Let p : Ω → (1,+∞) be a regular piecewise continuous exponent satisfy-
ing (20), according to Definition 1.11. Let F : L1 (Ω;RN)×A → [0,+∞] be a variational
functional of the type (16), where f : Ω × RnN → [0,+∞] is a Borel function satisfying
growth condition (12) for a.e. x ∈ Ω and all z ∈ RnN , for some 0 < α ≤ β < +∞ and
a(x) ∈ L1(Ω), with a(x) ≥ 0. Then the conclusions of Theorem 1.8 hold again.

Moreover, if the growth exponent satisfies a local estimate (11) about the modulus of
continuity on each Ωi, we are able to extend Theorem 1.9 as follows.

Theorem 1.14. Under the hypotheses of Theorem 1.13, suppose that for every i the
function pi : Ω → (1,+∞) satisfies the following local estimate about the modulus of
continuity:

∀A ∈ A0 , A ⊂⊂ Ωi , ∃ γA > 0 :

|pi(x)− pi(y)| ≤
γA

| log |x− y||
∀x, y ∈ A , 0 < |x− y| < 1

2
.

(21)

Then all the conclusions of Theorem 1.9 hold again.

Notwithstanding, existence of energy concentration in general holds. More precisely, there
are functions u ∈ W 1,p(x) (Ω;RN) such that µ(u,A) ≥ C > 0 in (19) for every open set
A ∈ A which contains a given point x0 of the transition set Σ. The simplest examples are
obtained by taking p(x) as in (22), i.e., in a "saddle" configuration around the origin 0R2 .
In fact, Zhikov in [27] showed that a Lavrentiev phenomenon occurs for the minimum of
energy of the functional

∫

|Du|p(x) dx in the unit ball B1 in R2, where

p(x) :=

{

p if x1x2 > 0
q if x1x2 < 0

x = (x1, x2) ∈ B1 (22)

and 1 < p < 2 < q. More precisely, he considered the function u0 : B1 → R given by (5),
which clearly belongs to W 1,p(x)(B1) if p(x) is given by (22) and p < 2. He essentially
showed that if q > 2 it cannot be find a sequence of smooth functions W 1,p(x)-converging
to the function u0 given by (5), compare the last assertion in Theorem 1.9. This depends

on the fact that since p(x) = q > n = 2 on the subset ˜B := {x ∈ B1 | x1x2 < 0}, if u0

were W 1,p(x)-approximable by smooth functions, then the restriction of u0 to ˜B ought to

have a continuous extension to the closure of ˜B, which is impossible, see Remark 5.3 and
Step 2 in Sec. 5. Following this argument, we will show existence of energy concentration
in the process of relaxation.

Example 1.15. Let Ω = B1, the unit ball of R2, n = 2, N = 1; let p(x) be given by
(22) with 1 < p < 2 < q and let f(x, z) := |z|p(x) for a.e. x ∈ B1 and all z ∈ R2. Since
f(x, ·) = | · |p(x) is convex, then Qf(x, z) = f(x, z) and hence Theorem 1.9 and Corollary
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1.10 yield (19) with ϕ(x, z) = |z|p(x). Moreover, the singular measure µ(u,A) is obtained

as follows. If u ∈ L1(Ω) is such that u|A ∈ W
1,p(x)
loc (A) for some open set A ∈ A(B1) with

0R2 ∈ A, we set

λ1 := lim
ρ → 0+

θ ∈ (π/2, π)

ũ(ρ, θ) and λ2 := lim
ρ → 0+

θ ∈ (3π/2, 2π)

ũ(ρ, θ) (23)

where ũ(ρ, θ) := u(ρ cos θ, ρ sin θ) in polar coordinates. Note that the limits in (23) exist
uniformly in θ since if q > 2 and B is any bounded open subset of R2 with Lipschitz
boundary, then W 1,q(B) ⊂ C0,α(B) with α = 1 − 2/q. Then, for all A ∈ A(B1) and

u ∈ W
1,p(x)
loc (A) we will compute in Sec. 5

µ(u,A) =

{

0 if 0R2 /∈ A

χλ1
λ2

if 0R2 ∈ A
(24)

where λ1 and λ2 are defined by (23) and

χλ1
λ2

:=

{

0 if λ1 = λ2

+∞ if λ1 6= λ2 .

In particular, if u0 is given by (5), since λ1 = 0 and λ2 = 1 there is energy concentration
in the origin, i.e.,

F (u0, A) = +∞ ∀A ∈ A such that 0R2 ∈ A . (25)

Remark 1.16. We finally make some comments about the definition of the localized
functional F (u,A) in (16), showing that a wrong localization procedure may cause lack
of measure property (inner regularity) of the relaxed functional.

For any Borel function f : Ω × RnN → [0,+∞) as in Theorem 1.8, denote by G :
L1 (Ω;RN)×A → [0,+∞] the variational functional

G(u,A) :=







∫

A

f(x,Du(x)) dx if u ∈ C1,p(x) (Ω;RN)

+∞ elsewhere on L1 (Ω;RN)
(26)

for every A ∈ A, and by G(·, A) the L1 (Ω;RN)-relaxed functional of G(·, A) given by

G(u,A) := inf{lim inf
k→+∞

G(uk, A) | {uk} ⊂ L1 (Ω;RN) , uk → u in L1 (Ω;RN)} . (27)

If F (u,A) is given by (16), we obviuosly have F (u,A) ≤ G(u,A) and hence

F (u,A) ≤ G(u,A) ∀u ∈ L1 (Ω;RN) , A ∈ A . (28)

Moreover, equality in (28) may fail if A does not have smooth boundary.

It can be shown that by using (26) in the localization method, the relaxed functional
(27) does not satisfy the measure property. Taking in fact Ω = B1, n = 2, N = 1, p(x)
given by (22) with 1 < p < 2 < q and f(x, z) := |z|p(x), see Example 1.15, we will prove
in Sec. 3 that if u0 ∈ W 1,p(x)(B1) is given by (5), then (25) holds. On the other side,
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if Σ := {x ∈ B1 | x1x2 = 0} is the transition set of p(x), see (13), since |Σ| = 0, by
definition (26) we clearly have

G(u,A) = G(u,A \ Σ) ∀u ∈ L1(B1) , A ∈ A . (29)

Moreover, it can be shown (see Lemma 2.5) that if B ∈ A0 and B ⊂⊂ B1 \ Σ, then
G(u,B) =

∫

B
|Du|p(x) dx for every function u ∈ W 1,p(x)(B).

Suppose now by contradiction that G(u, ·) is inner regular on A. Then, by (29) we would
have

G(u,A) = sup {G(u,B) | B ∈ A0 , B ⊂⊂ A \ Σ}

= sup {
∫

B

|Du|p(x) dx | B ∈ A0 , B ⊂⊂ A \ Σ} =

∫

A

|Du|p(x) dx < +∞

for everyA ∈ A and u ∈ W 1,p(x)(A). This cannot hold for u = u0 given by (5), for example,
since by (28) and (25) we have G(u0, A) = +∞ if 0R2 ∈ A, whereas u0 ∈ W 1,p(x)(B1).
On the other side, it is easy to infer that the proof of Proposition 3.1 (which yields inner
regularity) does not hold in case the localized functional is defined by (26), see Remark
3.2.

2. Preliminary results

In this section we provide some preliminary results. We will always suppose that p(x)
and {Ωi} satisfy the hypotheses of Theorem 1.8. We first need a compactness result for
W 1,p(x) functions.

Lemma 2.1. Let p : Ω → (1,+∞) be a regular piecewise constant growth exponent. Let

A ∈ A, {uj} ⊂ W
1,p(x)
loc (A;RN) and u ∈ L1 (A;RN) be such that uj → u in L1 (A;RN)

and

sup
j∈N

∫

A

|Duj(x)|p(x) dx < +∞ .

Then for every A′ ∈ A0 with A′ ⊂⊂ A we have

lim
j→+∞

∫

A′
|uj − u|p(x) dx = 0 .

Proof. If U is the domain under the graph of a strictly positive Lipschitz function and
V is an (n− 1)-dimensional ball, then U ∩ (V × (0,+∞)) is a Lipschitz domain. Then,
since every set in A0 intersects Ωi for finitely many i, see Definition 1.1, it is possible to
construct a finite system {Bik}i,k of Lipschitz domains such that

A′ ∩ Ωi ⊂
⋃

k

Bik ⊂ A ∩ Ωi for each i .

As a consequence, since supj
∫

Bik
|Duj(x)|pi dx < +∞, by Rellich’s theorem we have

lim
j→+∞

∫

Bik

|uj − u|pi dx = 0

for every i and k and hence the assertion.
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Remark 2.2. With a similar argument it can be shown that for every A ∈ A

W
1,p(x)
loc (A;RN) = {u : A → RN |

∫

B

|Du|p(x) dx < +∞ ∀B ∈ A, B ⊂⊂ A} . (30)

Next we recall a semicontinuity result by Ioffe [19].

Theorem 2.3. Let A be a bounded open set of Rn and let g : A×RN ×RnN → [0,+∞)
be a Carathéodory function such that g(x, u, ·) is convex for every u ∈ RN and for a.e.
x ∈ A. Then the functional

G(u) :=

∫

A

g(x, u(x), Du(x)) dx

is lower semicontinuous on W 1,1 (A;RN) with respect to the weak convergence in W 1,1

(A;RN).

Taking account of (15), if F and F are given by (16) and (17), we then infer the following

Lemma 2.4. Suppose (15) holds and let A ∈ A0 and u ∈ L1 (Ω;RN) be such that

F (u,A) < +∞. Then u ∈ W
1,p(x)
loc (A;RN) and

∫

A

|Du|p(x) dx ≤ 1

α
F (u,A) < +∞ .

Proof. Let p := infA p(x) > 1 be given by (15) and {uk} ∈ L1(Ω) be such that
supk F (uk, A) < +∞, uk → u in L1(Ω) and F (uk, A) → F (u,A) < +∞ as k → +∞.
By (16) one has {uk|A} ⊂ C1,p(x)(A) and hence by (12)

sup
k

∫

A

|Duk|p dx ≤ sup
k

∫

A

(1 + |Duk|p(x)) dx ≤ |A|+ 1

α
sup
k

F (uk, A) < +∞ .

Then, possibly passing to a subsequence we have that Duk ⇀ Du weakly in Lp(A) and
hence uk ⇀ u weakly in W 1,1(A). Since g(x, z) := |z|p(x) is convex in z for a.e. x ∈ Ω,
by Theorem 2.3 and (12)

α

∫

A

|Du|p(x) dx ≤ lim inf
k→+∞

α

∫

A

|Duk|p(x) dx ≤ lim
k→+∞

∫

A

f(x,Duk) dx = F (u,A) < +∞

and hence we obtain the assertion by (30).

We now prove a representation result, stated in Remark 1.16, about the l.s.c. envelope G
of the localized functional G, defined by (27) and (26), respectively, under the hypotheses
of Example 1.15.

Lemma 2.5. Let Ω = B1, n = 2, N = 1, p(x) be given by (22), with 1 < p < 2 < q,
f(x, z) := |z|p(x) and Σ := {x ∈ B1 | x1x2 = 0}. If A ∈ A0, with A ⊂⊂ B1 \ Σ, then for
every function u ∈ L1(B1) with u|A ∈ W 1,p(x)(A) we have

G(u,A) =

∫

A

|Du(x)|p(x) dx < +∞ .
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Proof. For i = 1, . . . , 4 let Ai := A ∩ Ωi, where

Ωi := {x = (ρ cos θ, ρ sin θ) ∈ B1 | 0 ≤ ρ < 1 and (i− 1)π/2 < θ < iπ/2} .

Since p(x) is constant on each Ωi, we can find smooth sequences {ui
k} ⊂ C1,p(x)(Ai)

converging to u in L1(Ai) and such that

lim
k→+∞

∫

Ai

|Dui
k|p(x) dx =

∫

Ai

|Du|p(x) dx ∀ i = 1, . . . , 4 . (31)

Moreover, since Ai ⊂⊂ Ωi, we can easily construct a sequence {uk} ⊂ C1,p(x)(B1) con-
verging to u in L1(B1) and such that uk ≡ ui

k on Ai for every i = 1, . . . , 4. Then by
(31)

G(u,A) ≤ lim inf
k→+∞

∫

A

|Duk|p(x) dx =
4

∑

i=1

lim
k→+∞

∫

Ai

|Dui
k|p(x) dx =

∫

A

|Du|p(x) dx < +∞ .

On the other side, since G(u,A) < +∞, for every sequence {vk} ⊂ C1,p(x)(B1) converging
to u in L1(B1) and such that supk

∫

A
|Dvk|p(x) dx < +∞, by an argument similar to

Lemma 2.4 we infer
∫

A

|Du|p(x) dx ≤ lim inf
k→+∞

∫

A

|Dvk|p(x) dx

and hence, taking the infimum on {vk} in the right-hand side, by (27) we conclude with
∫

A

|Du|p(x) dx ≤ G(u,A)

and finally with the assertion.

To apply the localization method in Sec. 3, we need the following results.

Lemma 2.6. Under the hypotheses of Theorem 1.8, let A,A′, B ∈ A, A′ ⊂⊂ A, and
ϕ ∈ C∞

0 (Ω) be a cut-off function between A′ and A. Then for every u, v ∈ L1 (Ω;RN),
with u|A ∈ C1,p(x) (A;RN) and v|B ∈ C1,p(x)(B;RN), we have that ϕu+ (1−ϕ)v belongs

to L1 (Ω;RN) and to C1,p(x)(A′∪B;RN). Similarly, if C ∈ A0 is such that C ⊂⊂ A∪B,
ϕ is a cut-off function between C \B and A and u, v ∈ L1 (Ω;RN) are such that u|A∩C ∈
C1,p(x)(A ∩ C;RN) and v|B∩C ∈ C1,p(x)(B ∩ C;RN), we have that ϕu+ (1− ϕ)v belongs

to L1 (Ω;RN) and to C1,p(x)(C;RN).

Proof. Clearly ϕu + (1 − ϕ)v ∈ L1(Ω) ∩ C1(A′ ∪ B), whereas the convexity of | · |p(x)
yields that

∫

A′∪B |ϕu + (1 − ϕ)v|p(x) dx < +∞. Moreover, by setting K := sptϕ and
q := supK p(x) < +∞, which is finite by (15), we have

∫

A′∪B
|D(ϕu+ (1− ϕ)v)|p(x) dx =

∫

A′∪B
|ϕDu+ (1− ϕ)Dv +Dϕ⊗ (u− v)|p(x) dx

≤
∫

A

|Du|p(x) dx+

∫

B

|Dv|p(x) dx+

∫

(B∩K)\A′
| · |p(x) dx =: I + II + III .

Then the terms I and II are finite, whereas

III ≤ 4q−1

∫

(B∩K)\A′
[(|Du|p(x) + |Dv|p(x)) + (1 + ‖Dϕ‖q∞)(|u|p(x) + |v|p(x))] dx
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which is finite, since (B ∩K) \ A′ ⊂ A ∩B. Similarly, as to the second part we have
∫

C

|D(ϕu+ (1− ϕ)v)|p(x) dx ≤
∫

A∩C
|Du|p(x) dx+

∫

B∩C
|Dv|p(x) dx

+

∫

A∩B∩C
|ϕDu+ (1− ϕ)Dv

+Dϕ⊗ (u− v)|p(x) dx =: I + II + III .

The terms I and II are finite whereas

III ≤ 4q−1

(∫

A∩C
|Du|p(x) dx+

∫

B∩C
|Dv|p(x) dx

+(1 + ‖Dϕ‖q∞)

∫

A∩B∩C
(|u|p(x) + |v|p(x)) dx

)

hence III < +∞ and the proof is complete.

Due to growth condition (12), we then infer the following fundamental Lp(x) estimate.

Lemma 2.7 (Fundamental estimate I). Under the hypotheses of Theorem 1.8, for all
open sets A,A′, B ∈ A, with A′ ⊂⊂ A, and for every σ > 0, there exists a constantMσ > 0,
depending on α, β, a(x) and p(x), such that for every u, v ∈ L1 (Ω;RN) there exists a
cut-off function ϕ ∈ C∞

0 (Ω) between A′ and A such that

F (ϕu+(1−ϕ)v, A′∪B) ≤ (1+σ)(F (u,A)+F (v,B))+Mσ

∫

A∩B
|u−v|p(x) dx+σ . (32)

Proof. We can suppose the right-hand side of (32) to be finite and hence, by (16), that
u ∈ C1,p(x)(A) and v ∈ C1,p(x)(B). Then Lemma 2.6 gives ϕu + (1 − ϕ)v ∈ L1(Ω) ∩
C1,p(x)(A′ ∪ B) for every cut-off ϕ between A′ and A. The proof is then a readaptation
of [7, 12.2], to which we refer for the following notations. Taking in fact p(x) instead of
p, 0 < ν < δ, 2δ := dist(A′, ∂A), 0 < r < δ − ν, Bν

r := {x ∈ B | r < dist(x,A′) < r + ν}
and finally q := supx∈Bδ

0
p(x), which is finite by (15) since Bδ

0 ⊂⊂ A, we let ϕ be a cut-off

between {x ∈ A | dist(x,A′) < r} and {x ∈ A | dist(x,A′) < r+ν}, with ‖Dϕ‖∞ ≤ 2/ν.
Since by (16) all functionals involved in the following are integrals, by (12) one easily
obtains (for ν < 2)

F (ϕu+ (1− ϕ)v, A′ ∪B) ≤ F (u,A) + F (v,B) + µ(Bν
r ) + β

22q−1

νq

∫

A∩B
|u− v|p(x) dx

where

µ(E) := (1 + β 2q−1)

∫

E

(a(x) + |Du|p(x) + |Dv|p(x)) dx . (33)

Now, for every m ∈ N there exists k = km ∈ {1, . . . ,m} such that, by (12), since
Bδ

0 ⊂ A ∩B,

µ(B
δ/m
δ(k−1)/m) ≤

1

m
µ(Bδ

0) ≤
(1 + β 2q−1)

m

(∫

A∩B
a(x) dx+

1

α
(F (u,A) + F (v,B))

)

.

It then suffices to take

m ≥ (1 + β 2q−1)

σ
·max

{∫

A∩B
a(x) dx ,

1

α

}

, ν =
δ

m
, r = δ

km − 1

m

and hence obtain (32) with Mσ = β22q−1mqδ−q.
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In a similar way we obtain the following more general

Lemma 2.8 (Fundamental estimate II). Under the hypotheses of Theorem 1.8, if A,
B,C ∈ A are open sets with C ⊂⊂ A∪B, for every σ > 0 there exists a constant Mσ > 0,
depending on α, β, a(x) and p(x), such that for every u, v ∈ L1 (Ω;RN) there exists a
cut-off function ϕ ∈ C∞

0 (Ω) between C \B and A such that

F (ϕu+(1−ϕ)v, C) ≤ (1+σ)(F (u,A∩C)+F (v,B∩C))+Mσ

∫

A∩B∩C
|u− v|p(x) dx+σ .

Proof. We readapt the argument of Lemma 2.7 with A′ = C \B and Bν
r := {x ∈ B∩C |

r < dist(x,C \B) < r + ν}. In particular, this time we have

F (ϕu+ (1− ϕ)v, C) ≤ F (u,A ∩ C) + F (v,B ∩ C) + µ(Bν
r ) +Mσ

∫

A∩B∩C
|u− v|p(x) dx ,

with µ given by (33), and we obtain the assertion as Bδ
0 ⊂ A ∩B ∩ C.

As a consequence, by Lemma 2.1 we obtain a weak subadditivity property for the set
function F (w, ·).
Lemma 2.9 (Weak subadditivity). Under the hypotheses of Theorem 1.8, for every
w ∈ L1 (Ω;RN) we have

F (w,C) ≤ F (w,A) + F (w,B) (34)

for every A,B,C ∈ A, with C ⊂⊂ A ∪B.

Proof. In case the right-hand side of (34) is finite (otherwise there is nothing to prove),
by definition of relaxation, there exist sequences of functions {uj} and {vj} in L1(Ω), both
converging to w in L1(Ω), with uj|A ∈ C1,p(x)(A) and vj|B ∈ C1,p(x)(B) for every j, such
that

F (w,A) = lim inf
j→+∞

F (uj, A) < +∞ and F (w,B) = lim inf
j→+∞

F (vj, B) < +∞ . (35)

We take subsequences, which we relabel {uj} and {vj}, such that the lower limits in (35)
are limits and hence by (12)

sup
j∈N

∫

A

|Duj|p(x) dx+ sup
j∈N

∫

B

|Dvj|p(x) dx < +∞ . (36)

We now select A0, B0 ∈ A0, with A0 ⊂⊂ A and B0 ⊂⊂ B, such that C ⊂⊂ A0 ∪B0 and
apply Lemma 2.8 to A0, B0 and C with u = uj and v = vj. Therefore, for any σ > 0
we can find Mσ > 0 and a sequence wj := ϕjuj + (1 − ϕj)vj, where the ϕj are cut-off

functions between C \B0 and A0, such that

F (wj, C) ≤ (1 + σ)(F (uj, A) + F (vj, B)) +Mσ

∫

A0∩B0∩C
|uj − vj|p(x) dx+ σ , (37)

taking account of the monotonicity of F (uj, ·) and F (vj, ·). Since A0∩B0∩C ⊂⊂ A∩B,
taking q := supC p(x) < +∞, which is finite by (15) as C ∈ A0, by Lemma 2.1 and (36)

∫

A0∩B0∩C
|uj − vj|p(x) dx ≤ 2q−1

∫

A0∩B0∩C
(|uj − w|p(x) + |vj − w|p(x)) dx → 0 (38)
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as j → +∞. Therefore, since wj → w in L1(Ω), by (37), (35) and (38)

F (w,C) ≤ lim inf
j→+∞

F (wj, C) ≤ (1 + σ)(F (w,A) + F (w,B)) + σ

and hence (34) holds by the arbitrariness of σ > 0.

3. Measure property of the relaxed functional

In this section we prove Theorem 1.8 showing that, for every function u ∈ L1 (Ω;RN),
the relaxed functional F (u, ·) is the trace on A of a Borel measure on Ω. To this aim we
will apply the De Giorgi-Letta criterion (Proposition 1.7) to the increasing set function
F (u, ·), for every u ∈ L1 (Ω;RN), see Remark 1.6. As a consequence, we will then prove
Theorem 1.9 and Corollary 1.10.

Proof of Theorem 1.8. We first consider the case f(x, z) := |z|p(x), so that in partic-
ular f(x, ·) is convex in RnN for a.e. x ∈ Ω. Once obtained inner regularity (Propo-
sition 3.1) and hence, by weak subadditivity, measure property (Proposition 3.3) for
f(x, z) := |z|p(x), thanks to the fundamental estimate (Lemma 2.7), weak subadditivity
and growth condition (12), we will then extend inner regularity (Proposition 3.4) and
hence measure property to F (u, ·) for any choice of f in (16).

Step 1: the case f(x,Du) := |Du|p(x).
Define now Ψ : L1 (Ω;RN)×A → [0,+∞] by

Ψ(u,A) :=







∫

A

|Du(x)|p(x) dx if u ∈ C1,p(x) (A;RN)

+∞ elsewhere on L1 (Ω;RN)
(39)

and let Ψ(·, A) be the L1(Ω)-lower semicontinuous envelope of Ψ(·, A) for every A ∈ A.
Finally, let Ψ−(u, ·) be the inner regular envelope of Ψ(u, ·), see (18), i.e, for every
u ∈ L1 (Ω;RN)

Ψ−(u,C) := sup{Ψ(u,B) | B ∈ A , B ⊂⊂ C} , C ∈ A . (40)

Making use of the argument in [10, Lemma 2.3], we are able to prove the following

Proposition 3.1 (Inner regularity). Let f(x, z) := |z|p(x) and Ψ : L1 (Ω;RN)×A →
[0,+∞] be given by (39). Then for every u ∈ L1 (Ω;RN) the increasing set function
Ψ(u, ·) is inner regular, i.e., for every C ∈ A

Ψ(u,C) = Ψ−(u,C) , (41)

where Ψ−(u,C) is given by (40).

Proof. By the monotonicity of Ψ(u, ·), it suffices to show that "≤" holds in (41), in case
Ψ−(u,C) < +∞.
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To this aim, for every ε > 0 and j ∈ N0 := N ∪ {0}, let Aj ∈ A0 be such that Aj ⊂⊂
Aj+1 ⊂⊂ C, |∂Aj| = 0 and

Ψ−(u,C)− ε 2−j < Ψ(u,Aj) ≤ Ψ−(u,C) ∀ j ∈ N0 . (42)

For every j ∈ N0 let {uj
h}h ⊂ L1(Ω), obviously depending also on ε, be such that uj

h → u
in L1(Ω) as h → +∞ and

Ψ(u,Aj+1) = lim inf
h→+∞

Ψ(uj
h, A

j+1) < +∞ . (43)

Possibly passing to a subsequence, we can suppose that uj
h → u a.e. on Ω, {uj

h|Aj+1}h ⊂
C1,p(x)(Aj+1) and suph

∫

Aj+1 |Duj
h|p(x) dx < +∞. Then, since Aj ⊂⊂ Aj+1, by Lemma 2.1

and (43) we can also suppose that

lim
h→+∞

∫

Aj

|uj
h − u|p(x) dx = 0 ∀ j ∈ N0 . (44)

Set A−1 := ∅ and let us consider a partition of unity {φj}j∈N0 relative to the open

covering of C given by {Aj+1 \ Aj−1}j∈N0 . More precisely, for every j ∈ N0 we have that

φj ∈ C1
0(A

j+1 \ Aj−1
) and

0 ≤ φj(x) ≤ 1 ,
+∞
∑

j=0

φj(x) = 1 ∀x ∈ C . (45)

For every j ∈ N, let h(j) ∈ N to be chosen later, set vj := uj
h(j) and

wε(x) :=
+∞
∑

j=1

φj−1(x) vj(x) , x ∈ C . (46)

Note that since vj|Aj ∈ C1,p(x)(Aj), we have that φj−1(x) vj(x) ∈ C1
0(C) for every j ∈ N.

Moreover, since every x in C has a neighborhood contained at most in the union of three

sets of the type Aj+1 \ A
j−1

, for every x ∈ C the infinite sum in the right-hand side of
(46) reduces to a finite one, hence wε ∈ C1(C) for every ε > 0. Taking wε ≡ u in Ω \C,
for every t ∈]0, 1[ the function twε belongs to L1(Ω) and by (45)

‖twε − u‖L1(Ω) ≤ t ‖wε − u‖L1(C) + (1− t) ‖u‖L1(Ω)

= t ‖
+∞
∑

j=1

φj−1 (vj − u)‖L1(C) + (1− t) ‖u‖L1(Ω)

≤ t
+∞
∑

j=1

∫

Aj

|uj
h(j) − u| dx+ (1− t) ‖u‖L1(Ω) .

(47)

Moreover, since f(x, ·) = | · |p(x) is convex, 0 ≤ φj−1 ≤ 1 and the sum in (46) is locally
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finite, for t ∈]0, 1[ we have

∫

C

f(x, tDwε) dx =

∫

C

f
(

x, t
(

+∞
∑

j=1

φj−1Dvj +Dφj−1vj
))

dx

≤ t

∫

C

f
(

x,
+∞
∑

j=1

φj−1Dvj
)

dx+ (1− t)

∫

C

f
(

x,
t

1− t

+∞
∑

j=1

Dφj−1vj
)

dx

≤
∫

A1

f(x,Dv1) dx+
+∞
∑

j=2

∫

Aj\Aj−2

f(x,Dvj) dx

+(1− t)

∫

C

f
(

x,
t

1− t

+∞
∑

k=1

Dφk−1vk
)

dx .

(48)

As to the last term in (48) we observe that Dφk−1 ≡ 0 in A0 for every k and that
+∞
∑

k=1

Dφk−1vk = Dφj−1vj +Dφjvj+1 in Aj \ Aj−1
. Hence, since f(x, 0) ≡ 0, we have

∫

C

f
(

x,
t

1− t

+∞
∑

k=1

Dφk−1vk
)

dx =
+∞
∑

j=1

∫

Aj\Aj−1

f
(

x,
t

1− t
(Dφj−1vj +Dφjvj+1)

)

dx . (49)

Now observe that since Aj−2 ⊂ Aj and {uj
h} ⊂ C1,p(x)(Aj−2), by (42) and (43)

Ψ−(u,C)− ε 22−j < Ψ(u,Aj−2) ≤ lim inf
h→+∞

∫

Aj−2

f(x,Duj
h) dx ∀ j = 2, 3, . . . (50)

Now, for every j, in Aj \Aj−1
we have

+∞
∑

k=1

φk = φj−1 + φj ≡ 1, hence Dφj−1 +Dφj ≡ 0

and then, since uj
h → u a.e. on Ω, we have Dφj−1u

j
h+Dφju

j+1
k → 0 a.e. on Aj \Aj−1

as
h, k → +∞. Moreover, if qj := supAj p(x) < +∞, which is finite by (15) since Aj ∈ A0,

f

(

x,
t

1− t
(Dφj−1u

j
h +Dφju

j+1
k )

)

≤

≤
(

1 +

(

t

1− t

)qj)

2qj−1(‖Dφj−1‖qj∞ |uj
h|

p(x) + ‖Dφj‖qj∞ |uj+1
k |p(x))

a.e. on Aj \ Aj−1
whereas by (44) we have

∫

Aj\Aj−1

(|uj
h − u|p(x) + |uj+1

k − u|p(x)) dx → 0

as h, k → +∞ . Then, by the dominated convergence theorem, since f(x, 0) ≡ 0 we infer

lim
h→+∞

lim
k→+∞

∫

Aj\Aj−1

f

(

x,
t

1− t
(Dφj−1u

j
h +Dφju

j+1
k )

)

dx = 0 (51)

for every j ∈ N. Hence, by (44), (43), (42), (50) and (51), since {uj
h} ⊂ C1,p(x)(Aj), for

every j ∈ N we deduce the existence of h(j) and k(j) in N such that h(j + 1) ≥ k(j)
and

∫

Aj

|uj
h(j) − u| dx ≤ ε 2−j ∀ j ∈ N , (52)
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∫

Aj

f(x,Duj
h(j)) dx ≤

∫

Aj+1

f(x,Duj
h(j)) dx ≤ Ψ−(u,C) + ε 2−j ∀ j ∈ N , (53)

∫

Aj−2

f(x,Duj
h(j)) dx ≥ Ψ−(u,C)− 2ε

2j−2
∀ j = 2, 3, . . . , (54)

∫

Aj\Aj−1

f

(

x,
t

1− t
(Dφj−1u

j
h(j) +Dφju

j+1
k )

)

dx ≤ ε 2−j ∀ j ∈ N , k ≥ k(j) . (55)

In particular, by choosing k = h(j + 1) in (55) we obtain

∫

Aj\Aj−1

f

(

x,
t

1− t
(Dφj−1u

j
h(j) +Dφju

j+1
h(j+1))

)

dx ≤ ε 2−j ∀ j ∈ N . (56)

With this choice of {h(j)}j, by (47) and (52) we deduce that

twε → u in L1(Ω) as ε → 0+ and t → 1− (57)

and by (48), (53), (54), (49) and (56) that

∫

C

f(x, tDwε) dx ≤ Ψ−(u,C) +
ε

2
+

+∞
∑

j=2

(

Ψ−(u,C) +
ε

2j
−Ψ−(u,C) +

2ε

2j−2

)

+ (1− t)
+∞
∑

j=1

ε

2j

≤ Ψ−(u,C) + 5ε+ (1− t) ε < +∞ .

(58)

In particular we infer that twε ∈ C1,p(x)(C) for every ε > 0 and t ∈]0, 1[ and hence, by
(39), Ψ(twε, C) =

∫

C
f(x, tDwε) dx . Finally, as ε → 0+ and t → 1−, by (58) and (57) we

obtain that Ψ(u,C) ≤ Ψ−(u,C) and hence the assertion.

Remark 3.2. If we define the localized functional Ψ(u,A) by (26) with f(x, z) = |z|p(x),
the argument of Proposition 3.1 may fail. In fact, the definition (46), with vj := uj

h(j) ∈
C1,p(x) (Ω;RN), gives a function wε ∈ C1,p(x)(C;Rn) which in general cannot be extended
to a function in C1,p(x) (Ω;RN) if the boundary of C is not smooth.

Now, since we have just proved (Proposition 3.1) that, in case f(x, z) := |z|p(x), the
increasing set function Ψ(u, ·) is inner regular, and Ψ(u, ·) is superadditive, thanks to
Proposition 1.7 we obtain measure property of Ψ(u, ·), for every u ∈ L1 (Ω;RN), if we
show that Ψ(u, ·) is subadditive.
Proposition 3.3 (Subadditivity). For every w ∈ L1 (Ω;RN) we have

Ψ(w,A ∪B) ≤ Ψ(w,A) + Ψ(w,B) ∀A,B ∈ A . (59)

Proof. By weak subadditivity (Lemma 2.9 with F = Ψ), letting C ↗ A∪B we obtain

Ψ−(w,A ∪B) ≤ Ψ(w,A) + Ψ(w,B)

and hence (59), by inner regularity (41).
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Step 2: measure property of F (u, ·).
Consider now any Borel function f as in Theorem 1.8. We first prove the following

Proposition 3.4 (Inner regularity). For every w ∈ L1 (Ω;RN), F (w, ·) is an inner
regular set function.

Proof. Since F (w, ·) is an increasing set function, if F−(w, ·) is defined by (18), it suffices
to prove that

F (w,C) ≤ F−(w,C) (60)

for every fixed open set C ∈ A and every function w ∈ L1(Ω) such that F−(w,C) < +∞.
To this aim note that growth condition (12) yields the estimate

αΨ(w,A) ≤ F (w,A) ≤
∫

A

a(x) dx+ βΨ(w,A) (61)

for every w ∈ L1(Ω) and A ∈ A, where Ψ is given by (39), and the same estimate with
Ψ− and F−, respectively, instead of Ψ and F in (61). In particular, by the monotonicity
and the inner regularity of Ψ(w, ·), see Proposition 3.1,

Ψ(w,A) = Ψ−(w,A) ≤ Ψ−(w,C) ≤ 1

α
F−(w,C) < +∞ (62)

for every A ∈ A with A ⊂ C. For every ε > 0 we can choose an open set Aε ∈ A
with Aε ⊂⊂ C such that, by inner regularity of Ψ(w, ·) and absolute continuity of
a(x) ∈ L1(Ω),

Ψ(w,C) ≤ Ψ(w,Aε) + ε and 0 ≤
∫

C\Aε

a(x) dx ≤ ε . (63)

Also, let Bε := C \Aε ∈ A, so that if ˜Ψ(w, ·) is the Borel measure given by the extension
of Ψ(w, ·) to Ω (see iii) in Proposition 1.7), by (63) we have

Ψ(w,Bε) = Ψ(w,C)− ˜Ψ(w,Aε) ≤ Ψ(w,C)−Ψ(w,Aε) ≤ ε . (64)

Moreover there exists a sequence {vj} ⊂ L1(Ω), converging to w in L1(Ω), such that
vj|Bε ∈ C1,p(x)(Bε) for every j and

Ψ(w,Bε) = lim
j→+∞

∫

Bε

|Dvj|p(x) dx < +∞ . (65)

In particular, by (12), (63) and (65),

lim inf
j→+∞

F (vj, Bε) ≤
∫

C\Aε

a(x) dx+ β lim
j→+∞

Ψ(vj, Bε) ≤ ε+ βΨ(w,Bε) . (66)

Choose now A ∈ A0 such that Aε ⊂⊂ A ⊂⊂ C. By (61) and (62), there exists a sequence
{uj} ⊂ L1(Ω), converging to w in L1(Ω), such that uj|A ∈ C1,p(x)(A) for every j and

F (w,A) = lim
j→+∞

∫

A

f(x,Duj) dx < +∞ . (67)
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Moreover, following the proof of Lemma 2.1, since A ∩ Ωi is nonempty for finitely many
i, without loss of generality we can suppose that it has Lipschitz boundary for every i.
Then, by Rellich’s theorem, (12) and (67) we obtain

lim
j→+∞

∫

A

|uj − u|p(x) dx =
∑

i

lim
j→+∞

∫

A∩Ωi

|uj − u|pi dx = 0 . (68)

Select now D,A′ ∈ A0 such that Aε ⊂⊂ D ⊂⊂ A′ ⊂⊂ A ⊂⊂ C and apply the fundamental
estimate of Lemma 2.7 with B = C \ D, uj on A and vj on B. For any σ > 0 we can
therefore find Mσ > 0 and a sequence {ϕj} of smooth cut-off functions between A′ and A
such that, since A′ ∪B = C,

F (wj, C) ≤ (1 + σ)(F (uj, A) + F (vj, B)) +Mσ

∫

A∩B
|uj − vj|p(x) dx+ σ , (69)

where wj := ϕjuj + (1 − ϕj)vj. By (65) and Lemma 2.1, since A ∩ B ⊂⊂ Bε, possibly
passing to a subsequence we have

lim
j→+∞

∫

A∩B
|vj − u|p(x) dx = 0 . (70)

Then, since (15) and A∩B ∈ A0 yield supA∩B p(x) < +∞, by (68) and (70) we conclude
that

lim
j→+∞

∫

A∩B
|vj − uj|p(x) dx = 0 . (71)

Now, since B ⊂ Bε, by (66)

lim inf
j→+∞

F (vj, B) ≤ ε+ βΨ(w,Bε) . (72)

Moreover, since wj → w in L1(Ω), by (69), (67), (72) and (71) we obtain

F (w,C) ≤ lim inf
j→+∞

F (wj, C) ≤ (1 + σ)(F (w,A) + ε+ βΨ(w,B)) + σ . (73)

Finally, taking ε > 0 small so that ε(1 + β) ≤ σ, by (64) and (73)

F (w,C) ≤ (1 + σ)(F (w,A) + σ) + σ (74)

and hence (60) holds by the arbitraryness of σ > 0.

Since we have just proved that F (w, ·) is inner regular for every w ∈ L1 (Ω;RN), arguing
as in Proposition 3.3, by weak subadditivity (34) we obtain that F (w, ·) is subadditive.
Since F (w, ·) is trivially superadditive, by Proposition 1.7 the proof of Theorem 1.8 is
complete.

Proof of Theorem 1.9. For every i denote Ai := A(Ωi) the family of open subsets of
Ωi. We remark that F is a local functional, i.e., F (u,A) = F (v, A) if u, v ∈ L1(Ω)
and u = v a.e. on A, for every A ∈ A. This follows from measure and increasing
property of F (u, ·), see e.g. [8, Lemma 4.4.2] for a similar proof. Hence it is well defined
the local functional Fi : L1(Ωi;RN) × Ai → [0,+∞] given by Fi(u,A) := F (ũ, A),
where ũ ∈ L1 (Ω;RN) is any extension of u. Also, denote by F i(·, A) the L1(Ωi)-lower
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semicontinuous envelope of Fi(·, A), so that F i(u,A) = F (ũ, A) for every u ∈ L1(Ωi)
and A ∈ Ai, if ũ ∈ L1(Ω) is such that ũ|Ωi

= u. Finally, denote in an analogous way by
Ψi : L

1(Ωi;RN)×Ai → [0,+∞] the local functional given by Ψi(u,A) := Ψ(ũ, A), where
Ψ is given by (39), so that for every A ∈ Ai

Ψi(u,A) :=







∫

A

|Du(x)|pi dx if u ∈ C1,pi (A;RN)

+∞ elsewhere on L1(Ωi;RN)

where pi > 1 is given by (14), and let Ψi(·, A) denote its L1(Ωi)-l.s.c. envelope.

If A ∈ Ai has Lipschitz boundary, it is easy to show that Ψi(u,A) =
∫

A
|Du|pi dx if

u ∈ W 1,pi(A), and +∞ elsewhere on L1(Ωi). Then, since by Proposition 3.1 the set
function Ψi(u, ·) is inner regular on Ai for every u ∈ L1(Ωi), we obtain that for every
A ∈ Ai

Ψi(u,A) =







∫

A

|Du(x)|pi dx if u ∈ W 1,pi
loc (A;RN)

+∞ elsewhere on L1(Ωi;RN) .
(75)

Finally, by (61) we also have

αΨi(u,A) ≤ F i(u,A) ≤
∫

A

a(x) dx+ βΨi(u,A) (76)

for every u ∈ L1(Ωi) and A ∈ Ai.

These facts lead us to apply the classical integral representation theorem [9, Thm 1.1],
see also [13, Thm. 20.1], to the relaxed functional F i and write

F i(u,A) =







∫

A

ϕi(x,Du(x)) dx if u ∈ W 1,pi
loc (A;RN)

+∞ elsewhere on L1(Ωi;RN)
(77)

for every A ∈ Ai, where ϕi : Ωi × RnN → [0,+∞) is a quasi-convex function satisfying
growth condition

α|z|pi ≤ ϕi(x, z) ≤ a(x) + β|z|pi (78)

for a.e. x ∈ Ωi and all z ∈ RnN . In fact, Theorem 1.8 yields that F i(u, ·) is a measure on
Ai for every u ∈ L1(Ωi); for every A ∈ Ai the functional F i(·, A) is L1(Ωi)-l.s.c., and hence
Lpi(Ωi)-l.s.c.; since f(x,Du) does not depend on u, we infer that F i(u+ c, A) = F i(u,A)
for every u ∈ L1(Ωi), A ∈ Ai and c ∈ RN ; also F i satisfies a standard pi-growth condition,
since by (76) and (75)

0 ≤ F i(u,A) ≤
∫

A

(a(x) + β |Du(x)|pi) dx

for every u ∈ W 1,pi(Ωi) and A ∈ Ai; finally, by locality of F we infer that F i is local,
i.e., for every A ∈ Ai and all u, v ∈ L1(Ωi) such that u = v a.e. on A, we have that
F i(u,A) = F i(v, A).

By [13, Thm. 20.1], we then obtain the integral representation (77) for every A ∈ Ai and
u ∈ L1(Ωi) such that u|A ∈ W 1,pi

loc (A), where ϕi is a non negative quasi-convex function
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satisfying a pi growth condition from above. Moreover, by (76) and (75) we obtain (77)
for all u and A and growth condition (78).

Setting now ϕ(x, ·) := ϕi(x, ·) if x ∈ Ωi for some i, we then obtain the first part of the
statement. In particular, (78) yields that ϕ satisfies growth condition (12) for a.e. x ∈ Ω

and all z ∈ RnN . Moreover, for every u ∈ L1(Ω), let ˜F (u, ·) denote the Borel measure on Ω

given by the extension of F (u, ·), see iii) in Proposition 1.7, and let µ(u,A) := ˜F (u,A∩Σ)
for A ∈ A. If u|A ∈ W

1,p(x)
loc (A), setting Ai := A ∩ Ωi we have

F (u,A) =
+∞
∑

i=1

F (u,Ai) + ˜F (u,A ∩ Σ) =
+∞
∑

i=1

F i(u|Ωi
, Ai) + ˜F (u,A ∩ Σ)

=
+∞
∑

i=1

∫

Ai

ϕi(x,Du) dx+ µ(u,A) =

∫

A

ϕ(x,Du) dx+ µ(u,A)

and hence the singular measure µ(u, ·) has support contained in the transition set Σ. On

the other side, if u|A /∈ W
1,p(x)
loc (A), then u|Ai

/∈ W 1,pi
loc (Ai) for some i and hence, by (77),

F (u,A) ≥ F i(u|Ωi
, Ai) = +∞.

To prove the last assertion, let us fix A ∈ A and let A′ ∈ A0 be such that A′ ⊂⊂ A. If
q := supx∈A′ p(x) < +∞, see (15), by (12) we infer that f satisfies a q-growth condition
on A′×RN . Denote now by H : L1(A′;RN)×A(A′) → [0,+∞] the local functional given
by H(u,B) := F (ũ, B), where ũ ∈ L1(Ω) is any extension of u. Also, let H(·, B) be the
L1(A′)-l.s.c. envelope of H(·, B), for every B ∈ A(A′). Then by an argument similar to
the previous one

F (v, A′) = H(v|A′ , A′) =

∫

A′
ϕ(x,Dv(x)) dx

holds for every function v ∈ L1(Ω) with v|A′ ∈ W 1,q
loc (A

′). In particular, by repeating the
argument for every A′ ⊂⊂ A, we have

F (v, A′) =

∫

A′
ϕ(x,Dv(x)) dx ∀ v ∈ C1 (A;RN) , ∀A′ ∈ A0 , A′ ⊂⊂ A . (79)

Let now u ∈ W
1,p(x)
loc (A) and {uk} ⊂ C1(A) be such that uk → u in W

1,p(x)
loc (A). Moreover,

for every A′ ∈ A0, A
′ ⊂⊂ A, let {vk} ⊂ L1(Ω) be such that vk|A ∈ C1(A), vk|A′ = uk|A′

for every k ∈ N and vk → u in L1(Ω). Then, since ϕ is a Carathéodory function satisfying
(12), by lower semicontinuity of F (·, A′), by (79) applied with v = vk, by locality and by
the dominated convergence theorem

F (u,A′) ≤ lim inf
k→+∞

F (vk, A
′) = lim

k→+∞

∫

A′
ϕ(x,Duk(x)) dx =

∫

A′
ϕ(x,Du(x)) dx .

Then, by the measure property of F (u, ·), taking A′ ↗ A one obtains F (u,A) ≤
∫

A
ϕ(x,Du(x)) dx. Finally, since µ(u,A) ≥ 0 in (19), the opposite inequality is trivial

and hence µ(u,A) = 0 , as required.

Proof of Corollary 1.10. For a.e. x ∈ Ωi, denote by Qfi(x, z) the quasi-convex en-
velope of f with respect to z. Since Qfi satisfies a growth estimate like (78), by quasi-
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convexity, for every A ∈ Ai the functional

Gi(u,A) :=







∫

A

Qfi(x,Du(x)) dx if u ∈ W 1,pi
loc (A;RN)

+∞ elsewhere on L1(Ωi;RN)

is lower semicontinuous in weak W 1,pi(Ωi) convergence. On the other side, for the same
reason the same lower semicontinuity property holds for the functional (77). Hence, by
definition of relaxation, we have that

∫

A

Qfi(x,Du(x)) dx ≤
∫

A

ϕi(x,Du(x)) dx ≤
∫

A

f(x,Du(x)) dx

for every u ∈ W 1,pi
loc (A). Following the argument of Remark 4.4.5 in [8], we then obtain

the assertion.

4. The case of piecewise continuous growth exponents

In this section we prove Theorems 1.13 and 1.14.

Proof of Theorem 1.13. The proof is a straightforward readaptation of Theorem 1.8,
once we extend Lemma 2.1 by the following

Lemma 4.1. Let p : Ω → (1,+∞) be a regular piecewise continuous exponent. Then the
assertion of Lemma 2.1 holds again.

Proof. Compare [11, Lemma 2.8, Cor. 2.9].

In fact, as to Sec. 2, (30) follows from Lemma 4.1; Lemma 2.4 relies on (15) (see Remark
1.12), on Theorem 2.3 and on the convexity of | · |p(x); Lemma 2.6 relies on (15) and on the
convexity of | · |p(x); Lemmata 2.7 and 2.8 follow from Lemma 2.6 and (15); finally Lemma
2.9 depends on Lemma 2.8, Lemma 4.1 and (15). Also, in Step 1 of Sec. 3, Proposition
3.1 relies on Lemma 4.1, (15) and on the convexity of | · |p(x). Moreover, Proposition 3.3
follows from Proposition 3.1 and Lemma 2.9. Finally, in Step 2, Proposition 3.4 relies on
Proposition 3.1, Lemma 4.1 and Lemma 2.7.

Proof of Theorem 1.14. Let Ai, Fi, F i, Ψi and Ψi be given as in the proof of Theorem
1.9, so that in particular, for every A ∈ Ai,

Ψi(u,A) :=







∫

A

|Du(x)|pi(x) dx if u ∈ C1,pi(x) (A;RN)

+∞ elsewhere on L1(Ωi;RN)

where pi : Ωi → (1,+∞) is given by Definition 1.11. We first show that for every A ∈ Ai

Ψi(u,A) =







∫

A

|Du(x)|pi(x) dx if u ∈ W
1,pi(x)
loc (A;RN)

+∞ elsewhere on L1(Ωi;RN) .
(80)
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In fact, if Ψi(u,A) < +∞, then for every A′ ∈ A0, with A′ ⊂⊂ A, Lemma 2.4 yields

u ∈ W
1,pi(x)
loc (A′;RN) and

∫

A′
|Du|pi(x) dx ≤ Ψi(u,A

′) . (81)

To obtain equality in (81), it suffices to apply the following density result due to Zhikov
[27], compare also [1, Lemma 4.2] or [11, Prop. 2.18] for a proof.

Proposition 4.2. Let p : Ω → [1,+∞) be a continuous function satisfying (21) for

every A ⊂⊂ Ω. Then for every u ∈ W
1,p(x)
loc (Ω;RN) there exists a sequence of smooth

functions {uj} ⊂ C∞
0 (Ω;RN) such that uj → u in W

1,p(x)
loc (Ω;RN). If in addition u ∈

W 1,p(x) (Ω;RN), then uj → u also in L1 (Ω;RN).

Now, by inner regularity of Ψi(u, ·) , letting A′ ↗ A we obtain both u ∈ W
1,pi(x)
loc (A;RN)

and (80).

We now wish to apply the following integral representation result to the local functional
F = F i.

Theorem 4.3. ([11, Thm. 3.1]) Let p : Ω → [1,+∞) be a continuous function satis-
fying (21) for every open set A ⊂⊂ Ω. Let F : L1(Ω;RN) × A → [0,+∞] satisfy the
following conditions:

i) F is local, i.e., F(u,A) = F(v, A) for every A ∈ A and u, v ∈ L1 (Ω;RN) with
u = v a.e. on A;

ii) for all u ∈ L1(Ω;RN) the set function F(u, ·) is increasing, and is the trace on A
of a Borel measure;

iii) there exist β > 0 and a(x) ∈ L1
loc(Ω) such that

0 ≤ F(u,A) ≤
∫

A

(a(x) + β |Du|p(x)) dx

for all u ∈ W 1,p(x)(Ω;RN) and A ∈ A;

iv) F(u+ c, A) = F(u,A) for all u ∈ L1(Ω;RN), A ∈ A, c ∈ RN ;

v) F(·, A) is sequentially lower semicontinuous with respect to the strong convergence
in L1 (Ω;RN) for all A ∈ A.

Then there exists a Carathéodory function ϕ : Ω× RnN → [0,+∞) such that

F(u,A) =

∫

A

ϕ(x,Du(x)) dx

for every A ∈ A and for every u ∈ L1 (Ω;RN) such that u|A ∈ W
1,p(x)
loc (A;RN); in

addition, the function ϕ(x, ·) is quasi-convex on RnN for a.e. x ∈ Ω and satisfies the
growth condition

0 ≤ ϕ(x, z) ≤ a(x) + β |z|p(x)

for a.e. x ∈ Ω and all z ∈ RnN .

Now F i satisfies Theorem 4.3 on Ωi, since (61) and (80) yield growth condition iii), whereas
the other hypotheses are easily verified. Arguing similarly to Theorem 1.9, we then easily
conclude with (19) and with the rest of the proof.
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5. An example with energy concentration

In this section we prove the statements contained in Example 1.15. More precisely, for

every A ∈ A and u ∈ W
1,p(x)
loc (A), in Step 1 we first show that µ(u,A) = 0 in case

0R2 /∈ A. Secondly, in case 0R2 ∈ A, in Step 2 we show that µ(u,A) = +∞ if λ1 6= λ2

in (23). Finally, in Step 3 we prove that µ(u,A) = 0 if 0R2 ∈ A but λ1 = λ2. We first
make the following

Remark 5.1. Under the hypotheses of Example 1.15, for every u ∈ L1(B1) and A ∈ A,
we can easily find a sequence {uk} ⊂ L1(B1) with uk → u in L1(B1) and uk|A ∈
W 1,q(A) for every k. Moreover, since f(x, z) := |z|p(x) ≤ 1+ |z|q, then for every function
v ∈ W 1,q(A) there exists a sequence of smooth functions {vk} ⊂ C1,p(x)(A) such that
vk → v in L1(A) and

∫

A
|Dvk −Dv|p(x) dx → 0 as k → +∞. Taking vk ≡ u on B1 \ A,

this yields that for every A ∈ A and u ∈ L1(B1)

F (u,A) = inf{lim inf
k→+∞

∫

A

|Duk(x)|p(x) dx | {uk} ⊂ W 1,q(A) , uk → u in L1(A)} . (82)

Step 1: the case 0R2 /∈ A.

Following an argument by Zhikov et al., compare [29], we now show that there is no energy
concentration on open sets which do not contain the origin.

Proposition 5.2. Under the hypotheses of Example 1.15, if A ∈ A, 0R2 /∈ A and u|A ∈
W

1,p(x)
loc (A), then µ(u,A) = 0 in (19) and hence F (u,A) =

∫

A
|Du(x)|p(x) dx.

Proof. It suffices to show that for every A′ ∈ A0, with A′ ⊂⊂ A, there exists a sequence
of functions {uj} ⊂ W 1,q(A′) such that uj → u in L1(A′) and

lim
j→+∞

∫

A′
|Duj(x)|p(x) dx =

∫

A′
|Du(x)|p(x) dx .

In fact, by (82), this yields F (u,A′) ≤
∫

A′ |Du(x)|p(x) dx and hence, by inner regularity,

letting A′ ↗ A one obtains the assertion since µ(u,A) ≥ 0 and ϕ(x, z) = f(x, z) = |z|p(x)
in (19).

For every B ∈ A, we set Bp := B ∩ Ωp, Bq := B ∩ Ωq, where Ωp and Ωq are the subsets
of Ω corresponding to the phases p and q of p(x), see (22), i.e.,

Ωp := {x ∈ Ω | x1x2 > 0} , Ωq := {x ∈ Ω | x1x2 < 0} . (83)

Suppose first in addition that Aq has Lipschitz boundary and u|Aq ∈ W 1,q(Aq). Let
ũ ∈ W 1,q(A) be a "smooth" extension to A of u|Aq . Also, let v(x) := φ(x)(u(x)− ũ(x)),

where φ ∈ C1
0(B1) is a smooth cut-off between A′ and A. Since v ∈ W 1,p

0 (Ap), there

exists a smooth sequence {vj} ⊂ C1
0(Ap) such that vj → v in W 1,p

0 (Ap). Setting now

uj(x) :=

{

u(x) if x ∈ Aq

ũ(x) + vj(x) if x ∈ Ap

we have that {uj} ⊂ W 1,q(A), uj → u in L1(A′) and finally

lim
j→+∞

∫

A′
|Duj|p(x) dx = lim

j→+∞

(∫

A′
q

|Du|q dx+

∫

A′
p

|Dũ+Dvj|p dx
)

=

∫

A′
q

|Du|q dx+

∫

A′
p

|Dũ+Dv|p dx =

∫

A′
|Du|p(x) dx .
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To conclude the proof, it suffices for every A′ ⊂⊂ A to take A′′ ∈ A, with A′ ⊂⊂ A′′ ⊂ A,
such that A′′

q has Lipschitz boundary, and repeat the previous argument with A′′ instead
of A.

Remark 5.3. As noticed by Zhikov, the proof of Proposition 5.2 does not hold if 0R2 ∈ A,
since we cannot find, in general, a W 1,q(A)-extension ũ of u|Aq . However, since q > 2, ũ
should be in particular continuous at 0R2 , which cannot hold if u = u0 is given by (5),
since u|Aq takes distant values (1 and 0) on each neighborhood of the origin.

Step 2: the case 0R2 ∈ A and λ1 6= λ2.

We prove that µ(u,A) = +∞, and hence (24) holds, if 0R2 ∈ A ∈ A and u ∈ W
1,p(x)
loc (A)

with λ1 6= λ2 in (23). To this aim, it suffices to show that F (u,A) = +∞. If it were not so,
fix a small radius r > 0 so that Br ⊂ A, denote B±

r := {x ∈ Br | ±x1 > 0 and ±x2 < 0}
and define by (82) sequences {u±

j } ⊂ W 1,q(B±
r ) such that u±

j → u in L1(B±
r ) and

lim
j→+∞

∫

B±
r

|Du±
j (x)|q dx = F (u,B±

r ) < +∞ .

Since q > 2, by the compact embedding ofW 1,q into continuous functions, these sequences
converge uniformly to u on x1x2 = 0, which leads to a contradiction since λ1 6= λ2 yields
that u is not continuous at the origin.

Step 3: the case 0R2 ∈ A and λ1 = λ2.

We prove that µ(u,A) = 0, and hence (24) holds, if 0R2 ∈ A ∈ A and u ∈ W
1,p(x)
loc (A) with

λ1 = λ2 in (23). To this aim, by (82) it suffices to find, for each small ε > 0, a sequence
{wk} ⊂ W 1,q(A) such that wk → u in L1(A) and

lim inf
k→+∞

∫

A

|Dwk|p(x) dx ≤
∫

A

|Du|p(x) dx+ ε . (84)

We can also suppose the right-hand side of (84) to be finite, otherwise there is nothing to
prove.

Fix now 0 < δ < dist(0R2 , ∂A) and let r ∈ (0, δ/2). Then, by Remark 5.1 and Proposition
5.2, we select a sequence {uk} ⊂ C1(A \Br) such that uk → u in L1(A \Br) and

lim
k→+∞

∫

A\Br

|Duk|p(x) dx = F (u,A \Br) =

∫

A\Br

|Du|p(x) dx < +∞ . (85)

Denote now by T the trace operator in x0 = 0R2 : if u ∈ W 1,p(B1) and 0 < R < 1, then
TRu := T[∂BR]u is the trace of u on ∂BR. Possibly passing to a subsequence, by uniform
convexity (85) yields

lim
k→+∞

∫

A\Br

|Duk −Du|p(x) dx = 0 .

As a consequence, passing again to a subsequence we can select a radius R ∈ (r, 2r) such
that TRu ∈ W 1,p(x)(∂BR), TRuk ∈ W 1,q(∂BR) for every k,

∫

∂BR

|Dτuk|p(x) dH1 ≤
∫

∂BR

|Dτu|p(x) dH1 +
ε

3R
, (86)
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where τ is the unit tangent vector to ∂BR, and by Rellich’s theorem, for both s = p, q,
∫

∂BR∩Ωs

|uk(x)− λ|s dH1 ≤
∫

∂BR∩Ωs

|u(x)− λ|s dH1 +
ε

3
Rs−1, (87)

where λ := λ1 = λ2 is given by (23) and Ωp and Ωq are given by (83). Define now

vk(x) :=







uk(x) if x ∈ A \BR

|x|
R

(

uk

(

R
x

|x|

)

− λ

)

+ λ if x ∈ BR .

Trivially {vk} ⊂ Lq(A) and vk → u in L1(A \BR) whereas, since for a.e. x ∈ BR

|Dvk(x)|2 = R−2

∣

∣

∣

∣

uk

(

R
x

|x|

)

− λ

∣

∣

∣

∣

2

+

∣

∣

∣

∣

Dτuk

(

R
x

|x|

)∣

∣

∣

∣

2

,

we infer
∫

BR

|Dvk|q dx ≤ c(q)

∫

∂BR

(R1−q · |uk − λ|q +R · |Dτuk|q) dH1

and hence {vk} ⊂ W 1,q(A). We now show that

lim inf
k→+∞

∫

A

|Dvk|p(x) dx ≤
∫

A\BR

|Du|p(x) dx+O(R) + ε , (88)

where O(R) → 0+ as R → 0+. To this aim, we first estimate

∫

BR

|Dvk(x)|p(x) dx ≤ c (p, q)

{

R1−p

∫

∂BR∩Ωp

|uk(x)− λ|p dH1

+ R1−q

∫

∂BR∩Ωq

|uk(x)− λ|q dH1

+ R

∫

∂BR

|Dτuk|p(x) dH1

}

.

(89)

We now make use of the following lemma (stated in any dimension), the proof of which
is postponed.

Lemma 5.4. If u ∈ W 1,p(Bδ;RN) with 1 ≤ p < n, Bδ ⊂ Rn being the n-ball of radius δ,
then for a.e. 0 < R < δ we have

R1−p

∫

∂BR

|u|p dHn−1 ≤ c (n, p)

{

∫

BR

|Du|p dx+

(∫

BR

|u|p∗ dx
)p/p∗

}

(90)

where p∗ := np/(n− p) is the Sobolev conjugate of p.

Now, condition Bδ ⊂⊂ A yields that u(·)−λ ∈ W 1,p(Bδ). Moreover, the proof of Lemma
5.4, with n = 2, can be easily readapted to obtain

R1−p

∫

∂BR∩Ωp

|u− λ|p dH1 ≤ c (2, p)

{

∫

BR∩Ωp

|Du|p dx+

(∫

BR∩Ωp

|u− λ|p∗ dx
)p/p∗

}

.

(91)
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Then, by (87), with s = p, by (91), Sobolev embedding theorem and absolute continuity
we obtain

R1−p

∫

∂BR∩Ωp

|uk(x)− λ|p dH1 ≤ O(R) +
ε

3
. (92)

Recall now that if u ∈ W 1,q(A), with A ⊂ R2 bounded open set with Lipschitz boundary,
and q > 2, then u is Hölder continuous in A and more precisely, by Morrey’s theorem,

|u(x)− u(y)| ≤ c ‖u‖W 1,q(A) |x− y|1−2/q ∀x, y ∈ A ,

where c > 0 is an absolute constant, compare [5, Thm. 5.4]. Taking A± := BR ∩ {x ∈
Ωq | ±x1 > 0}, by (23), with λ = λ1 = λ2, for every x ∈ ∂BR ∩ Ωq we then infer

|u(x)− λ| = |ũ(R, θ)− ũ(0, θ)| ≤ c ‖u‖W 1,q(BR∩Ωq)R
1−2/q.

Since u|BR∩Ωq ∈ W 1,q(BR ∩ Ωq), by (87), with s = q, and absolute continuity we obtain

R1−q

∫

∂BR∩Ωq

|uk(x)− λ|q dH1 ≤ π cq ‖u‖qW 1,q(BR∩Ωq)
+

ε

3
≤ O(R) +

ε

3
. (93)

Finally, since u|Bδ
∈ W 1,p(x)(Bδ), setting

f(ρ) :=

∫

∂Bρ

|Dτu|p(x) dH1 , 0 < ρ < δ ,

by the coarea formula one has f(ρ) ∈ L1(0, δ). Therefore, since f(ρ) ≥ 0, we have
lim infρ→0+ ρ · f(ρ) = 0. As a consequence, without loss of generality we can choose R so
that R · f(R) = O(R) and hence, by (86),

R

∫

∂BR

|Dτuk|p(x) dH1 ≤ O(R) +
ε

3
. (94)

Then, by (92), (93) and (94) the right-hand side of (89) is smaller than O(R) + ε and
finally, by lower semicontinuity and (85), we obtain (88).

We finally make a diagonal argument, as follows. We first select rj ↘ 0 and Rj ∈
(rj, 2rj); then for any fixed j we define {u(j)

k } ⊂ W 1,q(A \ Brj) so that u
(j)
k → u in

L1(A \ Brj) and (85) holds with r = rj; we then construct {v(j)k } ⊂ W 1,q(A) such that

v
(j)
k → u in L1(A \BRj

) and (88) holds with R = Rj. Finally we set wk := w
(k)
k , so that

{wk} ⊂ W 1,q(A), wk → u in L1(A) and by (88)

lim inf
k→+∞

∫

A

|Dwk|p(x) dx ≤ lim inf
k→+∞

{

∫

A\BRk

|Du|p(x) dx+O(Rk) + ε

}

,

so that (84) holds, as required. We conclude Step 3 with the following

Proof of Lemma 5.4. Setting uR(x) := u(Rx) for x ∈ B1 and 0 < R < δ, we have that
uR ∈ W 1,p(B1) and for a.e. 0 < R < δ the trace T1uR ∈ W 1,p(∂B1). Now, by changing
variable we have

∫

∂BR

|u|p dHn−1 = Rn−1 ·
∫

∂B1

|uR|p dHn−1 . (95)
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Moreover, by [5, Thm. 5.22] we have the continuous immersion W 1,p(B1) ↪→ Lr(∂B1) if
p < n and p ≤ r ≤ (n− 1) p/(n− p). In particular, for r = p (which is good for any such
p) we infer that for a.e. 0 < R < δ

(∫

∂B1

|uR|p dHn−1

)1/p

≤ c ‖uR‖W 1,p(B1) (96)

where c > 0 is an absolute constant. By changing variable y = Rx, we have

‖uR‖pW 1,p(B1)
= Rp−n

∫

BR

|Du|p dx+R−n

∫

BR

|u|p dx (97)

whereas, since by Sobolev embedding theorem u ∈ Lp∗(B1), by Hölder inequality we have

(∫

BR

|u|p dx
)1/p

≤
(∫

BR

|u|p∗ dx
)1/p∗

· |BR|1/p−1/p∗

and hence, since |BR|1/p−1/p∗ = c(n)R,

R−n

∫

BR

|u|p dx ≤ c (n, p)Rp−n ·
(∫

BR

|u|p∗ dx
)p/p∗

. (98)

Finally, by (95), (96), (97) and (98) we obtain (90), and the proof is complete.
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Ann. Inst. H. Poincaré Anal. Non Lineare (2003).

[2] E. Acerbi, N. Fusco: A transmission problem in the calculus of variations, Calc. Var. 2
(1994) 1–16.

[3] E. Acerbi, G. Mingione: Regularity results for a class of functionals with non standard
growth, Arch. Rat. Mech. Anal. 156 2 (2001) 121–140.

[4] E. Acerbi, G. Mingione: Regularity results for a class of quasiconvex functionals with non
standard growth, Ann. S.N.S. Pisa Cl. Sci. 30 (2001) 311–339.

[5] R. A. Adams: Sobolev Spaces, Academic Press, New York (1975).
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