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ul. Śniadeckich 8, 00–950 Warszawa, Poland

permanent address: Institute of Mathematics, Warsaw University,
ul. Banacha 2, 02–097 Warszawa, Poland

kalamajs@mimuw.edu.pl

Received February 13, 2002

Consider the functional If (u) =
∫

Ω f(u(x)) dx, where u = (u1, . . . , um). Assume additionally that each
uj is constant along Wj , some subspace of Rn. We find the family of cones Λ in Rm such that every
Λ–convex function f defines a functional If which is lower semicontinuous under the sequential weak ∗
convergence in L∞(Ω,Rm). Then we apply our result to functionals acting on distributional kernels of
differential operators. We also discuss the relations of our problem to the rank–one conjecture of Morrey.

Keywords: Lower semicontinuity, quasiconvexity, Young measures

2000 Mathematics Subject Classification: 49J45, 49J10, 35E10

1. Introduction

Assume that Ω ⊆ Rn, and P = (P1, . . . , PN) is the differential operator with constant
coefficients,

Pku =
∑

i=1,...,n,j=1,...,m

aki,j
∂uj

∂xi

, k = 1, . . . , N. (1)

Let K = K(Ω, P ) = L∞(Ω,Rm) ∩ KerP , where KerP is the distributional kernel of P .
Take the continuous function f : Rm → R, and consider the functional

If (u) =

∫

Ω

f(u(x)) dx, where u ∈ K. (2)

The natural problem in the theory of lower semicontinuous functionals is to look for con-
ditions on f which guarantee lower semicontinuity and continuity of the related functional
If (we restrict ourself to its simplest form), under the sequential weak ∗ convergence in
L∞(Ω,Rm).

The following result was established by Murat and Tartar (see e.g. [2, Theorem 3.1], [14,
Theorem 2.1], [18, Theorem 10.1], [24, Corollary 10]).
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Theorem 1.1. Define

V = {(ξ, λ) : ξ ∈ Rn, ξ 6= 0, λ ∈ Rm,
∑

i,j

aki,jξiλj = 0, for k = 0, . . . , N},

Λ = {λ ∈ Rm : there exists ξ ∈ Rn, ξ 6= 0, such that (ξ, λ) ∈ V }.

(i) If If given by (2) is lower semicontinuous with respect to the sequential L∞–weak ∗
convergence in K then f is Λ–convex.

(ii) If If is continuous with respect to the sequential L∞–weak ∗ convergence in K then
f is Λ–affine.

By Λ–convexity (Λ–affinity) we mean that for every A ∈ Rm and λ ∈ Λ, the function
R 3 t 7→ f(A+ tλ) is convex (affine).

Theorem 1.1 states that lower semicontinuity of the functional If implies Λ–convexity of
f , where Λ is the cone related to the system (1). In general Λ–convexity of f does not
imply lower semicontinuity of the related functional If ([2, page 26], [14], [24], see also
Šverák’s celebrated result [23]).

The purpose of this paper is to contribute in finding some further relations between an
algebraic structure of the operator P and the geometric properties of those continuous
functions f : Rm → R, which define lower semicontinuous functionals.

We restrict ourself to a simple model, where the equation Pu = 0 is equivalent to the
condition ∂vui = 0, for every v ∈ Wi , where Wi are linear subspaces of Rn, given for
i = 1, . . . ,m. This will be denoted by

∂Wi
ui = 0, for i = 1, . . . ,m, or ∂Wu = 0, (3)

for u = (u1, . . . , um) and W = (W1, . . . ,Wm).

Although (3) looks to be rather poor at first glance, almost nothing is known about
lower semicontinuity properties of related functionals even in simple cases. Let for ex-
ample u : R2 → R3, and Pu = (∂u1

∂y
, ∂u2

∂x
, ∂u3

∂x
− ∂u3

∂y
). Then the necessary and sufficient

conditions on f for the functional If to be lower semicontinuous are not known. The
functional related to such model plays an important role in the long time standing prob-
lem of rank–one convexity in the calculus of variations (see [21], [23], and [9], where new
geometric conditions for quasiconvex functionals were obtained). Some further examples
of functionals related to the system (3) can be found in [14, Section 7.3], [16], [19, 20], [24,
Examples 5 and 6 and Propositions 15,16 and 17] and [25], also similar operators appear
in the theory of geometric optics, see [6, 7].

When the model is related to the general system (1), and the operator P satisfies the
so–called constant rank condition, then conditions on f which are equivalent to the lower
semicontinuity of the related functional If were established by Fonseca and Müller, see
[4]. In general these conditions are not equivalent to the Λ–convexity conditions. This
happens for example when P = curl is applied to each coordinate of u = (u1, . . . , um),
(ui ∈ Rn) in a simply connected domain, and m ≥ 3, n ≥ 2 ([23]). In our case, when the
system is given by (3), the constant rank condition fails in general.

Our approach is the following. At first we note that when the model is defined by (3),
the cone Λ defined in Theorem 1.1 is the set theoretical sum of subspaces in Rm, being
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of the form A1 × · · · × Am, where Ai = {0} or Ai = R (Fact 2.1). We denote such
cone by Λ = ΛB(W ), where B(W ) is a subset of {0, 1}m that describes the intersection
properties of the Wi’s (see (6) and (7)). Then we consider the following problem. Let
B be an arbitrary subset of {0, 1}m, and Λ = ΛB (see (6) for definition). We ask what
intersection properties of the Wi’s in (3) guarantee the implication that every Λ convex
function f defines lower semicontinuous functional If . Obviously, if B = B(W ), that is
if ΛB is the usual cone Λ defined in Theorem 1.1, then this implication guarantees the
equivalence in (i) in the statement of Theorem 1.1. In Theorem 3.4 we prove that if
m–tuples {Wj}j=1,...,m satisfy the B–chain condition (according to the author’s notation)
then every ΛB convex function defines the lower semicontinuous functional related to the
system like (3). The B–chain condition is defined with the help of the certain finite
division process in m–products of linear subspaces of Rn, which finally leads to the model
like ∂Rnui = 0, for i = 1, . . . ,m (Definition 3.1). The approach is based on the application
of the theory of Young measures, and the special reduction lemma (Lemma 3.12), which
allows to reduce the investigation of the model with Ω ⊆ Rn to the similar model, but
with the domain in some Rk where k is smaller than n.

This paper is the continuation of author’s work [8], where the family F of m–tuples
{Wj}j=0,...,m of subspaces of Rn, for which the equivalence in (ii) in Theorem 1.1 holds
was characterized completely. The author has also found the necessary condition on
m–tuples {Wj}j=0,...,m of subspaces of Rn, under which the equivalence in (i) holds ([8,
Theorem 3.2]). This condition was not sufficient, but most of the examples known in the
literature, related to the system like (3), where the equivalence in (i) in the statement
of Theorem 1.1 holds do satisfy it (see e.g. [14, Section 7.3], [16], [19, 20], [24, Examples
5 and 6 and Propositions 15, 16 and 17] and [25]). On the other hand, our previous
condition in the statement of Theorem 3.2 in [8] does immediately imply our B–chain
condition from this paper for B = B(W ), and it is essentially stronger (see Remark 3.15
and Example 3.16).

We have also solved the more general problem: having the family ofm–tuples {Wj}j=0,...,m,
we find the family of cones Λ for which Λ–convex functions define weakly lower semicon-
tinuous functionals (Theorem 4.7). That leads to the condition similar to the well known
polyconvexity condition (see Remark 4.8).

In Chapter 4 we explain how to apply our special approach, restricted to the model given
by (3), to the general model, where the operator P is given by (1), while in Chapter 5 we
show some relations and applications of our results to the famous rank–one problem in
the calculus of variations.

2. Notation and preliminaries

Notation.

Let m ∈ N. We recall the standard order in {0, 1}m: for I, J ∈ {0, 1}m we have I > J if
either i1 > j1 or there is l < m such that is = js for s = 1, . . . , l, and il+1 > jl+1.

We set for I ∈ {0, 1}m
D(I) = {r ∈ {1, . . . ,m} : I has 1 on r − th place}, D∗(I) = {1, . . . ,m} \ D(I). If
D(I) = {i} we write I = δi. Given I ∈ {0, 1}m, we denote by I∗ such element of {0, 1}m
that D(I∗) = D∗(I).
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The symbol < ·, · > will stand for the standard scalar product in Rn and W⊥ for the
space orthogonal to the subspace W ⊆ Rn with respect to the standard scalar product.
The standard basis in Rn will be denoted by {e1, . . . , en}.
We denote the m–product of the sum of Grassmannians in Rn by

˜W(n,m) = {W = (W1, . . . ,Wm) : Wi are linear subspaces of Rn}, (4)

and its special subset by

W(n,m) = {W = (W1, . . . ,Wm) ∈ ˜W(n,m) : +i∈{1,...,m}Wi = Rn}, (5)

where +i∈{1,...,m}Wi = {v ∈ Rn : v =
∑m

i=1 vi, vi ∈ Wi} is the Minkowski’s sum of of the
Wi’s.

If W ∈ ˜W(n,m) and W = (W1, . . . ,Wm), we set W⊥ = (W⊥
1 , . . . ,W⊥

m).

If I ∈ {0, 1}m, we denote W I = ∩i∈D(I)Wi if D(I) 6= ∅, W 0 = Rn (to abbreviate we write
simply 0 instead of (0, . . . , 0)). For example when m = 3 we have W (1,1,0) = W1 ∩W2.

By R×I we denote R×i1 × · · · ×R×im , where R×0 = {0}, R×1 = R.

For example R×(1,0,1) = R× {0} ×R. If B ⊆ {0, 1}m, and W ∈ ˜W(n,m), we write

ΛB = ∪I∈BR
×I , and EB,W = +I∈BW

I∗ . (6)

Given m ∈ N, W = (W1, . . . ,Wm) ∈ ˜W(n,m), we introduce special subsets of {0, 1}m,

A(W ) = {I ∈ {0, 1}m : (W⊥)I 6= {0}},
B(W ) = {I ∈ A(W ) : if J ∈ {0, 1}m, D(J) ⊇ D(I), and J 6= I

then (W⊥)J = {0}}. (7)

One can easily verify that the following fact holds (see also [8, Theorem 3.1]).

Fact 2.1. Consider the system (3) with W ∈ ˜W(n,m). Then the manifold V and the
characteristic cone Λ associated to (3) are given by V =

⋃

I∈A(W )(W
⊥)I × R×I , Λ =

⋃

I∈B(W )R
×I .

The space of those u ∈ L∞(Ω,Rm), which satisfy (3) in the sense of distributions, equipped
with the topology of weak ∗ convergence in L∞(Ω,Rm), will be denoted by K(Ω,W ),
where W = (W1, . . . ,Wm).

If Y ⊆ Rn is a linear subspace, then by πY : Rn → Y we denote the orthogonal projection
on Y with respect to the standard scalar product. The same symbol πY will stand for
the operator πY : L∞(Ω) → L∞(Ω), induced by πY , namely (πY u)(x) = u(πY x). Note

that ∂Y ⊥(πY u) = 0. Consequently, if Z ∈ ˜W(n,m), by πZ : L∞(Ω,Rm) → K(Ω, Z⊥), we
denote the operator, whose i–th coordinate is defined by (πZu)i = πZi

ui.

If W = (W1, . . . ,Wm) ∈ ˜W(n,m), and E ⊆ Rn is the subspace, we define
→
E= (E, . . . , E),

andW+
→
E= (W1+E, . . . ,Wm+E), whileWE = ((W1)E, . . . , (Wm)E), where YE = πE(Y ).
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The symbol Q (with possibly some index) will be reserved for cubes, for example Q(r) =
[−r/2, r/2]k ⊆ Rk, while Q(x, r) = {x}+Q(r).

Let Q = Q(r) ⊆ Rk be the k–dimensional cube, i : Rk → Rn be the linear isometric
embedding, E = i(Rk), Q̃ = i(Q), Ω ⊆ Rn be a bounded domain, and Ω(E, r) = {z ∈
Ω : z + Q̃ ⊆ Ω}. We define an averaging operator MQ̃ : L∞(Ω,Rm) → L∞(Ω(E, r),Rm),

MQ̃u(z) = –

∫

{z}+Q̃

u(τ) dτ . Here by –

∫

A

f dx we mean an average of f with respect to the

k-dimensional Hausdorff measure on the k–dimensional manifold A: |A|−1
∫

A
f dx. This

operator can be computed directly in the following way. Let e1, . . . , ek be the standard
basis in Rk, wj = i(ej), where j = 1, . . . ,m, and wk+1, . . . , wn be the completion of
w1, . . . , wk to an orthonormal basis in Rn (with respect to the standard scalar product).
Let (x, y) ∈ Rk ×Rn−k be the parametrization of Rn along w1, . . . , wn. Using the iden-
tification w̃(x, y) = w(

∑k
j=1 xjwj +

∑n
j=k+1 yj−kwj), we note that for u ∈ L∞(Ω,Rm) the

i–th coordinate w of MQ̃u satisfies

w̃(x, y) = –

∫

Qx

ũi(τ, y) dτ. (8)

Some properties of the operator MQ̃ will be described in Lemma 3.11.

As usual, C(Ω) denotes the space of continuous functions on Ω, C0(Rn) are continuous
functions on Rn vanishing at infinity, while µ(Ω) denotes the space of Radon measures
on Ω. If f ∈ C(Ω) and µ ∈ M(Ω), then (f, µ) will stand for

∫

Ω
f(λ)µ(dλ).

We denote by →, ⇀,
∗
⇀ the strong, weak and weak ∗ convergence respectively.

Let I : K(Ω, P ) → R, be an arbitrary functional. Recall that I is lower semicontinuous
under the sequential weak ∗ convergence in L∞(Ω,Rm) if for uν , u ∈ K(Ω, P ), such that

uν ∗
⇀ u as ν → ∞ in L∞(Ω,Rm), we have lim infν→∞I(uν) ≥ I(u). I is continuous under

the sequential weak ∗ convergence in L∞(Ω,Rm) if uν ∗
⇀ u implies limν→∞I(uν) = I(u).

Let us recall the fundamental theorem of Young (see [1]).

Theorem 2.2. Let Ω ⊂ Rn be a bounded measurable set. Assume that uj : Ω → Rm,
j = 1, 2, . . . , is a sequence of measurable functions satisfying the tightness condition

sup
j

|{x ∈ Ω : |uj(x)| ≥ k}| k→∞→ 0.

Then there exists a subsequence {uk} and a family {νx}x∈Ω of probability measures, νx ∈
M(Rm), such that

1. for every f ∈ C0(Rm) the function x 7→ (f, νx) is measurable,

2. if K ⊆ Rn is a closed set, and uj(x) ∈ K for every j and almost every x, then
supp νx ⊆ K for almost every x,

3. if A ⊆ Ω is measurable, f : Ω×Rm → R is a Carathéodory function and the sequence
{f(x, uk(x))} is sequentially weakly relatively compact in L1(A), then {f(x, uk(x))}
converges weakly in L1(A) to f̄ given by

f̄(x) =

∫

Rm

f(x, λ)νx(dλ).
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We will say that the sequence {uj}j∈N generates the Young measure {νx}x∈Ω if {νx}x∈Ω
satisfies 1. and f(uj)

∗
⇀ f̄ = (f, νx) in L∞(Ω), for every f ∈ C0(Rm).

3. The main results

We introduce the following definitions.

Definition 3.1. Let W ∈ ˜W(n,m), and let B ⊆ {0, 1}m be a set of indices. Introduce
the following sequence of objects: W 0 = W , Ei = EB,W i , where EB,W is given by (6),

W i+1 = W i + ~Ei. We say that W satisfies the chain condition with respect to B (the
B–chain condition) if there exists k ∈ N such that W k = (Rn, . . . ,Rn).

Remark 3.2. Note that the sequence {W i}i∈N defined above is always increasing in the
sense that W i

s ⊆ W i+1
s for every i ∈ N and s ∈ {1, . . . ,m}, and it always stabilizes on

some W ∈ ˜W(n,m).

Definition 3.3. We say that W ∈ ˜W(n,m) satisfies the chain condition if it satisfies the
chain condition with respect to B = B(W ), defined by (7).

Our main results are the following.

Theorem 3.4. Let Ω ⊆ Rn be a bounded domain, W ∈ ˜W(n,m), B ⊆ {0, 1}m, ΛB =
∪I∈BR×I . Assume that W satisfies the chain condition with respect to B. Then for every
continuous function f : Rm → R which is ΛB–convex the functional If is sequentially
lower semicontinuous under the L∞ weak ∗ convergence in K(Ω,W ).

The direct consequence of Theorem 3.4, Theorem 1.1 and Fact 2.1 is the following.

Corollary 3.5. Let Ω ⊆ Rn be the bounded domain, W ∈ ˜W(n,m) satisfies the chain
condition, Λ = ΛB(W ) = ∪I∈B(W )R×I . Then for every continuous function f : Rm → R
the functional If is sequentially lower semicontinuous under the L∞ weak ∗ convergence
on K(Ω,W ) if and only if f is Λ convex.

Another corollary is of purely algebraic nature.

Corollary 3.6. If W ∈ ˜W(n,m) satisfies the chain condition with respect to B then
B(W ) ⊆ B and ΛB(W ) ⊆ ΛB.

Proof. This follows from the fact that according to Theorems 3.4 and 1.1 every ΛB–affine
function is ΛB(W )–affine. £

The proof of Theorem 3.4 will be preceded by the following sequence of lemmas. The first
one is a slight modification of Lemma 3.1 in [8]. We include its proof for the convenience
of the reader.

Lemma 3.7. Let W = (W1, . . . ,Wm) ∈ ˜W(n,m), B ⊆ {0, 1}m be the certain set of
indices, ΛB = ∪I∈BR×I , E = EB,W = +I∈BW

I∗ ⊆ Rn. Assume that dimE = k > 0.
Let Qx ⊆ {x} + E be the k–dimensional parallelepiped, whose every side is parallel to
some W I∗, where I ∈ B. Then for every ΛB–convex continuous function f , and every
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u ∈ K(Rn,W ),

–

∫

Qx

f(u(y))dy ≥ f( –

∫

Qx

u(y)dy). (9)

Proof. Let w1, . . . , wk be the basis in E such that for each l we can find Il ∈ B with
the property that wl ∈ W I∗l . Choose x ∈ Rn and the parallelepiped Qx =

∑k
i=1 tiwi + x,

with ti ∈ (−1/2, 1/2), for i = 1, . . . , k. Since w1 ∈ Wi for all i ∈ D∗(I1), and each ui is
constant along the Wi’s, we see that the image of the mapping

R 3 t1 7→ φ1(t1, . . . , tk) = u

(

k
∑

i=1

tiwi + x

)

∈ Rm

is a subset of A+R×I1 , where A = u
(

∑k
i=2 tiwi + x

)

. By the assumption f is convex in

the direction of R×I1 , hence

∫ 1/2

−1/2

f(φ1(t1, . . . , tk))dt1 ≥ f

(

∫ 1/2

−1/2

φ1(t1, . . . , tk)dt1

)

.

Proceeding in the same way with variables ti, for i = 2, . . . , k, and vector–valued functions,

R 3 ti 7→ φi(ti, . . . , tk) =

∫ 1/2

−1/2

. . .

∫ 1/2

−1/2

u

(

k
∑

i=1

tiwi + x

)

dt1 . . . dti−1

we obtain

∫

Qx

f(u(x))dx =

∫ 1/2

−1/2

. . .

∫ 1/2

−1/2

f

(

u

(

k
∑

i=1

tiwi + x

))

dt1 . . . dtk

≥ f

(

∫ 1/2

−1/2

. . .

∫ 1/2

−1/2

u

(

k
∑

i=1

tiwi + x

)

dt1 . . . dtk

)

= f

(∫

Qx

u(y)dy

)

. £

Remark 3.8. It follows from the proof that if x varies along EB,W then u(x) can vary
along ΛB only.

Remark 3.9. We do not assume that the set B is related to the structure of W .

The next lemma may be clear to the specialists, but we include its proof for the sake of
completeness.

Lemma 3.10. Let m,n ∈ N, W ∈ ˜W(n,m), and f : Rm → R be continuous. The
following statements are equivalent.

(i) There exists a cube Q ⊆ Rn such that the functional If is lower semicontinuous in
K(Q,W ), under the sequential weak ∗ convergence in L∞(Q,Rm).

(ii) For an arbitrary cube Q ⊆ Rn the functional If is lower semicontinuous in K(Q,W ),
under the sequential weak ∗ convergence in L∞(Q,Rm).



426 A. Kałamajska / On Λ–Convexity Conditions in the Theory of Lower ...

(iii) For an arbitrary bounded domain Ω ⊆ Rn the functional If is lower semicontinuous
in K(Ω,W ), under the sequential weak ∗ convergence in L∞(Ω,Rm).

(iv) If Ω ⊆ Rn is an arbitrary bounded domain, {uν}ν∈N ⊆ K(Ω,W ) is an arbitrary
bounded sequence, which generates the Young measure {νx}x∈Ω, then for almost
every x ∈ Ω, we have

(f, νx) ≥ f((λ, νx)), (10)

where (λ, νx) =
∫

Rm λνx(dλ).

Proof. The implication (iii) ⇒ (ii) ⇒ (i) is obvious, (i) ⇒ (ii) follows from the fact
that the space K(Q,W ) is invariant under translations u(x) 7→ u(A + x), and dilations
u(x) 7→ u(tx), where A ∈ Rn and t ∈ R. For the implication (ii) ⇒ (iv) we use the
Young measure theory in a standard manner. Let {uν}ν∈N ⊆ K(Ω,W ) be the sequence

generating the Young measure {νx}x∈Ω. Then f(uν(x))
∗
⇀ f(x) = (f, νx) in L∞(Ω), and

uν(x)
∗
⇀ u(x) = (λ, νx) in L∞(Ω,Rm). Take x0 ∈ Ω and r > 0 such that Q(x0, r) ⊆ Ω.

Then by (ii) we get

–

∫

Q(x0,r)

(f, νx) dx = lim
ν→∞

–

∫

Q(x0,r)

f(uν(x)) dx ≥ –

∫

Q(x0,r)

f(u(x)) dx.

Let r → 0. Applying a Lebesgue’s Differentiation Theorem, we verify that if x0 is the
Lebesque’s point for f(x) and for f(u(x)) then (10) holds at x = x0. To see that the
implication (iv) ⇒ (iii) holds true it suffices to integrate (10) over Ω and apply the
theorem of Young. £

Now we are going to derive some properties of the averaging operator MQ̃ defined by (8).
We have the following.

Lemma 3.11. Assume that W ∈ ˜W(n,m), B ⊆ {0, 1}m is a certain set of indices,

E = EB,W is given by (6), dimE = k > 0, ˜Q ⊆ E is the k–dimensional cube, the range
of Q = Q(r) ⊆ Rk under the linear isometry i : Rk → Rn, and M

˜Q is the averaging

operator defined by (8). Let W 1 = WE⊥, W 2 ∈ ˜W(n,m) be such that W 1
i + W 2

i = E⊥,

and W 1
i ⊥ W 2

i , for every i = 1, . . . ,m. Define Y = W 2 + ~E, where ~E = (E, . . . , E), and
choose s ∈ {1, . . . ,m}. Then the following conditions hold.

(i) There exists a linear operator Ds : Rn → E such that Ds = DsπW 1
s
, and for every

u ∈ K(Ω,W ) and z ∈ Rn, we have us(z) = us(−Dsz + πYsz). In particular

(M
˜Qu)s(z) = (M

˜Qu)s(−Dsz + πYsz). (11)

(ii) If z0 ∈ Rn is such that ‖πW 1
s
z − πW 1

s
z0‖ ≤ ‖Ds‖−1r, while πYsz = πYsz0, then we

have

|(M
˜Qu)s(z)− (M

˜Qu)s(z0)| ≤ Cs · r−1‖πW 1
s
z − πW 1

s
z0‖ · ‖us‖L∞(Ω), (12)

where Cs = 2
√
k‖Ds‖.

Proof. (i) Let As : W
1
s → Ws be the linear embedding such that πE⊥As = idW 1

s
. Define

Ds = AsπW 1
s
−πW 1

s
= πEAsπW 1

s
. Since πW 1

s
+πW 2

s
= πE⊥ , we have πE⊥ = AsπW 1

s
−Ds+πW 2

s
,
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and id = (πE + πW 2
s
) +AsπW 1

s
−Ds = πYs +AsπW 1

s
−Ds. Note that for every z ∈ Rn, we

have AsπW 1
s
z ∈ Ws. In particular, if u ∈ K(Ω,W ), we have us(z) = us(πYsz −Dsz). This

implies (i).
(ii) Let e1, . . . , ek be the standard basis in Rk, and wj = i(ej), where j = 1, . . . , k. Let
wk+1, . . . , wn be the completion of the {wj}j=1,...,k to the orthonormal basis in Rn such
that wk+1, . . . , wk+l are parallel to W 1

s , while wk+l+1, . . . , wn are parallel to W 2
s (where

l = dimW 1
s ). Choose coordinates (x, y1, y2) ∈ Rk × Rl × Rn−k−l along {wj}j=1,...,k,

{wj}j=k+1,...,k+l, and {wj}j=k+l+1,...,n respectively. Let z =
∑k

j=1 xjwj +
∑l

j=1 y
1
jwk+j +

∑n−(k+l)
j=1 y2jwk+l+j. Then by (i) the s–th coordinate of v = M

˜Qu satisfies

vs(z) = ṽs(x, y
1, y2) = –

∫

{x−D̃sy1}+Q(r)

ũs(τ, 0, y
2) dτ,

where D̃sy
1 is the parametrization of Dsz = Ds(

∑l
j=1 y

1
jwk+j) ∈ E in the basis e1, . . . , ek.

Hence, if z0 =
∑k

j=1 xjwj +
∑l

j=1 y
1
jwk+j +

∑n−(k+l)
j=1 y2jwk+l+j, we have

vs(z0) = –

∫

{x−D̃sy1}+Q(r)

ũs(τ, 0, y
2) dτ,

where y1 = (y11, . . . , y
1
l ). In particular,

|vs(z)− vs(z0)| ≤ r−k

∫

Q1∆Q2

|ũs(τ, 0, y
2)| dτ ≤ ‖us‖L∞(Ω)r

−k|Q1∆Q2|,

whereQ1 = {x−D̃sy
1}+Q(r), Q2 = {x−D̃sy

1}+Q(r), andQ1∆Q2 := (Q1\Q2)∪(Q2\Q1)
is the symmetric difference of Q1 and Q2. Now it suffices to note that if ‖D̃sy

1− D̃sy
1‖ =

r1 ≤ r, we have |Q1∆Q2| = 2|Q1 \Q2| ≤ 2
√
kr1r

k−1. £.

We are going now to apply the following lemma, which is the key point in the proof of
Theorem 3.4.

Lemma 3.12 (The Reduction Lemma). Let W ∈ ˜W(n,m), B ⊆ {0, 1}m be a set of
indices, E = EB,W , and Λ = ΛB be given by (6), 0 < dimE = k < n, Asume that Ω ⊆ Rn

is a bounded domain, and f : Rm → R is continuous and ΛB–convex. Then the following
statements are equivalent.

(i) The functional If is lower semicontinuous under the sequential L∞–weak ∗ conver-
gence in K(Ω,W ),

(ii) The functional If is lower semicontinuous under the sequential L∞–weak ∗ conver-

gence in K(Ω,W + ~E).

Remark 3.13. Note that the space K(Ω,W + ~E) is isomorphic to the space K(Ω2, V ),

where Ω2 ⊆ Rn−k, and V ∈ ˜W(n− k,m) are such that if C : E⊥ → Rn−k is an arbitrary
linear isomorphism, then Vs = C((Ws)E⊥), and Ω2 = C(πE⊥(Ω)).

Proof. It suffices to prove the lemma under the assumption E = Rk × {0}, and Ω =
Ω1 × Ω2, where Ω1 ⊆ Rk, and Ω2 ⊆ Rn−k are bounded domains (we use Lemma 3.10).
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Let W 1,W 2 and Y be as in the previous lemma, and choose coordinates (x, y) ∈ Rn in
the way that x ∈ Rk and y ∈ Rn−k. We proceed to the proof of the lemma.

(i) ⇒ (ii): This implication is obvious since K(Ω,W + ~E) ⊆ K(Ω,W ).
(ii) ⇒ (i): Let v ∈ K(Ω,W ) be such that |vs(x)| ≤ R for every s ∈ {1, . . . ,m}, and for
almost every x ∈ Ω. Let Q1(r) = [−r/2, r/2]k, Q̃1 = Q1 × {0} ⊆ Rn, and to abbreviate
let us denote Q1 = Q1(x0, r), where x0 ∈ Rk is fixed. According to Lemma 3.7, for almost
every y ∈ Ω2 we have

–

∫

Q1

f(v(τ, y))dτ ≥ f( –

∫

Q1

v(τ, y)dτ). (13)

Thus

–

∫

Q1

f(v(τ, y))dτ ≥ f((MQ̃1
v)(x0, y)) = f(w(y)) + C(y, v), (14)

where C(y, v) = f((MQ̃1
v)(x0, y))− f((πYMQ̃1

v)(x0, y)), and w(y) = (πY (MQ̃1
v))(x0, y).

According to Lemma 3.11, we have

|(MQ̃1
vs − πY (MQ̃1

vs))(x0, y)| ≤ CsRr−1r1,s = C(s, R, r)r1,s,

where Cs is as in (12), while r1,s = ‖πW 1
s
(x0, y)‖ ≤ ‖y‖. Hence

|C(y, v)| ≤ sup{|f(A+ τ)− f(A)| : |As| ≤ R, |τs| ≤ C(s, R, r)‖y‖,
for every s ∈ {1, . . . ,m}}, (15)

provided that ‖y‖ ≤ (mins‖Ds‖−1)r.

Let uν ∗
⇀ u in K(Ω,W ), and assume that |uν

s(x)| ≤ R for every s ∈ {1, . . . ,m} and
almost every x ∈ Ω. Applying (14) and (15) to v(x, y) = uν(x, y0+ y), and assuming that
‖y‖ ≤ r1, where r1 ≤ (mins‖Ds‖−1)r, we get

–

∫

Q1

f(uν(τ, y0 + y))dτ ≥ f(wν(y)) + Cν(y), (16)

where

|Cν(y)| ≤ sup{|f(A+ τ)− f(A)| : |As| ≤ R, |τs| ≤ C(s, R, r)r1,

for every s ∈ {1, . . . ,m}}, (17)

wν
s (y) = –

∫

Q1(x0,r)

uν
s((τ, y0) + πW 2

s
(0, y))dτ.

Note that if x0, y0 and r are fixed, the function
(x, y) 7→ wν(y) belongs to K(Ω,W + ~E), and wν ∗

⇀ w, as ν → ∞, where

ws(y) = –

∫

Q1(x0,r)

us((τ, y0) + πW 2
s
(0, y))dτ ∈ K(Ω,W + ~E). (18)

After integrating (16) with respect to y ∈ Q2 = Q2(r1) ⊆ Rn−k, we get

–

∫

Q2

–

∫

Q1

f(uν(τ, y0 + y))dτdy ≥ –

∫

Q2

f(wν(y))dy +

∫

Q2

Cν(y) dy.
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Hence, by the assumption (ii) and (17) we obtain

lim inf
ν→∞

–

∫

Q2

–

∫

Q1

f(uν(τ, y0 + y))dτ dy ≥ lim inf
ν→∞

–

∫

Q2

f(wν(y))dy −B(r1)

≥ –

∫

Q2

f(w(y))dy −B(r1),

where B(r1) = o(r1). According to the Young’s Theorem this implies that (passing to a
subsequence) if {ν(x,y)}(x,y)∈Ω is the Young measure generated by {uν}, we have

–

∫

Q2(r1)

–

∫

Q1(x0,r)

(f, ν(τ,y0+y))dτ dy ≥ –

∫

Q2(r1)

f(w(y))dy −B(r1), (19)

where according to (18) ws(y) = –

∫

Q1(x0,r)

(λs, ν((τ,y0)+πW2
s
(0,y)))dτ , and λs is the s–th coor-

dinate of λ ∈ Rm.

Now it is an easy exercise to apply the Lebesque’s Differentiation Theorem and prove that
if x0 and r are fixed, while r1 → 0, then there exists a measurable set Ω2(x0, r) such that
Ω2(x0, r) ⊆ Ω2, |Ω2 \ Ω2(x0, r)| = 0, and for all y0 ∈ Ω2(x0, r) the left hand side of (19)

tends to –

∫

Q1

(f, ν(τ,y0))dτ , while the right hand side of (19) tends to f( –

∫

Q1

(λ, ν(τ,y0))dτ).

That gives

–

∫

Q1(x0,r)

(f, ν(τ,y0))dτ ≥ f( –

∫

Q1(x0,r)

(λ, ν(τ,y0)dτ)), (20)

for all x0 ∈ Ω1, and all y0 ∈ Ω2(x0, r). Now we would like to let r → 0 and apply the
Lebesgue’s Differentiation Theorem again, but we cannot do it directly, because the set
of those y0 for which (20) holds depends on x0, while the set of Lebesgue’s points for
x 7→ (f, ν(x,y0)) and x 7→ (λ, ν(x,y0)) depends on y0. Therefore we apply the following
argument. Let rj = 1

j
, j ∈ N, and define the following subsets in Ω2, being of the full

measure in Ω2: Ω2(x) = ∩jΩ2(x, rj). Let F (x, y) = (f, ν(x,y)), and G(x, y) = (λ, ν(x,y)).
Since F,G ∈ L∞(Ω1 × Ω2), the following set is well defined and has the full measure in
Ω2:

Ω̃2 = {y ∈ Ω2 : x 7→ F (x, y) and x 7→ G(x, y) ∈ L∞(Ω1)}.
We also introduce for y ∈ Ω̃2,

Ω1(y) = {x ∈ Ω1 : x is a Lebesgue’s point for F (x, y) and for G(x, y)}
Ω̃1(y) = {x ∈ Ω1 : y ∈ Ω2(x)}.

Since

|Ω1 × Ω2| =
∫

Ω1

∫

Ω2

1dxdy =

∫

Ω1

(

∫

Ω2

χ{y∈Ω̃2∩Ω2(x)}dy)dx =

∫

Ω̃2

(

∫

Ω1

χΩ̃1(y)
(x)dx)dy,

it follows that there exists a set Ω∗
2 ⊆ Ω̃2 such that |Ω2 \ Ω∗

2| = 0, and for every y ∈ Ω∗
2

the set Ω̃1(y) is of full k–dimensional Lebesgue’s measure in Ω1. Let

Ω̃ = {(x, y) : y ∈ Ω∗
2, x ∈ Ω1(y) ∩ Ω̃1(y)}.
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Note that the set Ω̃ is of full measure in Ω. Now let us apply (20) to (x0, y0) ∈ Ω̃,
r = rj = 1

j
, and let j → ∞. According to the Lebesgue’s Differentiation Theorem, and

to continuity of f , we verify that

(f, ν(x0,y0)) ≥ f((λ, ν(x0,y0))),

for all (x0, y0) ∈ Ω̃. Now the assertion follows from Lemma 3.10. £

Remark 3.14. It would seem at first glance that if W ∈ ˜W(n,m), and v ∈ K(Ω,W ),

then the function w(x, y) = MQ̃1
v(x0, y) ∈ K(Ω,W+ ~E) if x0 is fixed. It is easy to see that

such property does not hold, as the function w may change in the directions of (W )E⊥ ,
see (i) of Lemma 3.11. This was the reason to employ Lemma 3.11.

Proof of Theorem 3.4. According to Definition 3.1 and Lemma 3.12 if f is ΛB con-
vex then the functional If is sequentially weakly ∗ lower semicontinuous in K(Ω,W i) if
and only if it is sequentially weakly ∗ lower semicontinuous in K(Ω,W i+1). Hence the
functional If is sequentially weakly ∗ lower semicontinuous in K(Ω,W ) if and only if it is

sequentially weakly ∗ lower semicontinuous in K(Ω, ~Rn). But the space K(Ω, ~Rn) consists
of constant functions only, where the weak convergence is the same as the strong one.
Hence, since f is continuous, the last condition is always satisfied. £

Remark 3.15. If {W I∗}I∈B(W ) span the whole of Rn then obviously W does satisfy the
chain condition. Such condition was introduced in [8] and defined as parallelness condition
(see also Chapter 4 of [8] for equivalent characterization). The author has proved there
that under such assumption Theorem 3.4 holds (Theorem 3.2 of [8]). The following
example shows that the chain condition is essentially weaker than parallelness condition
from the author’s previous paper.

Example 3.16. Let m = n = 3, W1 = span{e2}, W2 = span{e2 + e3}, W3 = span{e1 −
e2, e3}. Here B(W ) = {(1, 1, 0), (0, 0, 1)}, and Λ = (R×R×{0})∪({0}×{0}×R). Hence
W 0 = W , E0 = span{e1 − e2, e3}, W 1 = (R3,R3, span{e1 − e2, e3}), E1 = R3, W 2 =
(R3,R3,R3), and W does satisfy the chain condition, while the subspaces {W I∗}I∈B(W )

do not span the whole of Rn.

Some more examples will be presented in the next chapter.

4. Generalizations. A wider class of functionals

Let W ∈ ˜W(n,m), and assume that W does not satisfy the chain condition. We would
like to know what is the characterization of the set of those continuous functions f :
Rm → R which define the sequentially lower semicontinuous functionals acting on the
space K(Ω,W ), equipped with the L∞ weak ∗ topology. Before we formulate the general
theorem, let us start with some definitions and remarks.

Definition 4.1. Let W ∈ ˜W(n,m), and Λ ∈ {ΛB : B ∈ 2{0,1}
m}. We say that (W,Λ) is a

chain pair if Λ = ΛB (see (6)) for such B that W satisfies the chain condition with respect
to B.

Remark 4.2. Suppose that W ∈ ˜W(n,m), Λ1,Λ2 ∈ {ΛB : B ∈ 2{0,1}
m}, and Λ1 ⊆ Λ2.

Then if (W,Λ1) is a chain pair then (W,Λ2) is also a chain pair.
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Definition 4.3. Let

D(W ) = {Λ ∈ {ΛB : B ∈ 2{0,1}
m} : (W,Λ) is the chain pair}. (21)

By D0(W ) we will denote the subset of D(W ), consisting of all its elements which are
minimal with respect to the inclusion “⊆Ô. Note that the set D0(W ) is well defined and,
as follows from Corollary 3.6, every element of D0(W ) contains ΛB(W ).

Remark 4.4. According to Theorem 3.4, if W ∈ ˜W(n,m), and D0(W ) = {Λ1, . . . ,Λr},
then every Λi convex function f : Rm → R defines the sequentially weakly ∗ lower semi-
continuous functional If , acting on K(Ω,W ) equipped with the topology of L∞(Ω,Rm).

Let me illustrate the above reasoning on the following simple example.

Example 4.5. Let n = 2,m = 3, W = (span{e2}, span{e1}, span{e1 − e2}). Then there
are four Λ’s such that (W,Λ) is a chain pair: Λ1 = ({0} × R × R) ∪ (R × {0} × {0}),
Λ2 = (R × {0} × R) ∪ ({0} × R × {0}), Λ3 = (R × R × {0}) ∪ ({0} × {0} × R), and
Λ4 = R3, while ΛB(W ) = (R × {0} × {0}) ∪ ({0} ×R × {0}) ∪ ({0} × {0} ×R). Hence
D0(W ) = {Λ1,Λ2,Λ3}. According to Remark 4.4 every Λi convex function defines the
lower semicontinuos functional on K(Ω,W ). This can be easily checked directly.

The next two theorems extend the result of Theorem 3.4. Their easy proofs are left to
the reader.

Theorem 4.6. Let W ∈ ˜W(n,m), and D0(W ) = {Λ1, . . . ,Λr}. Assume that g1, . . . , gr :
Rm → R, gi are Λi convex and continuous for every i ∈ {1, . . . ,m}, and let h : Rr →
R be convex, and increasing with respect to every variable. Then the function f(λ) =
h(g1(λ), . . . , gr(λ)) defines the sequentially weakly ∗ lower semicontinuous functional If ,
acting on K(Ω,W ) equipped with the topology of L∞(Ω,Rm).

Theorem 4.7. Let W ∈ ˜W(n,m), and D0(W ) = {Λ1, . . . ,Λr}. Assume that g1, . . . , gr :
Rm → R, gi are Λi affine and continuous for every i ∈ {1, . . . ,m}, and let h : Rr → R
be convex. Then the function

f(λ) = h(g1(λ), . . . , gr(λ)) (22)

defines the sequentially weakly ∗ lower semicontinuous functional If , acting on K(Ω,W ),
equipped with the topology of L∞(Ω,Rm).

Remark 4.8. Note that the condition (22) is the analogue of the polyconvexity condition
known in the calculus of variations (see e.g. [3]), while the condition (9) is the poor cousin
of the A–quasiconvexity condition, see [4].

Remark 4.9. If ΛB(W ) spans the whole Rm, then every Λi–affine function in the state-
ment of Theorem 4.7 is a polynomial (see e. g. Theorem 4.5 of [2]). Then the continuity
assumption on gi in the statement of Theorem 4.7 can be dropped.

Let me explain my motivations to investigate functionals related to the model like (3). It
is easy to see that the following theorem holds.
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Theorem 4.10. Assume that

(i) Ω ⊆ Rn is an open bounded domain, P is the operator given by (1), K = KerP ∩
L∞(Ω,Rm), V and Λ are defined by Theorem 1.1.

(ii) There are n1,m1 ∈ N such that m1 ≤ m, n1 ≤ n, the bounded domain Ω1 ⊆ Rn1,

W ∈ ˜W(n1,m1), and the linear imbedding J : Rm1 → Rm, which induces the linear
embedding K(Ω1,W ) ⊆ K, defined by the expression Ju(x) = J(u(x)), x ∈ Ω1.

(iii) f : Rm → R is continuous and defines the lower semicontinuous functional If ,
acting on the space K.

Then the function fJ(λ) = f ◦ J : Rm1 → R defines the sequentially weakly ∗ lower semi-
continuous functional on the space K(Ω1,W ), equipped with the topology of L∞(Ω1,Rm1).

The above theorem can be used to test conjectures for lower semicontinuous functionals
related to the general model, as well as to derive some their further properties. Let me
illustrate this possibility on the following example.

Example 4.11. Let P be given by (1), K = KerP ∩ L∞(Ω,Rm), Λ and V be given
by Theorem 1.1. Take r ∈ N, and (ξ1, λ1), . . . , (ξr, λr) ∈ V . Note that for an arbitrary
v ∈ L∞(R), and an arbitrary (ξ, λ) ∈ V , we have u(x) = v(< x, ξ >) · λi ∈ K. Since K is
linear, we verify that

Kr = Kr
(ξ1,λ1),...,(ξr,λr)

= {u ∈ K : u =
r

∑

i=1

vi(< x, ξi >) · λi, where v1, . . . , vr ∈ L∞(R)} (23)

is the subset of K. Moreover, if λi’s are linearly independent, then K3 is the subspace of
K, isomorphic to K(Ω1,W ), for a suitably choosen domain Ω1 and W ∈ ˜W(n,m). Hence,
if the functional If is lower semicontiunous on K, then the functional If restricted to
functions from Kr must also be lower semicontinuous.

The above approach does exist in the literature in some special cases. Let me give a few
more examples.

Example 4.12. The proof of Theorem 1.1 uses spaces K1
(ξ,λ), see e. g. Theorem 3.1 of

[2].

Example 4.13. The proof of the known result of Murat and Tartar about weakly con-
tinuous functionals (see e.g. Theorem 3.3 of [2]) uses spaces of the form KN

(ξ1,λ1),...,(ξN ,λN ),
where ξ1, . . . , ξN are linearly dependent.

Example 4.14. The space K3 was used in Šverák’s famous paper [23], in Pedregal’s
paper [21], and in the paper of the author [9] in the context of the application to the
rank–one problem. Some more details will be explained in the next section.

5. Applications to the rank–one problem

Now we are going to discuss the relations of our results with the rank–one problem.
Suppose that m,n ∈ N, Ω ⊆ Rn is the bounded domain, and

K = {∇v = (∇v1, . . . ,∇vm), vi ∈ W 1,∞(Ω)} (24)
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If Ω is simply connected, then K is exactly the kernel of the operator of rotation applied
to every column of the vector w = (w1, . . . , wm), where wi ∈ Rn for i = 1, . . . ,m. Take
the continuous function f : Rm

n → R and consider the functional

If (v) =

∫

Ω

f(∇v(x)) dx, v ∈ W 1,∞(Ω,Rm).

According to Theorem 1.1, the set V related to the space of gradients is equal to V =
{(ξ, ξ ⊗ b) : ξ ∈ Rn, b ∈ Rm}, and Λ = {ξ ⊗ b : ξ ∈ Rn, b ∈ Rm} is the set of rank–one
matrices in Rm

n . The space of those continuous functions f : Rm
n → R which define

the lower semicontinuous functionals If has been completely characterized and every
such function is called quasiconvex (see e.g. [2, 3, 11, 12]). Unfortunately the condition
which defines the quasiconvex function is not geometrically transparent. As the direct
consequence of Theorem 1.1 one obtains that every quasiconvex function must be convex
in the direction of matrices of rank–one (rank–one convex). It has been posed by Morrey in
[11] that every continuous function f : Rm

n → R which is rank–one convex is quasiconvex.
This conjecture has been answered in negative by Šverák in 1992 ([23]) in the case m ≥
3, n ≥ 2, and it remains open when m = 2 and n ≥ 2 (we refer to the interesting paper of
Iwaniec [5] where the nontrivial connections of this conjecture and some other disciplines
of mathematics were shown, and for example to [10, 17, 22] and their references for more
results concerning the rank–one conjecture).

Let me make some comments concerning Šverák’s construction for the case m = 3, n = 2,
and for the case m = n = 2, referring to the original paper [23] for details. At first we
consider the case n = 2,m = 3.

Remark 5.1. Let W ∈ ˜W(2, 3) be as in Example 4.5. Then W does not satisfy the chain
condition and one can show directly that in this case the set of all Λ̃ convex functions,
where Λ̃ = ΛB(W ) = (R× {0} × {0}) ∪ ({0} ×R× {0}) ∪ ({0} × {0} ×R) is essentially
bigger than the set of those functions, which define the lower semicontinuous functionals
acting on K(Ω,W ) (where Ω ⊆ R2 is an arbitrary bounded domain). For example every
function of the form

fε(r, s, t) = −rst+ ε‖(r, s,
√
2t)‖2, (25)

is Λ̃ convex, but the functional Ifε is not lower semicontinuous on K(Ω,W ) if ε ≥ 0 is
sufficiently small (for ε = 0 this observation is due to Murat and Tartar, see e. g. page 26
of [2], [3, 13, 14, 24]).

Now take ξ1 = (1, 0), ξ2 = (0, 1), ξ3 = (1, 1) ∈ R2, b1 = (1, 0, 0), b2 = (0, 1, 0), b3 =

(0, 0, 1), and let λ1 = ξ1 ⊗ b1 =

[

1 0 0
0 0 0

]

, λ2 = ξ2 ⊗ b2 =

[

0 0 0
0 1 0

]

, λ3 = ξ3 ⊗

b3 =

[

0 0 1
0 0 1

]

, and construct the space K3 = K3
(ξ1,λ1),(ξ2,λ2),(ξ3,λ3)

by (23). Then K3 =
[

u1(y) 0 u3(x+ y)
0 u2(x) u3(x+ y)

]

, where u = (u1, u2, u3) ∈ K(Ω,W ). Let X = {X(r, s, t) =
[

r 0 t
0 s t

]

, r, s, t ∈ R} be the space spanned by λ1, λ2, λ3 in R3
2. Then X is linearly

isomorphic to R3, where the isomorphism I : R3 → X is defined by I(r, s, t) = X(r, s, t).
This isomorphism induces the isomorphism I between the space K3 and K(Ω,W ), namely
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I(u1(y), u2(x), u3(x + y)) =

[

u1(y) 0 u3(x+ y)
0 u2(x) u3(x+ y)

]

. Šverák’s countrexample was

based on the following argument. Take function fε of the form (25) acting on R3, and
transform it to the function fε̃ acting on X, given by f̃ε(X(r, s, t)) = fε(r, s, t). Then
obviously f̃ε is not lower semicontinuous on K3 (fε was not lower semicontinuous on
K(Ω,W )), but when ε > 0 it does extend to a rank–one convex function Fε defined on
the whole space of matrices R3

2. In particular Fε cannot define the lower semicontinuous
functional on the space of gradients, so Fε cannot be quasiconvex. This implies that in
the case m ≥ 3, n = 2 the set of all rank–one convex functionals is essentially biger than
that of quasiconvex ones.

Let me comment now the remaining case when n = m = 2.

Remark 5.2. Let m = n = 2 now, and f : R2
2 → R be continuous and rank–one

convex. Take ξ1, ξ2, ξ3 ∈ R2 such that ξ1, ξ2 are linearly independent, b1, b2 ∈ R2, and
(ξ1, λ1 = ξ1⊗b1), (ξ2, λ2 = ξ2⊗b2) ∈ V . Then vectors λ1, λ2 are linearly independent, and
K2 = K2

(ξ1,λ1),(ξ2,λ2)
= {u1(< x, ξ1 >)λ1 + u2(< x, ξ2 >)λ2, ui ∈ L∞} is a subspace of K. It

can be easily computed that the functional If reduced to K2 is lower semicontiuous. This
is also the simple ilustration of Theorem 3.4. Since the space K2 can be identified with
the space K(Q,W ), where Q ⊆ R2 is an arbitrary cube, and W = (span{e2}, span{e1}) ∈
W(2, 2), the question about lower semicontinuity of the functional If reduced to the space
K2 is the question about lower semicontinuity of the functional If̃ defined on the space

K(Q,W ), where f̃(z1, z2) = f(z1λ1 + z2λ2). Note that for the problem transported to
K(Q,W ) we have Λ = (R × {0}) ∪ ({0} × R) = ΛB(W ), B(W ) = {(1, 0), (0, 1)}, and f̃
is Λ convex. Since according to Definition 3.1 W does satisfy the chain condition, this
implies that the functional If̃ is lower semicontinuous. Then also If , restricted to K2 is
lower semicontinuous. When ξ1 = (1, 0), ξ2 = (0, 1), and b1 = (1, 0), b2 = (0, 1) then K2

is exactly the space of diagonal matrices of the form

[

u1(x1) 0
0 u2(x2)

]

. This model has

been deeply analyzed by Müller in his paper [16].

Remark 5.3. Let f : R2
2 → R be rank–one convex. Take ξ1, ξ2, ξ3 ∈ R2 such that every

pair ξi, ξj is linearly independent for i 6= j, b1, b2, b3 ∈ R2, let (ξ1, λ1 = ξ1 ⊗ b1), (ξ2, λ2 =
ξ2 ⊗ b2), (ξ3, λ3 = ξ3 ⊗ b3) ∈ V , and consider K3 = K3

(ξ1,λ1),(ξ2,λ2),(ξ3,λ3)
=

= {u1(< x, ξ1 >)λ1 + u2(< x, ξ2 >)λ2 + u3(< x, ξ3 >)λ3 : u1, u2, u3 ∈ L∞(R)}.

Then the question about lower semicontinuity of the functional If when reduced to K3 is
the question about the lower semicontinuity of the corresponding functional If̃ (u) where

u ∈ K(Q,W ), Q ⊆ R2 is an arbitrary cube inR2,W ∈ ˜W(2, 3),W = (span{e2}, span{e1},
span{e1 − e2}) is as in Example 4.5, and f̃(z1, z2, z3) = f(z1λ1 + z2λ2 + z3λ3). Obviously
such W does not satisfy the chain condition and convexity of f along vectors from the
standard basis e1, e2, e3 ∈ R3 is not the sufficient condition for lower semicontinuity of
the functional If̃ . On the other hand, if f is rank–one convex, then f is convex along all

walls of the form Σb = {ξ ⊗ b : ξ ∈ R2}, and Σξ = {ξ ⊗ b : b ∈ R2}, two–dimensional
subspaces of R2

2. In particular, if f is rank–one convex, then f̃ is convex along all walls
I(Σb), I(Σξ), where I : R2

2 → R3 is given by I(t1λ1 + t2λ2 + t3λ3 + t4λ4) = (t1, t2, t3),
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and λ4 is the completion of λ1, λ2, λ3 to the basis in R2
2. If we take b1 = b2, and b3 6=

b2 then λ1, λ2, λ3 are still linearly independent, but f is convex along the whole wall
{ξ ⊗ b1 : ξ ∈ R2}, which containes λ1 and λ2. This implies that f̃ is Λ convex, where
Λ = (R × R × {0}) ∪ ({0} × {0} × R) = ΛB, with B = {(1, 1, 0), (0, 0, 1)}. Since W
does satisfy the chain condition with respect to B (see Example 4.5), we see that If̃ is
lower semicontinuous on K(Q,W ). Thus If is lower semicontinuous when reduced to
K3 = K3

(ξ1,λ1),(ξ2,λ2),(ξ3,λ3)
, provided that every pair ξi, ξj is linearly independent for i 6= j.

I do not know what happens if the pair b1, b2 is linearly independent.
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