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Viale Morgagni 67/A, 50134 Firenze, Italy
amiglior@math.unifi.it

Received February 22, 2002
Revised manuscript received February 05, 2003
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1. Introduction

Consider the integral functional of the Calculus of Variations

F(u; Ω) :=

∫

Ω

f(x, u(x), Du(x)) dx , (1)

where Ω is an open bounded subset of RN and f = f(x, u, ξ) : Ω × R × RN → [0,+∞)
is a Carathéodory function, i.e. f is measurable in x and continuous in (u, ξ), satisfying
the p-growth condition (p > 1)

|ξ|p ≤ f(x, u, ξ) ≤ L(1 + |ξ|p).

A function u ∈ W 1,p
loc (Ω) is a local minimizer of F in Ω if

F (u; spt (v − u)) ≤ F (v; spt (v − u)) ,

for every v ∈ W 1,p
loc (Ω) such that spt (v − u) ⊂⊂ Ω.

Well known results due to Giaquinta and Giusti [13, 15] ensure that local minimizers of
F are locally α-Hölder continuous for some α < 1. According to Meyers’ example in
[19], when f is not continuous in Ω × R × RN , the α-Hölder continuity for all α < 1
cannot be achieved, even if f is twice differentiable and uniformly convex with respect
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to ξ. However, if f is of class C2 in ξ, uniformly elliptic in this variable and for every
x, y ∈ Ω, u, v ∈ R and ξ ∈ RN

|f(x, u, ξ)− f(y, v, ξ)| ≤ ω(|x− y|+ |u− v|)(1 + |ξ|p) , (2)

where ω(t) is a modulus of continuity that grows as tδ, δ > 0, thenDu is Hölder continuous
(see Giaquinta-Giusti [14], Giaquinta-Modica [16], Manfredi [18]).

Recent results show that failing the differentiability of the integrand, the Lipschitz conti-
nuity of local minimizers, or at least the Hölder continuity for every exponent, still holds
under suitable convexity assumptions.

Fonseca and Fusco in [9] study the regularity of local minimizers of functionals with a
nondifferentiable integrand f = f(ξ) independent of (x, u). They prove that if f has
p-growth and satisfies a uniform convexity condition, i.e. there exists a constant ν > 0
such that for all ξ, η in RN

f

(

ξ + η

2

)

≤ 1

2
f(ξ) +

1

2
f(η)− ν(1 + |ξ|2 + |η|2)

p−2
2 |ξ − η|2 , (3)

then local minimizers are locally Lipschitz continuous.

Notice that when f is of class C2, then (3) is equivalent to the usual uniform ellipticity
condition

〈D2f(ξ)λ, λ〉 ≥ ν0(1 + |ξ|2)
p−2
2 |λ|2 ,

for some ν0 > 0.

The general case f = f(x, u, ξ) has been studied by Cupini, Fusco and Petti in [2]. They
prove that if (2) and (3) hold, then local minimizers are locally α-Hölder continuous for
all α < 1. We remark that even in the simple case f = f(x, ξ), N = p = 2, the Lipschitz
continuity cannot be achieved (see Example 3.2 in [2]). Related results can be found in
[4, 7, 11].

In a recent paper Fonseca, Fusco and Marcellini [10] establish existence and regularity of
minimizers of energy integrals with f = f(x, ξ) subject to Dirichlet boundary conditions,
where the uniform convexity property of f is satisfied at infinity, i.e. (3) holds for all
x ∈ Ω and every ξ, η endpoints of a segment contained in the complement of a ball BR(0)
in RN . In particular, they prove the Lipschitz continuity of local minimizers when f is a
continuous function with p-growth, uniformly convex at infinity, such that for |ξ| > R the
vector field x 7→ Dξf(x, ξ) is weakly differentiable with |Dξxf(x, ξ)| ≤ L(1 + |ξ|p−1). We
explicitly notice that in the particular case f = f(ξ) the differentiability assumption can
be removed. In this case the p-growth and the uniform convexity at infinity are sufficient
conditions to the Lipschitz continuity of local minimizes (see Theorem 2.2 below).

In this paper we consider the general case of nonconvex integrands f = f(x, u, ξ) with
p-growth, both uniformly convex and continuous at infinity and we prove that local min-
imizers of F are α-Hölder continuous for any exponent α < 1. More precisely, we prove
the following

Theorem 1.1. Let f : Ω× R× RN → [0,+∞) be a Carathéodory function satisfying

(A1) there exist p > 1 and L > 0 such that for a.e. x ∈ Ω, for every u ∈ R and ξ ∈ RN

0 ≤ f(x, u, ξ) ≤ L(1 + |ξ|p) ;
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(A2) f is uniformly convex at infinity with respect to ξ, i.e. there exist R > 0 and ν > 0
such that if the segment [ξ, η] is contained in the complement of the ball BR(0), then
for a.e. x ∈ Ω and for every u ∈ R

f

(

x, u,
ξ + η

2

)

≤ 1

2
f(x, u, ξ) +

1

2
f(x, u, η)− ν(1 + |ξ|2 + |η|2)

p−2
2 |ξ − η|2 ;

(A3) f is continuous at infinity with respect to the pair (x, u), i.e. for every x, y ∈ Ω,
for every u, v ∈ R and ξ ∈ RN \BR(0)

|f(x, u, ξ)− f(y, v, ξ)| ≤ ω(|x− y|+ |u− v|)(1 + |ξ|p) ,

where ω : [0,+∞) → [0,+∞) is a continuous, increasing, bounded function such
that ω(0) = 0.

If u ∈ W 1,p
loc (Ω) is a local minimizer of the functional F defined in (1), then u ∈ C0,α

loc (Ω)
for all α < 1.

To better understand the type of functionals we deal with, notice that (A1) and (A2) are
equivalent to assume that

f(x, u, ξ) = c(1 + |ξ|2)
p
2 + g(x, u, ξ) ,

with c > 0, g bounded from below, with p-growth from above and convex at infinity, i.e.
for a.e. x ∈ Ω, for every u ∈ R and for every ξ1, ξ2 ∈ RN endpoints of a segment contained
in the complement of BR(0)

1

2
[g(x, u, ξ1) + g(x, u, ξ2)] ≥ g

(

x, u,
ξ1 + ξ2

2

)

.

For more details, we refer to [10, Section 2.1], [3, Section 2] and to Section 2 below.

The plan of the paper is the following.

In Section 2 we collect preliminary results concerning functions satisfying (A1) and (A2),
higher integrability results for minimizers of functionals with p-growth and an iteration
lemma.

In Section 3 we study the regularity of a local minimizer u of

I(u; Ω) =:

∫

Ω

f(x,Du(x)) dx,

when f = f(x, ξ) is a convex function with respect to ξ and satisfies (A1)–(A3). We
approximate I(u; Ω) with a sequence of functionals (Ih) with integrands fh = fh(x, ξ) of
class C1 with respect to ξ, satisfying the same assumptions as f . Fixed Br(x0) ⊂⊂ Ω, let
uh be the minimizer of Ih(w;Br(x0)) in the Dirichlet class u +W 1,p

0 (Br(x0)), where u is
the local minimizer of the functional I. For each uh we establish an integral estimate with
constants independent of h. Moreover, we prove that uh converges in the weak topology
of W 1,p to a function u∞, which turns out to be a minimizer of I in u + W 1,p

0 (Br(x0)).
Passing to the limit in the integral estimate proved for each uh, we infer that the estimate
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is satisfied by u∞ and, from the uniform convexity at infinity, by u too. From this estimate
the Hölder continuity of u for any exponent follows by a classical argument.

In Section 4 we prove Theorem 1.1. Firstly we consider the supplementary assumption
of convexity of f with respect to ξ. We compare the local minimizer u of F with the
minimizer of a functional I of the type studied in Section 3. An essential tool for this
comparison is the Ekeland variational principle. The convexity assumption on f is re-
moved via a relaxation argument.

2. Preliminary results

Let us consider the integral functional

F(u; Ω) :=

∫

Ω

f(x, u(x), Du(x)) dx , (4)

where Ω is a bounded open subset of RN and u : Ω → R is a scalar function in W 1,p
loc (Ω),

with p > 1. We denote by Br(x0) the open ball with center x0 and radius r; we omit x0

if no confusion may arise. In the sequel, c is a positive constant which may take different
values from line to line.

We recalled the definition of local minimizer of F in the Introduction. More generally, u
is a Q-minimizer of F if there exists Q ≥ 1 such that

F (u; spt (v − u)) ≤ QF (v; spt (v − u)) ,

for all v ∈ W 1,p
loc (Ω) such that spt (v − u) ⊂⊂ Ω.

We state some consequences of assumptions (A1) and (A2), proved in [10] in the case
f = f(ξ). The generalization to our case is straightforward.

Theorem 2.1. Let f = f(x, u, ξ) : Ω× R× RN → [0,+∞), be a Carathéodory function.
Then (A1) and (A2) imply:

(i) there exist c1(ν) and c2(p, L,R, ν) such that for a.e. x ∈ Ω and for every (u, ξ) ∈
R× RN

f(x, u, ξ) ≥ c1|ξ|p − c2 ;

(ii) there exist R0 > R and ν0 > 0 depending only on p, L,R and ν, such that for a.e.
x ∈ Ω and for every u ∈ R and ξ ∈ RN \BR0(0) there exists qξ(x, u) ∈ RN such that

|qξ(x, u)| ≤ c(p, L)(1 + |ξ|)p−1,

and for every η ∈ RN

f(x, u, η) ≥ f(x, u, ξ) + 〈qξ(x, u), η − ξ〉+ ν0(1 + |ξ|2 + |η|2)
p−2
2 |ξ − η|2.

Moreover, if ξ 7→ f(x, u, ξ) is C1(RN \BR0(0)) then qξ(x, u)=Dξf(x, u, ξ);

(iii) if ξ 7→ f ∗∗(x, u, ξ) is the convex envelope of ξ 7→ f(x, u, ξ) then f = f ∗∗ in Ω× R×
(RN \BR0(0)).

We underline that Theorem 2.7 of [10] entails the following regularity result.
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Theorem 2.2. Let f = f(ξ) : RN → [0,+∞) be a continuous function with p-growth,
satisfying the uniform convexity (3) at infinity. If u ∈ W 1,p

loc (Ω) is a local minimizer of the
functional

∫

Ω

f(Du(x)) dx ,

then u is locally Lipschitz continuous in Ω. Moreover, there exists c, depending on
N, p, L,R and ν, such that for every Br(x0) ⊂⊂ Ω

sup
Br/2(x0)

|Du|p ≤ c

[

–

∫

Br(x0)

(1 + |Du|p) dx
]

.

Now we state a simple algebraic result that will be useful in the sequel (see [17], Lemma
8.5 or [2], Lemma 2.2).

Lemma 2.3. If p > 1, there exists c > 0 such that for every ξ, η ∈ RN

(1 + |ξ|2)
p
2 ≤ c (1 + |η|2)

p
2 + c (1 + |ξ|2 + |η|2)

p−2
2 |ξ − η|2 .

We will use some regularity results of Q-minimizers of integral functionals. The following
result is contained in Theorem 3.1 of [15].

Lemma 2.4. Let Br(x0) ⊂⊂ Ω and φ ∈ Lp(Br(x0)). If u ∈ W 1,p
loc (Br(x0)) is a Q-

minimizer of the functional

w 7→
∫

Br

(

1 + |Dw(x)|p + |φ(x)|
p+1
2

)

dx , (5)

then there exists τ > 1 such that u ∈ W 1,pτ
loc (Br). Moreover, there exists c = c(N, p,Q)

such that for every Bρ(x1) ⊂ Br(x0)

(

–

∫

Bρ/2(x1)

|Du|pτ dx

) 1
τ

≤ c –

∫

Bρ(x1)

(1 + |Du|p + |φ|p) dx .

We need also an up-to-the-boundary higher integrability result (see e.g. Theorem 6.8 of
[17] and Lemma 2.7 in [2]).

Lemma 2.5. Let h : B2r(x0) × RN → R be a Carathéodory function such that |ξ|p ≤
h(x, ξ) ≤ L(1 + |ξ|p). If u0 ∈ W 1,q(B2r(x0)), for a certain q > p, and v is a minimizer of
the functional

w 7→
∫

Br(x0)

h(x,Dw(x)) dx

in the Dirichlet class u0 +W 1,p(Br(x0)), then there exist s ∈ (p, q) and c > 0, depending
on N , p and L, but neither on u0 nor r, such that v ∈ W 1,s(Br(x0)) and

[

–

∫

Br(x0)

|Dv|s dx
] 1

s

≤ c

[

–

∫

B2r(x0)

(1 + |Du0|q) dx
] 1

q

.
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Finally, we state an iteration lemma (see the proof of Proposition 3.7 in [8]).

Lemma 2.6. Let Z, ψ, ω : [0, T ] → [0,+∞) be bounded and increasing functions, ω
continuous and ω(0) = 0. Suppose that there exist α, β, γ, c1 > 0 such that for every
ε > 0 there exist c2(ε) > 0 such that

Z(t) ≤ c1

[(

t

s

)α

+ ω(s) + ε

]

Z(s) + c2(ε)s
γψ(s)

for every 0 < t < s ≤ T . Then for every 0 < δ < α, there exists T0 < T such that

Z(t) ≤ c3

(

t

s

)α−δ

Z(s) + c4t
γψ(s),

whenever 0 < t < s ≤ T0. Here T0 and c3 are positive constants depending only on α, β,
δ and c1, while c4 depends also on γ.

3. Regularity in the case f = f(x,Du)

In this section we consider the functional

I(u; Ω) :=
∫

Ω

f(x,Du(x)) dx , (6)

where f = f(x, ξ) : Ω×RN → [0,+∞) is a Carathéodory function, satisfying the assump-
tions (A1)–(A3), that in this case can be stated as follows:

(A1) the p-growth condition, i.e. for a.e. x ∈ Ω and for every ξ ∈ RN

0 ≤ f(x, ξ) ≤ L(1 + |ξ|p);

(A2) the uniform convexity at infinity, i.e. there exist R and ν > 0 such that for a.e.
x ∈ Ω if [ξ, η] ⊂ RN \BR(0), then

f

(

x,
ξ + η

2

)

≤ 1

2
f(x, ξ) +

1

2
f(x, η)− ν(1 + |ξ|2 + |η|2)

p−2
2 |ξ − η|2 ;

(A3) the uniform continuity in x at infinity, i.e. for every x, y ∈ Ω and for every ξ ∈
RN \BR(0)

|f(x, ξ)− f(y, ξ)| ≤ ω(|x− y|)(1 + |ξ|p) ,

where ω : [0,+∞) → [0,+∞) is a continuous, increasing and bounded function such
that ω(0) = 0. Without loss of generality, we can assume ω to be concave.

Recall that by Theorem 2.1 (ii) there exists R0 > R and ν0 > 0 such that

f(x, η) ≥ f(x, ξ) + 〈qξ(x), η − ξ〉+ ν0(1 + |ξ|2 + |η|2)
p−2
2 |ξ − η|2, (7)

for a.e. x ∈ Ω and for every ξ ∈ RN \BR0(0) and η ∈ RN , where qξ(x) ∈ RN satisfies

|qξ(x)| ≤ c(p, L)(1 + |ξ|)p−1.
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Moreover, by Theorem 2.1 (i) there exist c1, c2 > 0 such that for a.e. x ∈ Ω and for every
ξ ∈ RN

f(x, ξ) ≥ c1|ξ|p − c2 . (8)

With a view to the proof of Theorem 1.1, fixed Br(x0) ⊂⊂ Ω we consider the functional

Gϑ0,u0(w;Br) := I(w;Br) + ϑ0

∫

Br

|Dw −Du0|
p+1
2 dx , (9)

where ϑ0 ≥ 0 and u0 ∈ W 1,p(Br). This functional will be useful to prove the regularity of
local minimizers in the general case f = f(x, u, ξ).

We begin by proving an integral estimate for local minimizers of Gϑ0,u0 under the supple-
mentary assumption that f is of class C1 with respect to ξ and convex in this variable.
This assumption will be removed in Proposition 3.2.

Proposition 3.1. Consider Br(x0) ⊂⊂ Ω, ϑ0 ≥ 0, u0 ∈ W 1,p(Br(x0)). Let Gϑ0,u0 be as
in (9), with f of class C1 with respect to ξ and convex in this variable, satisfying (A1)–
(A3). Let u ∈ W 1,p(Br) be a minimizer of Gϑ0,u0 in its Dirichlet class u+W 1,p

0 (Br). Then
there exists c = c(N, p, L, ν, R) such that for every ρ < r

∫

Bρ

(1 + |Du|p) dx ≤ c

[

(ρ

r

)N

+ ω(r)

] ∫

Br

(1 + |Du|p) dx

+
ϑ

p
p−1

0

[ω(r)]
1

p−1

∫

Br

|Du−Du0|
p
2 dx+ c rN .

(10)

Proof. Let v be the minimizer in u+W 1,p
0 (Br(x0)) of the frozen functional

w 7→
∫

Br

f(x0, Dw(x)) dx .

The function ξ 7→ f(x0, ξ) satisfies the assumptions of Theorem 2.2, hence (see [9]) v is
locally Lipschitz continuous in Br and there exists a constant c depending on N, p, L,R
and ν such that for all ρ < r

∫

Bρ

(1 + |Dv|p) dx ≤ c
(ρ

r

)N
∫

Br

(1 + |Dv|p) dx .

(8), the minimality of v and (A1) imply
∫

Br

(1 + |Dv|p) dx ≤ c

∫

Br

(1 + |Du|p) dx , (11)

so that for any ρ < r
∫

Bρ

(1 + |Dv|p) dx ≤ c
(ρ

r

)N
∫

Br

(1 + |Du|p) dx . (12)

Define

A(Du, ρ, λ) := {x ∈ Bρ : |Du(x)| > λ} ,
B(Du, ρ, λ) := {x ∈ Bρ : |Du(x)| ≤ λ} .

(13)
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Let R0 and ν0, depending only on p, L,R and ν, be as in Theorem 2.1 (ii). Using Lemma
2.3 and (12)

∫

Bρ

|Du|p dx =

∫

B(Du,ρ,R0)

|Du|p dx+

∫

A(Du,ρ,R0)

|Du|p dx

≤ c

∫

Bρ

(1 + |Dv|p) dx+ c

∫

A(Du,ρ,R0)

(1 + |Du|2 + |Dv|2)
p−2
2 |Du−Dv|2 dx

≤ c
(ρ

r

)N
∫

Br

(1 + |Du|p) dx+ c

∫

A(Du,ρ,R0)

(1 + |Du|2 + |Dv|2)
p−2
2 |Du−Dv|2 dx.

(14)

Let us estimate the last integral using the Euler equation for Gϑ0,u0 . From Theorem 2.1
(ii), the convexity of f and the minimality of u we have

∫

A(Du,ρ,R0)

(1 + |Du|2 + |Dv|2)
p−2
2 |Du−Dv|2 dx

≤ 1

ν0

∫

A(Du,ρ,R0)

[f(x,Dv)− f(x,Du)− 〈Dξf(x,Du), Dv −Du〉] dx

≤ 1

ν0

∫

Br

[f(x,Dv)− f(x,Du)− 〈Dξf(x,Du), Dv −Du〉] dx

=
1

ν0

∫

Br

[

f(x,Dv)− f(x,Du) + ϑ0〈Dξ

(

|Du−Du0|
p+1
2

)

, Dv −Du〉
]

dx

− 1

ν0

∫

Br

〈Dξf(x,Du) + ϑ0Dξ

(

|Du−Du0|
p+1
2

)

, Dv −Du〉 dx

=
1

ν0

∫

Br

[

f(x,Dv)− f(x,Du) + ϑ0〈Dξ

(

|Du−Du0|
p+1
2

)

, Dv −Du〉
]

dx ,

where ξ is a dummy variable for the gradient. Thus, adding and subtracting
∫

Br
f(x0,Dv)dx

and
∫

Br
f(x0, Du)dx, and using the minimality of v it follows

∫

A(Du,ρ,R0)

(1 + |Du|2 + |Dv|2)
p−2
2 |Du−Dv|2 dx

≤ 1

ν0

∫

Br

[f(x,Dv)− f(x0, Dv)] dx+
1

ν0

∫

Br

[f(x0, Du)− f(x,Du)] dx

+
ϑ0

ν0

∫

Br

〈Dξ

(

|Du−Du0|
p+1
2

)

, Dv −Du〉 dx .

From (A1) and (A3)
∫

Br

[f(x,Dv)− f(x0, Dv)] dx

=

∫

A(Dv,r,R)

[f(x,Dv)− f(x0, Dv)] dx+

∫

B(Dv,r,R)

[f(x,Dv)− f(x0, Dv)] dx

≤
∫

A(Dv,r,R)

ω(|x− x0|) (1 + |Dv|p) dx+ L

∫

B(Dv,r,R)

(1 + |Dv|p) dx

≤ ω(r)

∫

Br

(1 + |Dv|p) dx+ c(N, p, L,R) rN .
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Analogously,

∫

Br

[f(x0, Du)− f(x,Du)] dx ≤ ω(r)

∫

Br

(1 + |Du|p) dx+ c(N, p, L,R) rN .

Therefore from (11) and the minimality of v there exists c, depending only on N, p, L,R
and ν, such that

∫

A(Du,ρ,R0)

(1 + |Du|2 + |Dv|2)
p−2
2 |Du−Dv|2 dx

≤ c ω(r)

∫

Br

(1 + |Du|p)dx+ c ϑ0

∫

Br

|Du−Du0|
p−1
2 |Du−Dv| dx+ c rN .

This inequality, together with (14) and Young inequality, implies that for every ρ < r
there exists c, depending on N, p, L,R and ν, such that

∫

Bρ

|Du|p dx ≤ c

[

(ρ

r

)N

+ ω(r)

] ∫

Br

(1 + |Du|p) dx

+ c ω(r)

∫

Br

|Du−Dv|p dx+ c
ϑ

p
p−1

0

[ω(r)]
1

p−1

∫

Br

|Du−Du0|
p
2 dx+ c rN

and from (11) the thesis follows.

We remark that the freezing techinque emploied in the proof of the above proposition has
been first used in [14, 18] and applied in the setting of non standard growth conditions,
up to a certain extent, in [1].

An approximation argument allows us to remove the differentiability assumption on f .

Proposition 3.2. Consider Br(x0) ⊂⊂ Ω, ϑ0 ≥ 0, u0 ∈ W 1,p(Br(x0)). Let Gϑ0,u0 be as
in (9), with f convex with respect to ξ, satisfying (A1)–(A3). Let u ∈ W 1,p(Br) be a
minimizer of Gϑ0,u0 in its Dirichlet class u+W 1,p

0 (Br). Then for every ρ < r

∫

Bρ

|Du|pdx ≤ c

[

(ρ

r

)N

+ ω(r)

] ∫

Br

(1 + |Du|p + |Du0|p) dx

+ c
ϑ

2p
p−1

0

[ω(r)]
p+1
p−1

rN + c rN ,

with c depending on N , p, L, R and ν.

Proof. Let σ ∈ C∞
c (B1(0), [0,+∞)) be a radially symmetric mollifier such that

∫

B1(0)
σ(z) dz = 1, and define

fh(x, ξ) :=

∫

B1(0)

σ(z)f

(

x, ξ +
1

h
z

)

dz .

(fh)h∈N satisfies the following assumptions:
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(H1) there exists L, depending on L and p, but not on h, such that for every h, for a.e.
x ∈ Ω and for every ξ ∈ RN

0 ≤ fh(x, ξ) ≤ L(1 + |ξ|p) ;

(H2) there exists ν1 > 0, depending on p and ν, but not on h, such that if [ξ, η] ⊂
RN \BR+1(0), then for a.e. x ∈ Ω

fh

(

x,
ξ + η

2

)

≤ 1

2
fh(x, ξ) +

1

2
fh(x, η)− ν1(1 + |ξ|2 + |η|2)

p−2
2 |ξ − η|2 ;

(H3) there exists c = c(p) such that for every x, y ∈ Ω and for every ξ with |ξ| ≥ R + 1

|fh(x, ξ)− fh(y, ξ)| ≤ c ω(|x− y|)(1 + |ξ|p) .

Moreover, from (8) there exist c1, c2 > 0, independent of h, such that

fh(x, ξ) ≥ c1|ξ|p − c2, ∀(x, ξ) ∈ Ω× RN . (15)

Let uh be a minimizer in u+W 1,p
0 (Br) of

Gh(w;Br) :=

∫

Br

fh(x,Dw) dx+ ϑ0

∫

Br

|Dw −Du0|
p+1
2 dx .

Using (15), the minimality of uh, (H1) and Young inequality, it is not difficult to prove
that there exists c = c(N, p, L,R, ν, ϑ0), such that

∫

Br

|Duh|p dx ≤ c

∫

Br

(1 + |Dw|p + |Du0|
p+1
2 ) dx ,

for every w ∈ u+W 1,p
0 (Br). In particular

∫

Br

|Duh|p dx ≤ c

∫

Br

(1 + |Du|p + |Du0|p) dx (16)

and uh is a Q-minimizer of

w 7→
∫

Br

(

1 + |Dw|p + |Du0|
p+1
2

)

dx .

Therefore, from Lemma 2.4 there exist τ > 1 and c > 0 such that uh ∈ W 1,pτ
loc (Br) for

every h and for every Bρ(x1) ⊂ Br

(

–

∫

Bρ/2(x1)

|Duh|pτ dx

) 1
τ

≤ c –

∫

Bρ(x1)

(1 + |Duh|p + |Du0|p) dx .

This inequality, together with (16), implies that for every ρ < r there exists c = c(ρ, r)
such that

(

∫

Bρ

|Duh|pτdx

) 1
τ

≤ c

∫

Br

(1 + |Du|p + |Du0|p) dx . (17)
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Moreover, (16) implies that the sequence (uh) is bounded in W 1,p(Br). Up to a subse-
quence, we may assume that there exists u∞ ∈ u +W 1,p

0 (Br) such that uh ⇀ u∞ in the
weak topology of W 1,p(Br).

Let us prove that u∞ is a minimizer of Gϑ0,u0 defined in (9). We shall use the notations
in (13).

Since Gϑ0,u0 is lower semicontinuous with respect to the weak topology of W 1,p, then for
every ρ < r and k ∈ N

Gϑ0,u0(u∞;Bρ) ≤ lim inf
h→∞

∫

Bρ

[

f(x,Duh) + ϑ0|Duh −Du0|
p+1
2

]

dx

≤ lim sup
h→∞

∫

A(Duh,ρ,k)

f(x,Duh) dx

+ lim sup
h→∞

{

∫

B(Duh,ρ,k)

f(x,Duh)dx+ ϑ0

∫

Bρ

|Duh −Du0|
p+1
2 dx

}

.

(18)

Since f is convex with respect to ξ and (A1) holds, then for a.e. x ∈ Ω and for any ξ and
η in RN ,

|f(x, ξ)− f(x, η)| ≤ c(p, L)(1 + |ξ|+ |η|)p−1|ξ − η| ;

therefore

lim
h→∞

∫

B(Duh,ρ,k)

|f(x,Duh)− fh(x,Duh)| dx

≤ c lim
h→∞

1

h

∫

B(Duh,ρ,k)

(1 + |Duh|)p−1 dx

≤ c lim
h→∞

1

h
(1 + k)p−1|B(Duh, ρ, k)| = 0 .

(19)

Thus, from (18) and (19)

G(u∞;Bρ) ≤ lim sup
h→∞

∫

A(Duh,ρ,k)

f(x,Duh) dx

+ lim sup
h→∞

∫

Br

[

fh(x,Duh) + ϑ0|Duh −Du0|
p+1
2

]

dx .

From (A1), Hölder inequality, (17) and the minimality of uh we get that

Gϑ0,u0(u∞;Bρ) ≤ L lim sup
h→∞







(

∫

Bρ

(1 + |Duh|
p
τ )dx

) 1
τ

|A(Duh, ρ, k)|
τ−1
τ







+ lim sup
h→∞

∫

Br

[

fh(x,Du) + ϑ0|Du−Du0|
p+1
2

]

dx

≤ c kp(1−τ) lim sup
h→∞

∫

Bρ

(1 + |Duh|pτ ) dx+

∫

Br

[

f(x,Du) + ϑ0|Du−Du0|
p+1
2

]

dx .
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The last inequality and (17) imply

Gϑ0,u0(u∞;Bρ) ≤ c kp(1−τ) + Gϑ0,u0(u;Br) ,

where c = c(N, p, L, u, u0, ϑ0, ρ, r). Letting k go to infinity and then ρ go to r we infer
Gϑ0,u0(u∞;Br) = Gϑ0,u0(u;Br), so that u∞ is a minimizer of Gϑ0,u0(w;Br).

Now we compare u∞ with u. For every x ∈ Br we apply Theorem 2.1 (ii) with ξ =
1
2
(Du(x) +Du∞(x)) and η = Du(x). Thus, from (7) we have

∫

A(Du+Du∞,r,2R0)

[

f(x,Du)− f

(

x,
Du+Du∞

2

)]

dx

≥
∫

A(Du+Du∞,r,2R0)

〈

qξ(x),
Du−Du∞

2

〉

dx

+ ν

∫

A(Du+Du∞,r,2R0)

(

1 +

∣

∣

∣

∣

Du+Du∞

2

∣

∣

∣

∣

2

+ |Du|2
)p−2

2 ∣

∣

∣

∣

Du−Du∞

2

∣

∣

∣

∣

2

dx.

(20)

Analogously, Theorem 2.1 (ii) with η = Du∞(x) yields
∫

A(Du+Du∞,r,2R0)

[

f(x,Du∞)− f

(

x,
Du+Du∞

2

)]

dx

≥
∫

A(Du+Du∞,r,2R0)

〈

qξ(x),
Du∞ −Du

2

〉

dx

+ ν

∫

A(Du+Du∞,r,2R0)

(

1 +

∣

∣

∣

∣

Du+Du∞

2

∣

∣

∣

∣

2

+ |Du∞|2
)p−2

2 ∣

∣

∣

∣

Du−Du∞

2

∣

∣

∣

∣

2

dx;

(21)

adding (20) and (21)
∫

A(Du+Du∞,r,2R0)

[f(x,Du) + f(x,Du∞)] dx

≥ 2

∫

A(Du+Du∞,r,2R0)

f

(

x,
Du+Du∞

2

)

dx

+ ν

∫

A(Du+Du∞,r,2R0)

(

1 +

∣

∣

∣

∣

Du+Du∞

2

∣

∣

∣

∣

2

+ |Du|2
) p−2

2 ∣

∣

∣

∣

Du−Du∞

2

∣

∣

∣

∣

2

dx

+ ν

∫

A(Du+Du∞,r,2R0)

(

1 +

∣

∣

∣

∣

Du+Du∞

2

∣

∣

∣

∣

2

+ |Du∞|2
)p−2

2 ∣

∣

∣

∣

Du−Du∞

2

∣

∣

∣

∣

2

dx.

(22)

By convexity

∫

B(Du+Du∞,r,2R0)

f

(

x,
Du+Du∞

2

)

dx+ϑ0

∫

Br

∣

∣

∣

∣

Du+Du∞

2
−Du0

∣

∣

∣

∣

p+1
2

dx

≤ 1

2

∫

B(Du+Du∞,r,2R0)

f(x,Du) dx+
ϑ0

2

∫

Br

|Du−Du0|
p+1
2 dx

+
1

2

∫

B(Du+Du∞,r,2R0)

f(x,Du∞) dx+
ϑ0

2

∫

Br

|Du∞ −Du0|
p+1
2 dx ,
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therefore, from (22) we get

Gϑ0,u0

(u+ u∞

2
;Br

)

≤ 1

2
Gϑ0,u0(u;Br) +

1

2
Gϑ0,u0(u∞;Br)

− ν

2

∫

A(Du+Du∞,r,2R0)

(

1 +

∣

∣

∣

∣

Du+Du∞

2

∣

∣

∣

∣

2

+ |Du|2
)p−2

2 ∣

∣

∣

∣

Du−Du∞

2

∣

∣

∣

∣

2

dx

− ν

2

∫

A(Du+Du∞,r,2R0)

(

1 +

∣

∣

∣

∣

Du+Du∞

2

∣

∣

∣

∣

2

+ |Du∞|2
)p−2

2 ∣

∣

∣

∣

Du−Du∞

2

∣

∣

∣

∣

2

dx.

The minimality of u∞, together with the previous inequality, yields

Gϑ0,u0

(u+ u∞

2
;Br

)

≤ Gϑ0,u0(u;Br)

− ν

2

∫

A(Du+Du∞,r,2R0)

(

1 +

∣

∣

∣

∣

Du+Du∞

2

∣

∣

∣

∣

2

+ |Du|2
)p−2

2 ∣

∣

∣

∣

Du−Du∞

2

∣

∣

∣

∣

2

dx

− ν

2

∫

A(Du+Du∞,r,2R0)

(

1 +

∣

∣

∣

∣

Du+Du∞

2

∣

∣

∣

∣

2

+ |Du∞|2
)p−2

2 ∣

∣

∣

∣

Du−Du∞

2

∣

∣

∣

∣

2

dx,

which implies that the Lebesgue measure of the set

{x ∈ Br : |Du(x) +Du∞(x)| > 2R0} ∩ {x ∈ Br : |Du(x)−Du∞(x)| > 0}

is zero. Therefore, for every ρ < r
∫

Bρ

|Du|p dx ≤ c

∫

Bρ

|Du∞|p dx+ c

∫

Bρ

|Du+Du∞|p dx

≤ c

∫

Bρ

|Du∞|p dx+ c 2pRp
0 ρ

N + c

∫

A(Du+Du∞,ρ,2R0)

|Du+Du∞|p dx

= c

∫

Bρ

|Du∞|p dx+ c ρN + c

∫

A(Du+Du∞,ρ,2R0)∩{|Du−Du∞|=0}
|Du∞|p dx ,

thus there exists c = c(N, p, L,R, ν) such that
∫

Bρ

|Du|p dx ≤ c

∫

Bρ

(1 + |Du∞|p) dx . (23)

Let us estimate the right-hand side. Since fh is of class C1 with respect to ξ and satisfies
(H1)–(H3), from Proposition 3.1 estimate (10) holds with u replaced by uh. Hence, for
all ρ < r,

∫

Bρ

|Du∞|p dx ≤ lim inf
h→∞

∫

Bρ

(1 + |Duh|p) dx

≤ lim sup
h→∞

{

c

[

(ρ

r

)N

+ ω(r)

]∫

Br

(1 + |Duh|p) dx+ c rN
}

+ lim sup
h→∞

c ϑ
p

p−1

0

[ω(r)]
1

p−1

∫

Br

|Duh −Du0|
p
2 dx,
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where c is independent of h, ρ and r. Young inequality implies

cϑ
p

p−1

0

[ω(r)]
1

p−1

∫

Br

|Duh −Du0|
p
2 dx

=
cϑ

p
p−1

0

[ω(r)]
1

p−1

∫

Br

[

ϑ0

ω(r)

] p
2(p−1)

[

ω(r)

ϑ0

] p
2(p−1)

|Duh −Du0|
p
2 dx

≤ c ω(r)

∫

Br

|Duh −Du0|p dx+ c
ϑ

2p
p−1

0

[ω(r)]
p+1
p−1

rN

≤ c ω(r)

∫

Br

(|Duh|p + |Du0|p) dx+ c
ϑ

2p
p−1

0

[ω(r)]
p+1
p−1

rN .

Therefore, from (16), there exists c, depending only on N, p, L,R and ν, such that for
every ρ < r

∫

Bρ

|Du∞|pdx ≤ c

[

(ρ

r

)N

+ ω(r)

] ∫

Br

(1 + |Du|p + |Du0|p) dx

+ c
ϑ

2p
p−1

0

[ω(r)]
p+1
p−1

rN + c rN .

Finally, by (23) the thesis follows.

If ϑ0 = 0 we get a regularity result for local minimizers of the functional I in (6) when f
is convex in ξ.

Theorem 3.3. Let u be a local minimizer of the functional I, whose integrand f(x, ξ) is
a Carathéodory function, convex with respect to the last variable and satisfies (A1)–(A3).
Then u is locally in C0,α(Ω) for all α < 1. Moreover, for all α < 1 there exists c > 0,
depending on N, p, L,R, ν and α, such that for every Br ⊂⊂ Ω and ρ < r

∫

Bρ

|Du|p dx ≤ c
(ρ

r

)N−p+pα
∫

Br

(1 + |Du|p) dx . (24)

Proof. When ϑ0 = 0, Proposition 3.2 implies that for every ρ < r

∫

Bρ

|Du|p dx ≤ c

[

(ρ

r

)N

+ ω(r)

] ∫

Br

(1 + |Du|p) dx+ c rN .

A standard iteration argument (see [12], p.170) leads to estimate (24). The Hölder con-
tinuity of u follows from a characterization of Campanato spaces (see [17], p.57).

4. Proof of Theorem 1.1

In this section we prove Theorem 1.1. First we shall suppose that f is convex with respect
to ξ. This supplementary assumption will be removed observing that a local minimizer
of F is a local minimizer for the relaxed functional, too.
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The Ekeland variational principle enables us to compare the local minimizer of F with a
minimizer of a functional whose integrand does not explicitly depend on u.

Theorem 4.1 (Ekeland variational principle [5]). Let (V, d) be a complete metric
space and let H : V → (−∞,+∞] be a lower semicontinuous functional with finite infi-
mum. If u ∈ V is such that H(u) ≤ infV H + ε for some ε > 0, then there exists v0 ∈ V
such that

(i) d(u, v0) ≤ 1 ,

(ii) H(v0) ≤ H(u) ,

(iii) v0 minimizes in V the functional E(w) := H(w) + ε d(v0, w).

Proof of Theorem 1.1. Without loss of generality we assume ω in (A3) to be a concave
function.

From Theorem 2.1 (i) a local minimizer of F is a Q-minimizer of (5) with φ = 0, therefore
from Lemma 2.4 there exists q > p such that |Du| ∈ Lq

loc(Ω). Since we aim to prove a
local result, we can assume that u ∈ W 1,q(Ω) and that for any ball Br(x1) ⊂ Ω

[

–

∫

Br/2(x1)

|Du|q dx

] 1
q

≤ c

[

–

∫

Br(x1)

(1 + |Du|p) dx
] 1

p

. (25)

Moreover (see [15]) we can assume u ∈ C0,γ(Ω) for some 0 < γ < 1. We denote by [u]γ
the Hölder constant of u in Ω. Let us fix Br(x0) such that B4r(x0) ⊂⊂ Ω.

Step 1. Assume that f is convex in ξ. Consider the space V = u+W
1, p+1

2
0 (Br) and let v

be the minimizer in V of the functional

H(w;Br) :=

∫

Br

h(x,Dw(x)) dx , (26)

where
h(x, ξ) := f(x, u(x), ξ). (27)

By Theorem 2.1 (i), the minimality of v and (A1)
∫

Br

|Dv|p dx ≤ c

∫

Br

(1 + |Du|p) dx . (28)

Using notations (13), the minimality of u and (A3) we have

H(u;Br) = F(u;Br) ≤ F(v;Br)

= H(v;Br) +

∫

B(Dv,r,R)

[f(x, v,Dv)− f(x, u,Dv)] dx

+

∫

A(Dv,r,R)

[f(x, v,Dv)− f(x, u,Dv)] dx

≤ H(v;Br) + L

∫

B(Dv,r,R)

(1 + |Dv|p) dx+

∫

A(Dv,r,R)

ω(|v − u|)(1 + |Dv|p)dx

≤ inf
V

H(w;Br) +

∫

Br

ω(|v − u|)(1 + |Dv|p) dx+ c rN .

(29)
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Let s ∈ (p, q) be the exponent of the higher integrability of Dv which follows from
Lemma 2.5. Using the Hölder inequality, (25), the boundedness and the concavity of ω,
we estimate the last integral in (29) as follows:

∫

Br

ω(|v − u|)(1 + |Dv|p) dx

≤ c |Br|
(

–

∫

Br

(1 + |Dv|s) dx
) p

s
(

–

∫

Br

ω
s

s−p (|v − u|) dx
)1− p

s

≤ c |Br|
(

–

∫

B2r

(1 + |Du|q) dx
) p

q
(

–

∫

Br

ω(|v − u|) dx
)1− p

s

≤ c |Br| –
∫

B4r

(1 + |Du|p) dx · ω1− p
s

(

–

∫

Br

|v − u| dx
)

≤ c

∫

B4r

(1 + |Du|p) dx · ωσ

(

–

∫

Br

|v − u| dx
)

,

(30)

with σ = 1− p
s
. Caccioppoli inequality for the minimizer u (see e.g. [15]) gives

∫

Bρ(x1)

|Du|p dx ≤ c

∫

B2ρ(x1)

(

1 +
|u− ux1,2ρ|p

ρp

)

dx ,

which holds for every B2ρ(x1) ⊆ B2r(x0) (here ux1,ρ stands for –

∫

Bρ(x1)

u(x)dx). Thus,

using the Poincaré inequality and (28), we get that

–

∫

Br

|v − u| dx ≤
(

c rp –

∫

Br

|Dv −Du|p dx
) 1

p

≤
(

c rp –

∫

Br

(1 + |Du|p) dx
) 1

p

≤
[

c rp –

∫

B2r

(

1 +
|u− ux0,2r|p

rp

)

dx

] 1
p

≤
(

c rp + c [u]pγ r
pγ
) 1

p ≤ c rγ,

where c depends also on [u]γ; then

ωσ

(

–

∫

Br

|v − u|dx
)

≤ ωσ(crγ) .

This estimate, together with (29), (30) and (28), leads to

H(u;Br) ≤ inf
V

H(w;Br) + c ωσ (crγ)

∫

B4r

(1 + |Du|p)dx+ c rN . (31)

Step 2. Let us define

H(r) := c ωσ(crγ)

∫

B4r

(1 + |Du|p) dx+ c rN (32)

and apply Theorem 4.1 with V endowed with the distance

d(w1, w2) :=

[

H(r)

rN

]− p+1
2p

r−N

∫

Br

|Dw1 −Dw2|
p+1
2 dx , (33)
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and H defined in (26). Thus, by (31), there exists v0 ∈ V such that

∫

Br

|Du−Dv0|
p+1
2 dx ≤

[

H(r)

rN

] p+1
2p

rN , (34)

H(v0;Br) ≤ H(u;Br) , (35)

v0 is a minimizer of E(w;Br) in V ,

where

E(w;Br) := H(w;Br) +

[

H(r)

rN

] p−1
2p

∫

Br

|Dw −Dv0|
p+1
2 dx . (36)

The minimality of v0 implies that for every ϕ ∈ W 1,p
0 (Br)

H(v0; sptϕ) ≤ H(v0 + ϕ; sptϕ) +

[

H(r)

rN

] p−1
2p
∫

sptϕ

|D(v0 + ϕ)−Dv0|
p+1
2 dx.

Using Young inequality and noting that ( 2p
p+1

)′ = 2p
p−1

, we obtain

H(v0; sptϕ) ≤ H(v0 + ϕ; sptϕ) +
c1
2

∫

sptϕ

|Dv0|p dx

+ c

∫

sptϕ

|Dv0 +Dϕ|p dx+ c
H(r)

rN
|sptϕ| .

From this inequality, Theorem 2.1 (i) and (A1), it follows that

∫

sptϕ

|Dv0|p dx ≤ c

∫

sptϕ

(

1 + |Dv0 +Dϕ|p + H(r)

rN

)

dx ,

therefore v0 is a Q-minimizer (with Q depending on N, p, L,R and ν) of the functional

w 7→
∫

Br

(

1 + |Dw|p + H(r)

rN

)

dx .

Thus, there exist λ ∈ (p, q) and c > 0, independent of v0, such that

(

–

∫

Br/2

|Dv0|λ dx

) p
λ

≤ c –

∫

Br

(1 + |Dv0|p) dx+ c

[

1 +
H(r)

rN

]

≤ c –

∫

B4r

(1 + |Du|p) dx ,

(37)

where the last inequality follows from (32), Theorem 2.1 (i), (35) and (A1). Notice that
h defined in (27) satisfies assumptions (A1)–(A3), with a slightly different modulus of
continuity. Precisely, for any 0 < α < 1, h satisfies (A3) with ω replaced by

ω̃α(t) := max
{

[ωσ (ctγ)]
p−1
2p , ω(t+ [u]γt

γ) , tp(1−α) p−1
p+1

}

. (38)
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Apply Proposition 3.2 to E(w;Br) defined in (36), with ϑ0 and u0 replaced by
[

H(r)
rN

] p−1
2p

and v0, respectively. Then for every ρ ≤ r/2
∫

Bρ

|Du|pdx ≤ 2p−1

∫

Bρ

|Dv0|p dx+ 2p−1

∫

Br/2

|Du−Dv0|p dx

≤ c

[

(ρ

r

)N

+ ω̃α(r)

] ∫

Br

(1 + |Dv0|p) dx

+ c
H(r)

[ω̃α(r)]
p+1
p−1

+ c rN + 2p−1

∫

Br/2

|Du−Dv0|p dx

≤ c

[

(ρ

r

)N

+ ω̃α(r)

] ∫

Br

(1 + |Du|p) dx+ c
ωσ (crγ)

[ω̃α(r)]
p+1
p−1

∫

B4r

(1 + |Du|p) dx

+ c rN−p+pα + c rN + 2p−1

∫

Br/2

|Du−Dv0|p dx

≤ c

[

(ρ

r

)N

+ ω̃α(r)

] ∫

B4r

(1 + |Du|p)dx+c rN−p+pα + 2p−1

∫

Br/2

|Du−Dv0|pdx.

(39)

In order to estimate the last integral, let ϑ ∈ (0, 1) be such that ϑ
λ
+ 2(1−ϑ)

p+1
= 1

p
, where λ

is the exponent in (37). Using (25), (37), (34) and (35), we get
∫

Br/2

|Du−Dv0|pdx

≤ c|Br|

(

–

∫

Br/2

|Du−Dv0|λ dx

)ϑ p
λ (

–

∫

Br

|Du−Dv0|
p+1
2 dx

)(1−ϑ) 2p
p+1

≤ c rN
(

–

∫

B4r

(1 + |Du|p) dx
)ϑ [

H(r)

rN

]1−ϑ

≤ c [ωσ (crγ)]1−ϑ

∫

B4r

(1 + |Du|p) dx+ c rN(1−ϑ)

(∫

B4r

(1 + |Du|p) dx
)ϑ

.

(40)

Finally, collecting (39), (40) and using Young inequality, we deduce that for every ε > 0
there exists c(ε) such that

∫

Bρ

|Du|pdx ≤ c

[

(ρ

r

)N

+ ω̃α(r) + ε

] ∫

B4r

(1 + |Du|p) dx

+ c[ω̃α(r)]
(1−ϑ) 2p

p−1

∫

B4r

(1 + |Du|p) dx+ c rN−p+pα + c(ε) rN ,

which implies
∫

Bρ

|Du|p dx ≤ c

[

(ρ

r

)N

+ [ω̃α(r)]
δ + ε

] ∫

B4r

(1 + |Du|p) dx+ cεr
N−p+pα,

for a certain δ > 0 independent of ρ and r. From this inequality the thesis follows by
Lemma 2.6 and by a standard iteration argument (see [12], p.170).
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Step 3. Now we consider a general f non convex with respect to the last variable. We
observe that local minimizers of F are also local minimizers of the relaxed functional

F∗∗(u;Br(x0))= inf

{

lim inf
h→+∞

∫

Br(x0)

f(x, uh, Duh) dx : uh ⇀ u in W 1,p
0 (Br(x0))

}

which is equal to
∫

Br(x0)

f ∗∗(x, u(x), Du(x)) dx ,

where ξ 7→ f ∗∗(x, u, ξ) is the bipolar of ξ 7→ f(x, u, ξ), see [6, Corollary 3.8]. The result
follows immediately from the fact that by Theorem 2.1 (ii) there exists R0 such that

f(x, u, ξ) = f ∗∗(x, u, ξ)

in Ω× R× (RN \BR0(0)).
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