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In this paper we prove an integral representation formula for the relaxed functional of a scalar non
parametric integral of the Calculus of Variations. Similar results are known to be true under the key
assumption that the integrand is coercive in the gradient variable. Here we show that the same integral
representation holds for a wide class of non coercive integrands, including for example the strictly convex
ones.
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1. Introduction

Let Ω be an open set in Rn and f : Ω × R × Rn → [0,∞) be a lower semicontinuous
function, with f(x, s, ·) convex for every (x, s) ∈ Ω× R. Let us consider the functional

F [f ](u,Ω′) =

{ ∫

Ω′ f(x, u(x),∇u(x))dx, if u ∈ C1(Ω),
∞, if u ∈ BVloc(Ω)\C1(Ω),

(1)

where Ω′ is an open subset of Ω and u ∈ BVloc(Ω). In a fundamental paper, [19], Serrin,
following Lebesgue’s definition of the area functional, introduces the lower semicontinuous
envelope of F on BVloc(Ω) with respect to the L1

loc(Ω) strong convergence. This functional,
which we briefly refer to as the relaxed functional of F , is defined as follows:

F [f ](u,Ω′) = inf
{

lim inf
h→∞

F [f ](uh,Ω
′) : uh → u in L1

loc(Ω), uh ∈ C1(Ω)
}

. (2)

A natural problem is to explicitly represent F . Confining our attention to the scalar
convex case considered here, we quote Goffman-Serrin [13], Giaquinta-Modica-Souček
[12], Dal Maso [6], Ferro [9], Bouchitté-Dal Maso [3] and Fonseca-Leoni [11]; the literature
becomes huge either if u ∈ W 1,1

loc (Ω), or if u is vector valued or if f is not convex with
respect to the gradient variable.

The candidate to give the representation formula of F is the following functional H
introduced by Dal Maso in [6], where for any u ∈ BVloc(Ω) we denote by Du its derivative
measure, by Du = ∇uLn +Dsu the Lebesgue decomposition, by M(u) the concentration
set of Dsu, by u+ and u− the approximate upper and lower limits of u and we put
J(u) = {x ∈ Ω : u−(x) < u+(x)} (it results |Dsu|bJ(u) = (u+(x) − u−(x))Hn−1bJ(u)
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and Dju := DsubJ(u) is called the jump part of Du, while Dcu := Dsub{M(u)\J(u)} is
called the Cantor part of Du, see the claims in Section 3:

H[f ](u,Ω′) =

∫

Ω′
f(x, u(x),∇u(x))dx (3)

+

∫

[M(u)\J(u)]∩Ω′
f∞

(

x, u+(x),
Du

|Du|
(x)

)

d|Du|(x)

+

∫

J(u)∩Ω′

{

1

u+(x)− u−(x)

∫ u+(x)

u−(x)

f∞
(

x, s,
Du

|Du|
(x)

)

ds

}

d|Du|(x),

where as usual f∞ is the recession function of f(x, s, ·), defined as f∞(x, s, ξ) := limλ→0+

λf(x, s, ξ/λ).

There are many results linking H and F . For example, H = F either if f = f(ξ)
(Goffman-Serrin [13]) or under suitable assumptions on the integrand f(x, s, ξ), namely,
qualified continuity in the (x, s) variable (in order to have f∞ continuous) and coercivity
in the ξ variable (see Dal Maso [6]). A problem to solve is to understand if we can further
weaken the hypotheses proposed by Dal Maso and still have H = F .

In this paper we deal with the case in which coercivity assumptions like

f(x, s, ξ) ≥ C|ξ| − 1

C
, ∀(x, s, ξ) ∈ Ω× R× Rn, (4)

for a suitable C > 0, are dropped. In this direction Fonseca-Leoni [11] have proved the
following theorem:

Theorem 1.1 (Fonseca-Leoni). Let f : Ω × R × Rn → [0,∞) be a Borel integrand
satisfying the following condition: for every (x0, s0) ∈ Ω×R and ε > 0, there exists δ > 0
such that

|x− x0|+ |s− s0| < δ, ξ ∈ Rn ⇒ f(x0, s0, ξ) ≤ ε+ (1 + ε)f(x, s, ξ), (5)

and f(x0, s0, ·) is convex. Then for every u ∈ BVloc(Ω),

H(u) ≤ F(u).

If furthermore Ω is bounded, if there exists C > 0 such that

0 ≤ f(x, s, ξ) ≤ C(1 + |ξ|), ∀(x, s, ξ) ∈ Ω× R× Rn,

and if f∞ is continuous, then H(u) = F(u), for all u ∈ BVloc(Ω).

Roughly speaking, in this theorem the coercivity (4) is replaced by hypothesis (5). The
main case in which hypothesis (5) is really weaker than coercivity is the case of product
type integrands, f(x, s, ξ) = a(x, s)g(ξ). However there is a wide class of integrands
(including for example the ones that are just strictly convex in the gradient variable), of
interest in applications as well as from a purely mathematical point of view, for which
the validity of (5) is heavily related to coercivity (we give an example below).

In what follows we introduce these integrands, we explain the motivations for their study
and we give a general relaxation theorem.
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Definition 1.2. A function Ψ : Rn → [0,∞) is said to be non constant on straight lines,
briefly NCL, if its restriction to any straight line is a non constant function, i.e., if for all
ξ0 ∈ Rn and ν ∈ Sn−1 the map

ρ ∈ R 7→ Ψ(ξ0 + ρν) is not constant. (6)

In the case of a convex Ψ to check the NCL property it suffices to verify that (6) holds
for a fixed point ξ0 (see Proposition 2 in [14]): for example it is enough to see that for all
ν ∈ Sn−1 the map

ρ ∈ R 7→ Ψ(ρν) is not constant. (7)

Every strictly convex function is NCL. A model case of NCL function is

Ψ(ξ) =
n

∑

i=1

(ξi)
+, (8)

where (a)+ := max{0, a}. If we let Ψ “turn aroundÔ the origin by introducing a continuous
perturbation we can construct a family of functions f = f(t, ξ) : Σ × Rn → [0,∞) such
that f(t, ·) is convex and NCL for every fixed t, and (5) is not satisfied. It suffices to take
a continuous T : Σ → {S ∈ Rn×n : detS = 1, STS = I} and define f(t, ξ) = Ψ(T (t)ξ).
When n ≥ 2 and T is not constant in a neighborhood of a fixed t0 ∈ Σ, it is not hard
to verify that Fonseca-Leoni condition (5) never holds. We should note that for one
dimensional problems, n = 1, it can be proved that, if f is lower semicontinuous and
f(t, ·) is convex and NCL, then f satisfies (5).

NCL functions were first introduced with the name of demicoercive functions byAnzellotti-
Buttazzo-Dal Maso [1] as the mathematical model of the integrands appearing in the study
of equilibrium problems with unilateral constraints on the stress. The term “demicoer-
civeÔ follows from the fact that Ψ is NCL if and only if there exist a vector ν ∈ Sn−1, and
constants a > 0, b, c ≥ 0 such that

a|ξ| − b ≤ Ψ(ξ) + c〈ν, ξ〉, ∀ξ ∈ Rn.

In the recent paper [14] this property formulated as in Definition 1.2, has been proved to
be the underlying hypothesis to the geometric conditions in Serrin’s lower semicontinuity
Theorem.

The following theorem is the main result of this paper.

Theorem 1.3. Let f ∈ L∞
loc(Ω× R × Rn; [0,∞)) be lower semicontinuous and such that

for every (x, s) ∈ Ω× R, f(x, s, ·) is convex and NCL. Then, for every u ∈ BVloc(Ω),

H(u) ≤ F(u).

The proof of this theorem (see Section 3) is based upon four main tools: the blow up
method by Fonseca-Müller [10]; the approximation theorem for convex NCL functions by
means of maximal cones given in [14] and discussed in Section 2 (see Theorem 2.1 below);
a weak coercivity property of H[Ψ] proved by Anzellotti-Buttazzo-Dal Maso [1] in the
case when Ψ is NCL; and, finally, a lower semicontinuity theorem for the functional H
due to Dal Maso [6]. Once proved Theorem 1.3, applying Theorem 1.3 in Fonseca-Leoni
[11], we find immediately the following corollary.
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Corollary 1.4. Let f be as in Theorem 1.3. If furthermore Ω is bounded, if there exists
a constant C > 0 such that

0 ≤ f(x, s, ξ) ≤ C(1 + |ξ|), ∀(x, s, ξ) ∈ Ω× R× Rn,

and if f∞ is continuous, then H(u) = F(u) for all u ∈ BVloc(Ω).

Then the joint application of Theorem 1.3 and Corollary 1.4 allows us to prove a statement
analogous to the one of Theorem 1.1, where (5) has been replaced by the NCL hypothesis.
In the end we would like to remark that, if we drop the NCL assumption, in general we
cannot even expect that the Lebesgue part of the relaxed functional is represented by
∫

Ω
f(x, u,∇u)dx (see the introduction of the paper [14] or Example 4.1 in Dal Maso [6]).

2. Approximation of NCL functions

In this section we state an approximation result for convex NCL functions by means of
certain maximal cones, proved in [14]. These cones satisfy some useful properties, that in
general cannot be expected to hold for the supporting hyperplanes.

Theorem 2.1. Let Σ be an open set in Rd and f : Σ × Rn → [0,∞) be a lower semi-
continuous function with f(t, ·) convex and NCL for every t ∈ Σ. Then there exists
(ξk)k∈N ⊂ Rn such that, if we define

fk(t, ξ) = −1 + inf

{

λ+ λf

(

t, ξk +
ξ − ξk
λ

)

: λ > 0

}

, (9)

then it results:

(i) fk is lower semicontinuous and, for every fixed t ∈ Σ, fk(t, ·) is convex, NCL and
results to be the greatest function less than or equal to f such that ξ 7→ (1+fk(t, ξ+
ξk)) is positively homogeneous of degree one;

(ii) f(t, ξ) = supk∈N fk(t, ξ) for all (t, ξ) ∈ Σ× Rn.

The following lemma summarizes some properties of the functions fk in Theorem 2.1 that
we shall need in the proof of Theorem 1.3.

Lemma 2.2. Let Σ, f and fk be as in Theorem 2.1 and suppose f to be locally bounded.
Then for every Σ′ ⊂⊂ Σ there exist constants Ck ≥ 0 such that, for every (t, ξ) ∈ Σ′×Rn,
λ > 0, we have

−1 ≤ fk(t, ξ) ≤ Ck(1 + |ξ|), (10)

λfk

(

t,
ξ

λ

)

≥ f∞
k (t, ξ)− Ckλ. (11)

Furthermore, for every fixed t0 ∈ Σ and ε, σ > 0, there exist δ > 0 and a convex, NCL
function Ψk : Rn → [−1,∞) such that

Ψk(ξ) ≤ fk(t, ξ), (12)

fk(t0, ξ) + σ|ξ| ≤ (1 + ε)[fk(t, ξ) + σ|ξ|] + ε, (13)

for every (t, ξ) ∈ Bδ(t0)× Rn.
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Proof. By the local boundedness of f and by (9) it follows immediately that fk is locally
bounded on Σ× Rn. By (9) we can directly verify the following formula,

λfk

(

t,
ξ

λ

)

= 1− λ+ fk(t, ξ + (1− λ)ξk), ∀(t, ξ) ∈ Σ× Rn,∀λ > 0, (14)

from which we see that fk is transformed into its recession function f∞
k by means of a

translation of its epigraph in Rn+1 along the segment joining (ξk,−1) and the origin.
Hence fk(t, ·) is lipschitzian on Rn with the same Lipschitz constant Lk(t) of f

∞
k (t, ·), i.e.,

Lk(t) = lip(f∞
k (t, ·)) = lip(f∞

k (t, ·)|B1(0)) ≤ max
B2(0)

f∞
k (t, ·)− min

B1(0)
f∞
k (t, ·).

Since f∞
k ≥ 0 and f∞

k is locally bounded (by (14) and by the local boundedness of fk) we
have Lk(t) ≤ Lk < ∞ for every t ∈ Σ′.

By these considerations we can see that (10) follows immediately while (11) is true since,
by (14),

∣

∣

∣

∣

λfk

(

t,
ξ

λ

)

− f∞
k (t, ξ)

∣

∣

∣

∣

= |fk(t, ξ + (1− λ)ξk)− fk(t, ξ + ξk)− λ|

≤ λ(1 + Lk(t)|ξk|) ≤ Ckλ, ∀(t, ξ) ∈ Σ′ × Rn.

We prove (13). We define τ = εσ/min{|ξk|, 1}. By lower semicontinuity of f∞
k there

exists δ > 0 such that

f∞
k (t0, ν) ≤ f∞

k (t, ν) + τ, ∀(t, ν) ∈ Bδ(t0)× Sn−1,

so that, by positive homogeneity of degree one we have

f∞
k (t0, ξ) ≤ f∞

k (t, ξ) + τ |ξ|, ∀(t, ξ) ∈ Bδ(t0)× Rn.

Since f∞
k (t, ξ) = 1 + fk(t, ξk + ξ) this implies

fk(t0, ξ) ≤ fk(t, ξ) + τ |ξ − ξk|, ∀(t, ξ) ∈ Bδ(t0)× Rn.

By definition of τ it is τ max{|ξk|, 1}/σ < ε, and then, adding to both sides the term σ|ξ|,
we find

[fk(t0, ξ) + σ|ξ|] ≤ (1 + ε)[fk(t, ξ) + σ|ξ|] + ε, ∀(t, ξ) ∈ Bδ(t0)× Rn,

and the proof is completed.

We prove (12). In order to simplify the notations we fix k and consider the function
g(t, ξ) := 1 + fk(t, ξ + ξk). Then g is lower semicontinuous, with g(t, ·) convex, NCL and
positively homogeneous of degree one. We fix t0 ∈ Σ and we prove that there exists δ > 0
and Ψ : Rn → [0,∞) convex and NCL such that

Ψ(ξ) ≤ g(t, ξ), ∀(t, ξ) ∈ Bδ(t0)× Rn. (15)

To this end let us denote by G(t) := {p = (ξ, α) ∈ Rn+1 : g(t, ξ) ≤ α} the epigraph of
g(t, ·). Then G(t) is always a closed, convex cone in Rn+1: in particular, since g(t, ·) is
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NCL, it does not contain any straight line. For this reason we can find a half-space which
intersects G(t0) only in the origin: then there exists (see the proof of Theorem 2.4 in [1])
ε > 0 such that the closed convex cone

Gε(t0) = {p : dist(p,G(t0)) ≤ |p|ε},

does not contain any straight line. We claim there exists δ > 0 such that

⋃

|t−t0|<δ

G(t) ⊂ Gε(t0), (16)

and the thesis follows defining Ψ as the convex function whose epigraph epiΨ is given by

epiΨ := co





⋃

|t−t0|<δ

G(t)



 ;

indeed epiΨ is a closed convex set, it does not contain any straight line by (16) so that
Ψ is NCL, and contains G(t) for every t ∈ Bδ(t0), so that (15) follows. In order to prove
(16) we argue by contradiction: suppose there exists a sequence th → t0, and points
ph = (ξh, αh) ∈ G(th) such that

dist(ph, G(t0)) > ε|ph|. (17)

It must be ph 6= 0 for every h, because G(t0) contains the origin. Since G(th) is a cone it
results that πh = ph/|ph| ∈ G(th). By compactness we can also assume πh → π0 = (η, β).
Then by the lower semicontinuity and positive homogeneity of degree one of g we have

g(t0, η) ≤ lim inf
h→∞

g

(

th,
ξh
|ph|

)

≤ lim
h→∞

αh

|ph|
= β,

i.e., π0 ∈ G(t0). From (17) we can see dist(πh, G(t0)) > ε so that it would be dist(π0, G(t0))
> ε, a contradiction.

A weak coercivity property. The following is Theorem 2.7 in Anzellotti-Buttazzo-
Dal Maso [1]. It states the coercivity of H[Ψ] on every class of BV functions with fixed
boundary data, provided Ψ is NCL.

Theorem 2.3. Let Ψ be a lower semicontinuous, NCL, proper convex function on Rn

and let Ω be bounded and with Lipschitz boundary. Then there exist α > 0, β, γ ≥ 0 such
that, for every u ∈ BV (Ω),

α|Du|(Ω)− β

∫

∂Ω

|u|dHn−1 − γLn(Ω) ≤ H[Ψ](u,Ω).

A lower semicontinuity theorem. The following theorem is a lower semicontinuity
result for the functional H (Theorem 3.1 in Dal Maso [6]), based upon Reshetnyak lower
semicontinuity Theorem (see Theorem 2 in [17]) and on the interpretation of H as a
functional defined on the subgraph of BV functions (see Lemma 2.2 in [6]). We state
it in a simplified version. The reader can find related results in De Cicco [7], [8] and
Braides-De Cicco [4].
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Theorem 2.4. Let f ∈ L∞
loc(Ω× R× Rn; [0,∞)) be lower semicontinuous, with f(x, s, ·)

convex and with
a|ξ| − b ≤ f(x, s, ξ), ∀(x, s, ξ) ∈ Ω× R× Rn,

for suitable constants a > 0, b ≥ 0. Then the functional H is sequentially lower semicon-
tinuous with respect to the convergence L1

loc(Ω) on BVloc(Ω).

3. Proof of the relaxation theorem

This section is devoted to the proof of Theorem 1.3. Let us fix a sequence uh ∈ C1(Ω)
such that uh → u in L1

loc(Ω) for u ∈ BVloc(Ω). We want to prove that

H(u,Ω) ≤ lim inf
h→∞

F (uh,Ω). (18)

Apart from the trivial case when the minimum limit on the right hand side is equal to
infinity, up to extracting a subsequence we can assume that

lim inf
h→∞

F (uh,Ω) = lim
h→∞

F (uh,Ω) < ∞.

In particular the sequence {f(x, uh,∇uh)}h∈N is bounded in L1(Ω), so that by the Banach-
Alaouglu-Bourbaki compactness criterion, up to a further extraction, we can suppose
f(x, uh,∇uh) ⇀

∗ µ for some Radon measure µ in Ω. The idea behind the blow up method
is to look at the densities of µ with respect to Ln, |Dcu| and Hn−1bJ(u) respectively, and
to prove that they are pointwise greater than or equal to the corresponding densities of
the functional H. This allows to reduce the original problem (18) to proving the following
three claims (see for example the first part in the proof of Theorem 1.1 in [11]; we omit
the details for the sake of brevity and since this argument has been already used in many
papers). We note that this reduction of the problem works under minimal assumption on
the integrand f (it only needs f to be Borel non negative), so that the real difficulty is
just moved to the proof of the claims. We put Q := {y ∈ Rn : −1/2 ≤ yi ≤ 1/2}.

Claim 1 (Lebesgue Part). Let us consider (x0, s0, ξ0) ∈ Ω × R × Rn, εh → 0+ and
uh ∈ W 1,1(Q) such that uh → v in L1(Q), where v(y) := 〈ξ0, y〉 for every y ∈ Q; we have
to prove that

lim inf
h→∞

∫

Q

f(x0 + εhy, s0 + εhuh(y),∇uh(y))dy ≥ f(x0, s0, ξ0).

Claim 2 (Cantor Part). Let us consider (x0, s0) ∈ Ω× R, sh → s0, εh → 0+, λh → 0+

with th = λh/εh → ∞; α : (−1/2, 1/2) → R a non decreasing function with α(1/2−) −
α(−1/2+) = 1,

∫ 1/2

−1/2
α(t)dt = 0; uh ∈ W 1,1(Q) such that uh → v in L1(Q), where

v(y) = α(yn) for every y ∈ Q; we have to prove that

lim inf
h→∞

∫

Q

1

th
f (x0 + εhy, sh + λhuh(y), th∇uh(y)) dy ≥ f∞(x0, s0, en).

Claim 3 (Jump Part). Let us consider (x0, a, b) ∈ Ω× R× R, εh → 0+; uh ∈ W 1,1(Q)
such that uh → v in L1(Q), where

v(y) :=

{

b, if yn > 0,
a, if yn ≤ 0;
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we have to prove that

lim inf
h→∞

∫

Q

εhf

(

x0 + εhy, uh(y),
∇uh(y)

εh

)

dy ≥
∫ b

a

f∞(x0, s, en)ds.

Before proving the claims we note that in each case we can suppose a ≤ v(y) ≤ b for
a.e. y ∈ Q, for a, b ∈ R, a ≤ b. In the following we shall consider a fixed τ > 0, define
a′ = a− τ, b′ = b+ τ ,

Eh = {y ∈ Q : a′ ≤ uh ≤ b′},
E+

h = {y ∈ Q : uh > b′}, E−
h = {y ∈ Q : a′ < uh},

and consider the sequence

vh(y) =







uh(y), y ∈ Eh,
b′, y ∈ E+

h ,
a′, y ∈ E−

h .
(19)

Then vh ∈ W 1,1(Q) ∩ L∞(Q) and

Ln(Q\Eh) ≤ Ln({y ∈ Q : |uh(y)− v(y)| > τ}) ≤ 1

τ
‖uh − v‖L1(Q) → 0.

In particular it is always vh → v in L1(Q). Let us also put Σ = Ω × R and denote with
fk the functions given by Theorem 2.1.

Proof of Claim 1 and Claim 2. Let us fix k ∈ N, ε, σ > 0, define t0 := (x0, s0) and
apply Lemma 2.2 to fk to find δ = δ(k) > 0 and a convex, NCL function Ψk : Rn →
[−1,∞) such that (12) and (13) hold. Then we put Σ′ = Bδ/2(t0) and again by Lemma
2.2 we find a constant Ck such that (10) and (11) hold. Summarizing,























f(t, ξ) = supk∈N fk(t, ξ), ∀(t, ξ) ∈ Σ× Rn,
−1 ≤ fk(t, ξ) ≤ Ck(1 + |ξ|), ∀(t, ξ) ∈ Σ′ × Rn,

λfk
(

t, ξ
λ

)

≥ f∞
k (t, ξ)− Ckλ, ∀(t, ξ) ∈ Σ′ × Rn,

Ψk(ξ) ≤ fk(t, ξ), ∀(t, ξ) ∈ Σ′ × Rn,
fk(t0, ξ) + σ|ξ| ≤ (1 + ε)[fk(t, ξ) + σ|ξ|] + ε, ∀(t, ξ) ∈ Σ′ × Rn.

We prove Claim 1. If we take h sufficiently large, by definition of vh and by the growth
condition on fk we have,

∫

Q

f(x0 + εhy, s0 + εhuh,∇uh)dy

≥
∫

Eh

f(x0 + εhy, s0 + εhvh,∇vh)dy

≥
∫

Eh

fk(x0 + εhy, s0 + εhvh,∇vh)dy

≥
∫

Q

fk(x0 + εhy, s0 + εhvh,∇vh)dy − CkLn(Q\Eh). (20)
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Let us remark that, by Theorem 2.3,
∫

Q

fk(x0 + εhy, s0 + εhvh,∇vh)dy ≥
∫

Q

Ψk(∇vh)dy

≥ αk

∫

Q

|∇vh|dy − βk

∫

∂Q

|vh|dHn−1 − γk,

where the left hand side is bounded on h and where vh are uniformly bounded on ∂Q by
max{|a′|, |b′|}. This means that

sup
h∈N

‖∇vh‖L1(Q;Rn) ≤ C < ∞. (21)

Let us define gk(x, s, ξ) = gk(ξ) := fk(x0, s0, ξ) + σ|ξ|. By (20), (21) and (13) we have

∫

Q

f(x0 + εhy, s0 + εhuh,∇uh)dy

≥
∫

Q

fk(x0 + εhy, s0 + εhvh,∇vh) + σ|∇vh|dy − CkLn(Q\Eh)− σC

≥ 1

1 + ε

∫

Q

fk(x0, s0,∇vh) + σ|∇vh|dy − ε− CkLn(Q\Eh)− σC

=
1

1 + ε
H[gk](vh, Q)− ε− CkLn(Q\Eh)− σC.

By Theorem 2.4, passing to the limit as h → ∞, we find

lim inf
h→∞

∫

Q

f(x0 + εhy, s0 + εhuh,∇uh)dy ≥ 1

1 + ε
H[gk](v,Q)− ε− σC

=
1

1 + ε
gk(x0, s0, ξ0)− ε− σC.

As ε, σ → 0 the last term tends to fk(x0, s0, ξ0). Since this is true for all k ∈ N we have
achieved the proof of Claim 1.

To prove Claim 2 we note again that, for h sufficiently large,
∫

Q

1

th
f(x0 + εhy, sh + λhuh, th∇uh)dy

≥
∫

Eh

1

th
fk(x0 + εhy, sh + λhvh, th∇vh)dy

≥
∫

Q

1

th
fk(x0 + εhy, s0 + λhvh, th∇vh)dy −

Ck

th
Ln(Q\Eh)

≥
∫

Q

f∞
k (x0 + εhy, s0 + λhvh,∇vh)dy −

Ck

th
− Ck

th
Ln(Q\Eh), (22)

where in the last inequality we have used the property (11). Since fk ≥ Ψk it results
f∞
k ≥ Ψ∞

k , and hence applying again Theorem 2.3 we find

sup
h∈N

‖∇vh‖L1(Q;Rn) ≤ C < ∞. (23)
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It is also apparent that

f∞
k (t0, ξ) + σ|ξ| ≤ (1 + ε)[f∞

k (t, ξ) + σ|ξ|], ∀(t, ξ) ∈ Σ′ × Rn. (24)

If we define gk(x, s, ξ) = gk(ξ) := f∞
k (x0, s0, ξ) + σ|ξ|, we find, using (22), (23), (24) and

applying Theorem 2.4, that

lim inf
h→∞

∫

Q

1

th
f(x0 + εhy, sh + λhuh, th∇uh)dy

≥ lim inf
h→∞

∫

Q

f∞
k (x0 + εhy, s0 + λhvh,∇vh) + σ|∇vh|dy − σC

≥ 1

1 + ε
lim inf
h→∞

H[gk](vh, Q)− σC

≥ 1

1 + ε
H[gk](v,Q)− σC.

Since it results

lim
σ→0

H[gk](v,Q) = f∞
k (x0, s0, en),

letting ε, σ tends to zero and then taking the supremum for k ∈ N, by Lemma 3.1.3 in
Buttazzo [5], we conclude the proof.

Proof of Claim 3. Let us fix ε, σ > 0 and, for every s′ ∈ [a′, b′]. Arguing as in the proof
of Lemma 2.2 we find δ(s′) = δ(s′, k) > 0 and a convex, NCL function Ψk[s

′] : Rn →
[−1,∞) such that Ψk[s

′](ξ) ≤ fk(t, ξ) for every (t, ξ) ∈ Bδ(s′)(x0)×Bδ(s′)(s
′)× Rn and

fk(x0, s, ξ) + σ|ξ| ≤ (1 + ε)[fk(x, s, ξ) + σ|ξ|] + ε,

∀(x, s, ξ) ∈ Bδ(s′)(x0)×Bδ(s′)(s
′)× Rn;

then we apply Lemma 2.2 to Σ[s′] = Bδ(s′)/2(x0)×Bδ(s′)(s
′), to find a constant Ck[s

′] such
that (10) and (11) hold in Σ[s′].

Since [a, b] ⊂
⋃

s′∈[a,b]Bδ(s′)(s
′) we can find {si}Ni=1 ⊂ [a, b] such that

[a, b] ⊂
N
⋃

i=1

Bδi/2(si) ⊂ [a′, b′],

where we define δi := δ(si). We put δ = min{δi : 1 ≤ i ≤ N}, Ck = max{Ck[si] : 1 ≤ i ≤
N}, and we consider the sets Σi = Bδ(x0)×Bδi(si), and Σ′ = Bδ/2(x0)× [a′, b′]. Then the
following holds true:























f(t, ξ) = supk∈N fk(t, ξ), ∀(t, ξ) ∈ Σ× Rn,
−1 ≤ fk(t, ξ) ≤ Ck(1 + |ξ|), ∀(t, ξ) ∈ Σ′ × Rn,

λfk
(

t, ξ
λ

)

≥ f∞
k (t, ξ)− Ckλ, ∀(t, ξ) ∈ Σ′ × Rn,

Ψk[si](ξ) ≤ fk(t, ξ), ∀(t, ξ) ∈ Σi × Rn,
fk(x0, s, ξ) + σ|ξ| ≤ (1 + ε)[fk(x, s, ξ) + σ|ξ|] + ε, ∀(t, ξ) ∈ Σ′ × Rn.
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We can repeat this construction for every j ∈ {1, ..., k}, define gk(t, ξ) = max{fj(t, ξ) :
1 ≤ j ≤ k} and find:























gk(t, ξ) ↑ f(t, ξ) as k → ∞, ∀(t, ξ) ∈ Σ× Rn,
−1 ≤ gk(t, ξ) ≤ Mk(1 + |ξ|), ∀(t, ξ) ∈ Σ′ × Rn,

λgk
(

t, ξ
λ

)

≥ g∞k (t, ξ)−Mkλ, ∀(t, ξ) ∈ Σ′ × Rn,
Ψk[si](ξ) ≤ gk(t, ξ), ∀(t, ξ) ∈ Σi × Rn,
gk(x0, s, ξ) + σ|ξ| ≤ (1 + ε)[gk(x, s, ξ) + σ|ξ|] + ε, ∀(t, ξ) ∈ Σ′ × Rn.

By the stated properties we can see as before that

∫

Q

εhf

(

x0 + εhy, uh(y),
∇uh

εh

)

dy

≥
∫

Q

εhgk

(

x0 + εhy, vh(y),
∇vh
εh

)

dy −MkεhLn(Q\Eh)

≥
∫

Q

g∞k (x0 + εhy, vh(y),∇vh)dy −Mkεh −MkεhLn(Q\Eh). (25)

Now we prove the boundedness of (∇vh)h∈N in L1(Q;Rn). For every i = 1, ..., N , y ∈ Q,
we define

Tivh(y) =







vh(y), if si − δi ≤ vh(y) ≤ si + δi,
si + δi, if vh(y) > si + δi,
si − δi, if vh(y) < si − δi,

so that, by g∞k (x, s, 0) = 0, it always results

∫

Q

g∞k (x0 + εhy, vh(y),∇vh)dy

≥
∫

{si−δi≤vh(y)≤si+δi}
g∞k (x0 + εhy, vh(y),∇vh)dy

=

∫

{si−δi≤vh(y)≤si+δi}
g∞k (x0 + εhy, Tivh(y),∇Tivh)dy

=

∫

Q

g∞k (x0 + εhy, Tivh(y),∇Tivh)dy

≥
∫

Q

Ψ∞
k [si](∇Tivh)dy

≥ αk

∫

Q

|∇Tivh|dy − βk

∫

∂Q

|Tivh|dHn−1(y)− γk,

where in the last inequality we have used Theorem 2.3. Since the left hand side is bounded
on h and since |Tivh| ≤ |vh| ≤ max{|a′|, |b′|} we deduce that, for every i = 1, ..., N ,

sup
h∈N

‖∇Tivh‖L1(Q;Rn) ≤ C < ∞.

In particular
α := sup

h∈N
‖∇vh‖L1(Q;Rn) ≤ NC < ∞. (26)
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Then if we define lk(x, s, ξ) = lk(s, ξ) := g∞k (x0, s, ξ) + σ|ξ|, by (25), (26), Theorem 2.4
and by the properties of gk we have

lim inf
h→∞

∫

Q

εhf

(

x0 + εhy, uh(y),
∇uh

εh

)

dy

≥ lim inf
h→∞

∫

Q

g∞k (x0 + εhy, vh(y),∇vh) + σ|∇vh|dy − σα

≥ 1

1 + ε
lim inf
h→∞

∫

Q

g∞k (x0, vh(y),∇vh) + σ|∇vh|dy − σα

=
1

1 + ε
lim inf
h→∞

H[lk](vh, Q)− σα

≥ 1

1 + ε
H[lk](v,Q)− σα.

Since it results

lim
σ→0

H[lk](v,Q) =

∫ b

a

g∞k (x0, s, en)ds,

when ε, σ → 0 we finally find

lim inf
h→∞

∫

Q

εhf

(

x0 + εhy, uh(y),
∇uh

εh

)

dy ≥
∫ b

a

g∞k (x0, s, en)ds.

It suffices to apply Beppo Levi’s Theorem as k → ∞ and remark that, by Lemma 3.1.3
in Buttazzo [5],

g∞k =

(

max
1≤j≤k

fj

)∞

= max
1≤j≤k

f∞
j ↑ sup

j∈N
f∞
j = f∞, as k → ∞,

in order to achieve the proof.
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[3] G. Bouchitté, G. Dal Maso: Integral representation and relaxation of convex local function-
als on BV (Ω), Ann. Scuola Norm. Sup. Pisa Cl. Sci., IV. Ser. 20(4) (1993) 483–533.

[4] A. Braides, V. De Cicco: New lower semicontinuity and relaxation results for functionals
defined on BV (Ω), Adv. Math. Sci. Appl. 6 (1996) 1–30.

[5] G. Buttazzo: Semicontinuity, Relaxation and Integral Representation in the Calculus of
Variations, Pitman Res. Notes Math. Ser. 207, Longman, Harlow (1989).



F. Maggi / On the Relaxation on BV of Certain non Coercive Integral Functionals 489

[6] G. Dal Maso: Integral representation on BV (Ω) of Γ-limits of variational integrals,
Manuscripta Math. 30 (1980) 387–416.

[7] V. De Cicco: A lower semicontinuity result for functionals defined on BV (Ω), Ricerche Mat.
39 (1990) 293–325.

[8] V. De Cicco: Lower semicontinuity for certain integral functionals on BV (Ω), Bull. Un.
Mat. Ital. 5-B (1991) 291–313.

[9] F. Ferro: Integral characterization of functionals defined on spaces of BV functions, Rend.
Sem. Mat. Univ. Padova 61 (1979) 177–201.

[10] I. Fonseca, S. Müller: Relaxation of quasiconvex functionals in BV (Ω,Rp) for integrands
f(x, u,∇u), Arch. Rat. Mech. Anal. 123 (1993) 1–49.

[11] I. Fonseca, G. Leoni: On lower semicontinuity and relaxation, Proc. Roy. Soc. Edinburgh
131A (2001) 519–565.
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