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We define a nontrivial semiconvex hull qrα(K) of a compact set K ⊂ MN×n called the α-rank-one convex
quadratic hull and establish the equalities of semiconvex hulls with respect to qrα(K) by showing that
Lc(K) = qrα(K) if and only if Q(K) = qrα(K), 0 < α < 1, where Q(K) and Lc(K) are the quasiconvex
convex hull and the closed lamination convex hull of K respectively. We also show that qrα(K) is a
nontrivial semiconvex hull, that is, qrα(K) 6= C(K) if R(K) 6= C(K).
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Let MN×n the linear space of real N × n matrices with the standard Euclidean norm of
RNn, and assume that N, n ≥ 2. In the vectorial calculus of variations, we may define, for
a compact set K ⊂ MN×n the corresponding semiconvex hulls by using cosets. Let R(K),
Q(K), P (K), qr(K) and C(K) be the rank-one convex, the quasiconvex, the polyconvex,
the quadratic rank-one convex and the convex hulls of K respectively. We may also define
the so called closed lamination convex hull Lc(K) of K (see below for definitions). We
have

K ⊂ Lc(K) ⊂ R(K) ⊂ Q(K) ⊂ qr(K)&P (K) ⊂ C(K). (1)

A surprising connection among these semiconvex hulls is the following equalities of semi-
convex hulls with respect to the trivial hull C(K):

(a) Q(K) = C(K) ⇐⇒ R(K) = C(K) [15],

(b) when n = M = 2, P (K) = C(K) ⇐⇒ R(K) = C(K) [15] and in fact this result
holds if and only if min{N, n} = 2 [4].

(c) qr(K) = C(K)⇐⇒ R(K) = C(K) [18] and qr(K) = P (K) if and only if min{N, n} =
2 [12, 4].

Item (c) above unifies results in (a) and (b) and the proof is more elementary. We may
view the results a) - c) as equal hull properties with respect to the trivial hull C(K).

Naturally, one would ask whether the equal hull properties holds with respect to other
semiconvex hulls such as qr(K) or P (K), that is, whether for a compact set K ⊂ MN×n,
Lc(K) = qr(K) if and only if Q(K) = qr(K), or Lc(K) = P (K) if and only if Q(K) =
P (K) when min{N, n} = 2.
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It can be shown by using an example due to Šverák [9] that the answers to both questions
are negative at least for some compact sets K in M6×2 (see Example 4 below). The
question then is whether there are nontrivial semiconvex hulls of K such that the equal
hull property holds. In this paper we define a family of semiconvex hulls called α-rank-
one convex quadratic hull qrα(K) lying between the convex hull C(K) and the quadratic
rank-one convex hull q(K) by using a class of rank-one convex quadratic functions which
are either convex or strictly rank-one convex. We are then able to establish the equal hull
property with respect to qrα(K). We have

Theorem 1. Let K ⊂ MN×n be compact, then for 0 < α < 1,

(i) Lc(K) = C(K) if and only if qrα(K) = C(K).

(ii) Lc(K) = qrα(K) if and only if Q(K) = qrα(K).

Remark 2. Since we have

Lc(K) ⊂ R(K) ⊂ Q(K) ⊂ qr(K) ⊂ qrα(K) ⊂ C(K), (2)

and (i) implies that qrα(K) is a nontrivial semiconvex hull, we see that the equal hull
property holds for a family of nontrivial semiconvex hulls.

Before we prove our main results, let us first introduce some notation and definitions.

Let f : MN×n → R be a continuous function. The following are some conditions related
to weak lower semicontinuity of the integral (c.f. [2, 7, 5, 1])

I(u) =

∫

Ω

f(Du(x))dx

(i) f is rank-one convex if for each matrix A ∈ MN×n and each rank-one matrix B =
a⊗ b ∈ MN×n, the function t → f(A+ tB) is convex.

(ii) f is quasiconvex at A ∈ MN×n on Ω, if for any smooth function φ : Ω → RN

compactly supported in Ω,

∫

Ω

f(A+Dφ(x))dx ≥
∫

Ω

f(A)dx

holds. f is quasiconvex if it is quasiconvex at every A ∈ MN×n. The class of
quasiconvex functions is independent of the choice of Ω.

(iii) f is polyconvex if f(A) = convex function of minors of the matrix A.

(iv) f is a rank-one convex quadratic function if f(A) = q(A)+ l(A) with q(·) a rank-one
convex quadratic form and l(·) an affine function.

It is well-known that (iii)⇒(ii)⇒(i), while (i)6⇒(ii)6⇒(iii) (cf. [2, 7, 5, 13]). However, if f
is a quadratic function, (i) is equivalent to (ii).

Let E ⊂ MN×n be a linear subspace without rank-one matrices, and E⊥ being its orthog-
onal complement. Let

qE(A) = |PE⊥(A)|2 − λE|PE(A)|2, (3)
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where PE⊥ and PE are orthogonal projections to E⊥ and E respectively, where λE > 0 is
defined by

1

λE

= sup

{

|PE(a⊗ b)|2

|PE⊥(a⊗ b)|2
, a ∈ RN , b ∈ Rn |a| = |b| = 1

}

< ∞. (4)

Then qE is a rank-one convex quadratic form [3]. For convenience, we also define λE = 0
if E has rank-one matrices, and

qµ,E = |PE⊥(A)|2 − µλE|PE(A)|2

for some 0 ≤ µ ≤ 1. Clearly, qµ,E is a rank-one convex quadratic form. Let E be the set
of all non-zero linear subspaces of MN×n and define for a fixed 0 ≤ α < 1,

QRα = {σqµ,E + l, σ ≥ 0, 0 ≤ µ ≤ α, E ∈ E , l affine}.

Although the definition of the family QRα of rank-one convex quadratic functions looks
complicated, in fact it is among the simplest collection of strictly (when 0 < α < 1) rank
one convex quadratic functions that separate points.

Definition 3. We define the α-quadratic rank-one convex envelope qrα(f) of f :MN×n →
R as

qrα(f)(A) = sup{q(A), q ≤ f, q ∈ QRα}, (5)

In the study of material microstructure, the following concepts of semiconvex hulls for a
compact set K ⊂ MN×n are naturally introduced.

A compact set K ⊂ MN×n is called stable under lamination (or lamination convex) [8]
if A, B ∈ K are rank-one connected, that is, rank(A − B) = 1, then for all λ ∈ (0, 1),
one has (1 − λ)A + λB ∈ K. For a given K ⊂ MN×n, the lamination convex hull L(K)
is defined as the smallest lamination convex set that contains K [8]. We also define the
closed lamination convex hull Lc(K) as the smallest closed lamination convex set that
contains K [15].

By using the coset definition, we may define semiconvex hulls S(K) of K as follows,

S(K) = {X ∈ MN×n, f(X) ≤ sup
Y ∈K

f(Y ), for every S-convex f : MN×n → R}.

If we replace S-convex by rank-one convex, quasiconvex, polyconvex, quadratic rank-one
convex functions respectively, we obtain the rank-one convex hull R(K), the quasiconvex
hull Q(K), the polyconvex hull P (K) [14], the quadratic rank-one convex hull qr(K) [18]
and the convex hull C(K). Clearly, if K is closed, (1) holds. If Lc(K) is convex, obviously,
all other ‘semiconvex’ hulls are identical to C(K).

Later we will use some facts from the theory of gradient Young measures and homogeneous
(gradient) Young measures supported on compact sets in MN×n [10, 6]: (i) If X0 ∈ Q(K),
there is a homogeneous gradient Young measure ν supported in K such that the integral
average ν̄ :=

∫

K
λdν = X0 (also see [16]). (ii) For a rank-one convex quadratic form q

satisfying q(a⊗ b) ≥ c|a|2|b|2 for a ∈ RN , b ∈ Rn, with c > 0 a constant, one has for the
Young measure above,

∫

K
q(λ)dν ≥ q(X0) + c

∫

K
|λ−X0|2dν (also see [17]).
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Before we introduce the α-quadratic rank-one convex hull qrα(K), let us examine the
following counter-example of the equal hull property with respect to qr(K) and P (K)
due to Šverák [9].

Example 4. Let u : R2 → R6 be defined as

u(x1, x2) = (cosx1, sinx1, cosx2, sinx2, cos(x1 + x2), sin(x1 + x2)),

and notice that u is a periodic smooth mapping. We define K as the image of the gradient
of u,

K = {Du(x) ∈ M6×2, x ∈ R2}.
It was shown by Šverák that Lc(K) = R(K) = K while P (K) = Q(K) = K ∪ {0}. We
have P (K) = qr(K) 6= Lc(K) while qr(K) = Q(K). Thus the equal hull property does
not hold in M6×2.

Definition 5. For a compact set K ⊂ MN×n, the α-quadratic rank-one convex hull
qrα(K) is defined by

qrα(K) = {A ∈ MN×n, q(A) ≤ sup
B∈K

q(B), q ∈ QRα}. (6)

If qrα(K) = K, we call K an α-quadratic rank-one convex set. Clearly, qrα(K) satisfies
(2).

Remark 6. Our choice of QRα of quadratic functions is because it gives us several ad-
vantages.

(i) QRα separates points for any plane E ⊂ MN×n without rank-one connection in the
sense that for every X ∈ E, there is some q ∈ QRα such that q(Y ) < 0 for Y ∈ E, Y 6= X
and q(X) = 0. We may construct such a quadratic function as follows. Let E0 be the
subspace parallel to E given by E0 = {Y −X, Y ∈ E}, then we define

q(A) = |PE⊥
0
(A−X)|2 − αλE0|PE0(A−X)|2,

then q ∈ QRα and for every Y ∈ E, Y 6= X, q(Y ) = −αλE0|PE0(Y −X)|2 < 0 = q(X).

(ii) Every ‘bounded’ set of QRα is sequentially compact. To be more precisely, let

qk(A) = σk

(

|PE⊥
k
(A)|2 − µkλEk

|PEk
(A)|2

)

+Bk · A+ ck

be a sequence in QRα such that σk, Bk and ck are bounded. Then there is a subsequence
qkj and some q ∈ QRα such that for each fixed A ∈ MN×n, qkj(A) → q(A).

This can be easily proved because dim(Ek) is a sequence of bounded integers. Therefore,
there is a subsequence such that dim(Ek) = m. For each k we take an orthonormal basis

{E(1)
k , . . . , E

(m)
k } ⊂ Ek and that of E⊥

k . Then up to a subsequence, the two basis of Ek

and E⊥
k converge to basis of E and E⊥ respectively (this is easy to verify). Note also that

λEk
is bounded and equals zero if Ek has a rank-one matrix. We may also assume that

σk → σ ≥ 0, µk → µ ≤ α, Bk → B, ck → c, and λEk
→ λE up to a subsequence. We will

check the last assertion later. Now, let

q(A) = σ
(

|PE⊥(A)|2 − µλE|PE(A)|2
)

+B · A+ c,
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then clearly qk(A) → q(A) for each fixed A ∈ MN×n and q ∈ QRα.

To show that λEk
→ λE, we have, by definition, |PE⊥

k
(a ⊗ b)|2 ≥ λEk

|PEk
(a ⊗ b)|2, and

for some ak ∈ Rn, bk ∈ RN with |ak| = |bk| = 1, |PE⊥
k
(ak ⊗ bk)|2 = λEk

|PEk
(ak ⊗ bk)|2.

Passing to the limit k → ∞, one obtains, |PE⊥(a⊗ b)|2 ≥ λ|PE(a⊗ b)|2, so that λ ≤ λE.
On the other hand, up to a subsequence, ak → a0, bk → b0 as k → ∞, we also have
|PE⊥(a0 ⊗ b0)|2 = λ|PE(a0 ⊗ b0)|2. Thus λ = λE.

(iii) The semiconvex hull qrα(K) can be represented as the intersection of the convex hull
C(K) and sub-level sets of a family of simple rank-one convex quadratic functions.

From the definition of qrα(K), for any X0 ∈ qrα(K), q(X0) ≤ max{q(X), X ∈ K} := cq,
for q ∈ QRα, if we let qc = q − cq, then qc ∈ QRα and qc(X0) ≤ 0. Let Kqc = {X ∈
MN×n, qc(X) ≤ 0}, then

qrα(K) = ∩q∈QRαKqc .

Since every q ∈ QRα can be written as

q(X) = σ
(

|PE⊥(X)|2 − µλE|PE(X)|2
)

+B · A+ c,

where σ ≥ 0. If σ = 0, q is affine hence qc is affine. If σ > 0, we may divide qc by σ and
consider quadratic functions in the form

q(∗)(X) =
(

|PE⊥(X)|2 − µλE|PE(X)|2
)

+B(∗) ·X + c(∗), (7)

under the assumption that E does not have rank-one matrices and 0 < µ ≤ α Clearly
qc(X) ≤ 0 if and only of q(∗)(X) ≤ 0. If µ = 0 or E has rank-one matrices, q(∗) is then
convex. However, recall [11] that convex functions can be represented by ‘sup’ of affine
functions, we define a subset QRα(K) of QRα by

QRα(K) =

{q ∈ QRα, q satisfies (7), µλE > 0, q(X) ≤ 0, X ∈ K, ∃Yq ∈ K, q(Yq) = 0} .
(8)

It is easy to verify that

qrα(K) = C(K) ∩
(

∩q∈QRα(K)Kq

)

, where Kq = {X ∈ MN×n, q(X) ≤ 0}.

We only prove Theorem 1 (ii) here and leave the proof for (i) at the end of this paper.

Proof of Theorem 1 (ii). We may assume that K = Lc(K). In other words, K is a
closed laminated convex set. If qrα(K) 6= K, we show that qrα(K) 6= Q(K). Let m be
the smallest affine dimension of C(K) such that our statement fails. It is easy to show
that this dimension m is greater than 1.

In fact, if the affine dimension of C(K) is 1, K is contained in a straight line. If the line
contains rank-one connections, then Lc(K) = C(K) and our claim is true. If the line does
not have rank-one connections, then it separates points as shown in Remark 6.(i). Thus
in this case qrα(K) = K = Lc(K). We examine two cases.
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Case (I) There is some X0 ∈ ∂C(K)∩qrα(K) while X0 /∈ K, where ∂C(K) is the relative
boundary of C(K) in the plane containing C(K) with dimension m.

Case (II) qrα(K) ∩ ∂C(K) ⊂ K.

We need the following Lemma for Case (I).

Lemma 7. Let E be a proper supporting plane [11] of C(K) then qrα(K)∩E = qrα(K ∩
E).

We prove Lemma 7 after we finish the proof of Theorem 1.

Proof of Theorem 1, (ii), Case (I). Accepting Lemma 7 for the moment. We seek
to prove that Q(K) 6= qrα(K). Lemma 7 implies that there is a supporting plane E
of C(K) passing through X0, hence qrα(K) ∩ E = qr(K ∩ E). On the other hand, we
have Q(K ∩ E) = Q(K) ∩ E and K ∩ E is still a closed lamination convex set. Since
dim(E∩C(K)) < m, we see that Q(K ∩E) 6= qrα(K ∩E). Thus Q(K)∩E 6= qrα(K)∩E
so that Q(K) 6= qrα(K). Therefore the proof of Case (I) is finished pending the proof of
Lemma 7.

Proof of Theorem 1, (ii), Case (II). Without loss of generality, we may assume that
0 ∈ K. Since

qrα(K) = C(K) ∩
(

∩q∈QRα(K)Kq

)

⊂ span[C(K)] := E0,

we see that E0 must have rank-one matrices. Otherwise qrα(K) = Q(K) = Lc(K) = K.

We further consider two different subcases:

Case (IIa) The relative boundary of qrα(K) in E0 is contained in K and there is a
relative interior point X0 of qrα(K) such that X0 /∈ Q(K).

Case (IIb) There is a relative boundary point X0 of qrα(K) such that X0 /∈ Q(K).

Proof of Case (IIa). Let A0 ∈ E0 be a rank-one matrix, and let us consider the line
X0 + tA0. It is easy to see that since qrα(K) is compact and X0 is a relative interior
point, there are t1 > 0, t2 < 0 such that A1 = X0 + t1A0, A2 = X0 + t2A0 are both on the
boundary ∂qrα(K) ⊂ K. Thus X0 ∈ Lc(K), which is a contradiction.

Proof of Case (IIb). Since X0 is a boundary point of qrα(K) = C(K)∩ (∩q∈QRα(K)Kq)
while X0 /∈ ∂C(K), we see that there is a sequence (qk) in QRα(K) such that qk(X) ≤ 0,
−1/k ≤ qk(X0) ≤ 0, k = 1, 2, . . . .

Clearly, we may write qk as qk(X) = q
(0)
k (X) +Bk · (X −X0) + ck, where

q
(0)
k (X) = |PE⊥

k
(X)|2 − µkλEk

|PEk
(X)|2, X ∈ MN×n.

We see from −1/k ≤ qk(X0) ≤ 0 that

−1

k
≤ q

(0)
k (X0) + ck ≤ 0.
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Since q
(0)
k (X0) is bounded, ck is then bounded. We also claim that |Bk| is bounded.

Otherwise, up to a subsequence, |Bk| → ∞. Hence up to a subsequence Bk/|Bk| → B0

for some B0 ∈ MN×n, |B0| = 1. Now we dividing qk by |Bk| and pass to the limit k → ∞
for each fixed X, we see that qk(X)/|Bk| → l(X) = B0 · (X−X0). We also have l(X) ≤ 0
for X ∈ K and l(X0) = 0. Thus X0 ∈ ∂C(X), which is a contradiction.

Now, since Bk and ck are both bounded, we may pass to the limit k → ∞ (up to a
subsequence) so that qk(X) → q(X) where

q(X) = |PE⊥(X)|2 − µλE|PE(X)|2 +B · (X −X0) + c,

and we let
q(0)(X) = |PE⊥(X)|2 − µλE|PE(X)|2.

If E has rank-one matrices, hence λE = 0 or µ = 0, q is then convex which again implies
X0 ∈ ∂C(K) and leads to a contradiction. Thus we may claim that 0 < µ ≤ α and
λE > 0.

Since X0 ∈ Q(K), there is a homogeneous gradient Young measure ν supported in K
such that

∫

K
λdν = X0. Due to the fact that q is quasiconvex, we have

∫

K

q(λ)dν ≥ q(X0).

On the other hand, q(X) ≤ 0 for X ∈ K, we have
∫

K
q(λ)dν = q(X0). Thus ν is supported

on the level set {X ∈ K, q(X) = 0}. Since σ ≤ α, we see that the quadratic form q(0)

above satisfies

q(0)(a⊗ b) ≥ (1− α)λE|PE⊥(a⊗ b)|2 ≥ (1− α)λE
λE

1 + λE

|a|2|b|2,

so that for the homogeneous Young measure ν above, we have

0 =

∫

K

(q(λ)− q(X0))dν ≥ (1− α)λE
λE

1 + λE

∫

K

|λ−X0|2dν ≥ 0.

Thus ν = δX0 is a Dirac mass, hence X0 ∈ K, a contradiction. The proof for Case (IIb)
is complete.

Proof of Lemma 7. Let E1 be the plane in MN×n containing C(K) with the same
dimension as C(K) [11]. Obviously, qrα(K ∩ E) ⊂ qrα(K) ∩ E. Let X ∈ qrα(K) ∩ E.
There is an affine function l defined on MN×n such that l < 0 on the open half plane in
E1 containing C(K) \E, l = 0 on E and l > 0 on the opposite half plane to C(K) in E1.
We also define

E(ε) = {A ∈ E1, dist(A,E) ≤ ε, l(A) ≤ 0}
which is a set on the same side as C(K) in E1, where dist(A,E1) is the Euclidean distance
from A to E1. For any fixed q ∈ QRα we consider, for every integer n > 0 the quadratic
function q(·) + nl(·) ∈ QRα. Since for any A ∈ E, l(A) = 0, we have, for each fixed
X ∈ qrα(K) ∩ E,

q(X) = q(X) + nl(X) ≤ sup
A∈K

[q(A) + nl(A)].
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Since q + nl is continuous and K compact, the maximum is attained at some An ∈ K,
that is, supA∈K [q(A) + nl(A)] = q(An) + nl(An), so that q(X) ≤ q(An) + nl(An). Since
K is compact there is a subsequence Ank

→ A0 ∈ K as k → ∞. Notice that l(An) ≤ 0
for all n. If we let k → ∞ we see that δk := dist(Ank

, E) → 0. Otherwise q(X) cannot be
finite. Now we have

q(X) ≤ q(Ank
) + nkl(Ank

) ≤ sup{q(A), A ∈ K ∩ E(δk)}. (9)

Again the ‘sup’ in (9) can be reached by, say Bk ∈ K ∩ E(δk), and up to a subsequence,
we have Bk → B0 ∈ K ∩ E as k → ∞.

Passing to the limit k → ∞ on both side of the inequality q(X) ≤ q(Bk) and noticing that
B0 ∈ K ∩ E, we have q(X) ≤ q(B0) ≤ supA∈K∩E q(A), hence X ∈ qrα(K ∩ E), Lemma 7
is then proved by noticing also that C(K) ∩ E = C(K ∩ E).

Remark 8. Our argument breaks down if we allow all rank-one convex quadratic func-
tions to be considered. The reason is that non-convex quadratic functions are no longer
strictly quasiconvex. The problem is reduced to the study of homogeneous Young mea-
sures ν supported on a compact set K ⊂ {X ∈ MN×n, q(X) = 0} for some quadratic
rank-one convex function q with q(0) = 0 under the conditions that 0 /∈ Lc(K). Example
4 shows that it is possible that the average of Young measure ν̄ = 0 hence the equal hull
property fails.

However, it is interesting to find examples of non-convex rank-one convex quadratic func-
tions and compact sets K contained in the level set q = 0 such that qr(K) 6= R(K) while
qr(K) = Q(K).

Proof of Theorem 1 (i). For any nontrivial supporting plane of C(K), we have, from
Lemma 7 that qrα(K) ∩ E = qr(K ∩ E). Notice also that C(K) ∩ E1 = C(K ∩ E1).

Suppose Lc(K) 6= C(K), while qrα(K) = C(K). We may assume that K is a closed
laminated convex set. Then among all theseK’s there is one for which the affine dimension
dimC(K) ≥ 1 of C(K) is the smallest. For such K we claim that the plane E spanned by
C(K) does not have rank-one connections. Otherwise it is easy to see [15] that there is a
supporting plane E of C(K) such that E ∩K is not convex and is still a closed laminated
convex set while

qrα(K ∩ E) = qrα(K) ∩ E = C(K) ∩ E

is convex. This contradicts to the fact that the dimension dimC(K) is the smallest. Now
since C(K) ⊂ E and E does not have rank-one connection, there is some X ∈ C(K) 6= K.
If we define qX as in Remark 6(i), there is some δ > 0, such that qX(X) = 0 > −δ =
supA∈K⊂E qX(A). Hence X /∈ qrα(K) and qrα(K) 6= C(K), a contradiction.
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