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We study the extreme points of the unit ball of a Banach space that remain extreme when considered,
under canonical embedding, in the unit ball of the bidual. We give an example of a strictly convex space
whose unit vectors are extreme points in the unit ball of the second dual but none are extreme points in
the unit ball of the fourth dual. For the space of vector- valued continuous functions on a compact set
we show that any function whose values are weak∗-extreme points is a weak∗-extreme point . We explore
the relation between weak∗-extreme points and the dual notion of very smooth points. We show that if
a Banach space X has a very smooth point in every equivalent norm then X∗ has the Radon-Nikodým
property.
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1. Introduction

For a Banach space X we denote the closed unit ball of X by X1 and the set of extreme
points of X1 by ∂eX1 . Our notation and terminology is standard and can be found in
[2, 3, 9]. We always consider a Banach space as canonically embedded in its bidual.

An extreme point of X1 is called weak∗-extreme if it continues to be an extreme point of
X∗∗

1 . It is known from the classical work of Phelps ([19]) that for a compact set K, any
extreme point of the unit ball of C(K) is weak∗-extreme . Importance of these points to
the geometry of a Banach space was enunciated in [23], where it was proved that a Banach
space has the Radon-Nikodým property (RNP) if and only if for every equivalent norm
the unit ball has a weak∗-extreme point. Several stronger forms of extreme points have
been well studied in the literature, for example Kunen and Rosenthal have showed in [13]
that any strongly extreme point of X1 is a strongly extreme point of X∗∗

1 . Similarly it
is well known that denting (weak∗-denting in dual spaces) points continue to be denting
(weak∗-denting) points of the bidual unit ball . Thus all these points are weak∗-extreme
and moreover they belong to the same class of extreme points in the unit ball of any dual
of even order .

In the second section of this paper we give conditions under which extreme points get
preserved from a subspace and conditions when they fail to belong to the same class of
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extreme points in the unit ball of bigger space. Using this, we show that weak∗-extreme
points can fail to be weak∗-extreme in the bidual unit ball. We also give some interesting
examples of preserved extremality. We make free use of techniques from M -structure
theory to construct these examples. The book [9] is now a standard reference for results
related to M -ideal theory.

Recall that x ∈ X1 is a strongly extreme point if for any sequences {xn} and {yn} in
X1,

1
2
(xn + yn) → x implies xn → x and yn → x. This is equivalent to the definition

given in [13]. We will consider weak∗-extreme and strongly extreme points in the spaces
of operators.

In the second section of the paper we study a new class of extreme points that have been
recently considered in [6] while studying very smooth points of Banach spaces. These
are extreme points of X∗

1 that are points of continuity for i : (X∗
1 , weak

∗) → (X∗
1 , weak).

We show that when X∗ or Y has the compact metric approximation property any τ ∈
L(X, Y )∗1 of the above type is of the form x ⊗ y∗ where x ∈ ∂eX

∗∗
1 and y∗ ∈ ∂eY

∗
1 are

points of weak∗-weak continuity for the identity map on the respective unit balls.

Analogous to the result of Rosenthal quoted above we show that if every equivalent norm
on X has a very smooth point then X∗ has the RNP.

Acknowledgements. The second author’s research was supported by I. F. C. P. A. R project

grant No: 2601-1. He thanks Professor G. Godefroy of the University of Paris VI for his
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2. Weak∗-extreme points

In [15] the author considered the following kind of extreme points. Let x0 ∈ X1 be such
that |x∗(x0)| = 1 for all x∗ ∈ ∂eX

∗
1 . It is easy to see that for a compact set K every

extreme point of C(K)1 and for a positive measure µ every extreme point of L1(µ)1 is
such a point. It was observed in [20] that any such point is a strongly extreme point. Our
first result shows that these points behave the same way in the bidual.

Proposition 2.1. Let X be a Banach space and let x0 ∈ X1 be such that |x∗(x0)| = 1 for
all x∗ ∈ ∂eX

∗
1 . Then |τ(x0)| = 1 for all τ ∈ ∂eX

∗∗∗
1 .

Proof. We first observe that if Y ⊂ X is a subspace and y ∈ Y is such that |x∗(y)| = 1
for all x∗ ∈ ∂eX

∗
1 then |y∗(y)| = 1 for all y∗ ∈ ∂eY

∗
1 .

Let K = {x∗ ∈ X∗
1 : x∗(x0) = 1} be equipped with the weak∗-topology. Let Φ : X →

C(K) be the canonical embedding defined by Φ(x)(x∗) = x∗(x). Since ∂eX
∗
1 ⊂ ΓK we

get that Φ is an isometry. Also Φ(x0) = 1. Note that Φ∗∗ : X∗∗ → C(K)∗∗ is an isometry
and Φ∗∗(x0) = 1. Since C(K)∗∗ is again a space of the form C(K ′) for a compact set K ′

and 1 ∈ ∂eC(K ′) it follows from our earlier remarks that |τ(1)| = 1 for all τ ∈ ∂eC(K ′)∗.
Thus by the observation made at the beginning of this proof we get that |τ(x0)| = 1 for
all τ ∈ ∂eX

∗∗∗
1 .

We recall from [9] that M ⊂ X is an M -ideal if there is a projection P on X∗ such that
ker(P ) = M⊥ and ‖P (x∗)‖+ ‖x∗ − P (x∗)‖ = ‖x∗‖ for all x∗ ∈ X∗.
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Our next result gives conditions under which extreme points gets preserved from a sub-
space and conditions when they fail to belong to the same class of extreme points in the
unit ball of the bigger space.

Theorem 2.2. Let M ⊂ X be a proper subspace.

(a) Suppose there is a projection of norm one P in X∗ such that ker(P ) = M⊥ and
RangeP1 is weak∗-dense in X∗

1 . Then any strongly extreme point of M1 is strongly
extreme in X1 and any weak∗-extreme point of M1 is an extreme point of X1

(b) If M is an M-ideal in X then no weak∗-extreme point of M1 can be weak∗-extreme
in X1.

Proof. (a) We recall the construction from Lemma 1 in [21]. For any y∗ ∈ M∗ and any
Hahn Banach extension x∗ of y∗, y∗ → Px∗ is a well defined linear map and since P is of
norm one, we see that M∗ is isometric to PX∗. Thus we may assume M∗ is embedded in
X∗ and define Φ : X → M∗∗ by Φ(x) = x|M∗ . Since Range P1 is weak∗-dense in X∗, we
have Φ is an isometry whose restriction to M agrees with the canonical embedding of M
in M∗∗.

If m0 is a strongly extreme point of M1 then it is easy to verify (see [13]) that m0 is
strongly extreme in M∗∗

1 as well and hence strongly extreme in X1. Also if m0 is a weak∗

-extreme point of M1 then clearly it is an extreme point of X1.

(b) Let P be the L-projection in X∗ with kerP = M⊥. Since Range(P ∗) = M⊥⊥, if
m0 ∈ M1 is a weak∗-extreme point we have P ∗(m0) = m0 is an extreme point of the
unit ball of M⊥⊥, as the latter space is isometric to M∗∗. Take any unit vector τ in
(M⊥)∗ = ker(P ∗) (which is non-trivial since M is proper subspace). Since P ∗ is a M -
projection, ‖m0 ± τ‖ = 1 as m0 and τ are in disjoint M -summands. Thus m0 is not an
extreme point of X∗∗

1 .

Remark 2.3. (a) If X is not a reflexive space and is an M -ideal in its bidual then
X ⊂ X∗∗ satisfies both (a) and (b) of the above hypothesis. We also note that if
X, Y are Banach spaces such that K(X, Y ) is an M -ideal in L(X, Y ) then again the
above hypothesis is satisfied. See Chapter III of [9] for several examples of spaces
that are M -ideals in their biduals and Chapter VI of [9] for examples of spaces X
and Y for which K(X, Y ) is an M -ideal in L(X, Y ).

(b) For a compact set K let WC(K,X) denote the space of X-valued functions on K
that are continuous when X has the weak topology, equipped with the supremum
norm. It follows from Example 2 in [21] that C(K,X) ⊂ WC(K,X) satisfies the
hypothesis (a) above. Thus any weak∗-extreme point of C(K,X)1 is an extreme
point of WC(K,X)1. Any strongly extreme point of C(K,X)1 is strongly extreme
in WC(K,X)1. This observation gives a simpler proof of Corollary 9 from [11].
Also as remarked before Corollary 9 in [11] it is not known if every extreme point
of C(K,X)1 is always extreme in WC(K,X)1.

We now illustrate the strength of our Theorem with some specific examples.

It follows from the remarks on page 78 of [9] that a proper M ideal cannot have a strongly
extreme point in its unit ball. In view of our results so far it would be interesting to see
examples of M -ideals that have weak∗- extreme points. The following example is also
interesting from another point of view. It was shown in [8] that for any Hilbert space
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every extreme point of L(H)1 is a strongly extreme point. For p 6= 2 we exhibit extreme
points in L(`p)1 that are not even weak∗- extreme.

Example 2.4. Consider for 1 < p < ∞, the space K(`p). It is a proper M -ideal of its
bidual, L(`p).
When p 6= 2, it was shown in [10] that there exists T ∈ K(`p) such that there is no
B ∈ L(`p) such that ‖T ± B‖ = 1. Thus T is an extreme point of L(`p) and hence is
weak∗-extreme in K(`p). But from Theorem 2.2 it follows that T can not be weak∗-extreme
point in L(`p).

The following example exhibits a situation where all the unit vectors are weak∗-extreme
points of the unit ball and hence are extreme points of the unit ball of the second dual
but none is an extreme point of the unit ball of the fourth dual. Compare this with the
example in [18] where the author exhibits a strictly convex space X where none of the
unit vectors of X are extreme points of the unit ball of the second dual.

Example 2.5. Let A be the disc algebra on the unit circle Γ. It is well known that
(C(Γ)/A)∗ = H1

0 is a smooth space (see [9], page 167) and C(Γ)/A is an M -ideal in its
bidual. Thus every unit vector is a weak∗-extreme point and as it is an M -embedded
space which is not reflexive, none of them are extreme points in the unit ball of the fourth
dual.

In sharp contrast to this we next give an example of Banach space X having weak∗-
extreme points that remain weak∗-extreme in the unit balls of all the duals of even order
of X and are not strongly extreme points.

Recall that (see [9]) a Banach space X is said to be L-embedded if with canonical em-
bedding of X in X∗∗, we have X∗∗ = X ⊕1 N (`1 direct sum). Note that in this case any
extreme point of X1 is a weak∗-extreme point.

Example 2.6. Let X be any infinite dimensional reflexive separable Banach space. It
follows from [7] that there is a renorming on X in which there are at most countably many
strongly extreme points in the unit ball. Since the unit ball of an infinite dimensional
reflexive space has uncountably many extreme points in its unit ball we fix a x0 ∈ ∂eX1

such that it is not strongly extreme. Let Y be an `1 direct sum of countably infinitely
many copies of X. It follows from Proposition IV.1.5 in [9] that Y is a non-reflexive
L-embedded space. Let x′

0 ∈ ∂eY1 have x0 in the first coordinate and zeros elsewhere.

Rao has proved in [22] that any L-embedded space X is under the appropriate canonical
embedding, an L-ideal in all the duals of even order of X.

Thus x′
0 is a weak∗-extreme point of the unit ball of any dual of even order of Y and is

clearly not strongly extreme .

We next study the extremal structure of the unit ball of the space of operators with special
emphasis on the subspace of compact operators.

Before proving our next result we recall an equivalent formulation of a weak∗-extreme
point from [7]. x ∈ X1 is a weak∗-extreme point if and only if for sequences {xn}n≥1 and
{yn}n≥1 in X1,

xn+yn
2

→ x implies xn − yn → 0 in the weak topology.
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Proposition 2.7. Let T ∈ K(X, Y )1 be such that T ∗(y∗) is weak∗-extreme in X∗
1 for all

y∗ ∈ ∂eY
∗
1 . Then T is a weak∗-extreme point.

Proof. Let {Sn}n≥1 and {Rn}n≥1 be sequences in K(X, Y )1 such that Sn+Rn

2
→ T . Since

for each y∗ ∈ ∂eY
∗
1 the corresponding sequence of adjoint operators evaluated at y∗

converges to T ∗(y∗), by our hypothesis we get that S∗
n(y

∗) − R∗
n(y

∗) → 0 in the weak
topology. In particular for any τ ∈ ∂eX

∗∗
1 , τ((S∗

n − R∗
n)(y

∗)) → 0. By a result of
Ruess and Stegall [24], we know any extreme point of K(X, Y )∗1 is of the form τ ⊗ y∗

(τ ⊗ y∗(T ) = τ(T ∗(y∗))). Now as remarked in Section 3 in [24], applying the Rainwater
theorem we get that Sn −Rn → 0 weakly. Therefore T is weak∗-extreme.

Remark 2.8. Similar arguments can be used to show that f ∈ C(K,X)1 is weak∗-
extreme if f(k) is weak∗-extreme for all k ∈ K. The converse of this statement is also
true, see the added note at the end of the paper.

In the following Proposition we extend Theorem 2 in [4] to the space of compact operators.

Proposition 2.9. Let X be any Banach space and let Y be such that ∂eY
∗
1 is weak∗

closed. Let T ∈ K(X, Y ) and T ∗(y∗) be strongly extreme in X∗
1 , for all y∗ ∈ ∂eY

∗
1 . Then

T is a strongly extreme point.

If T ∈ L(X, Y ) satisfies the same hypothesis and if further every extreme point of ∂eX
∗
1

is a weak∗-denting point then T is a strongly extreme point.

Proof. If T is not strongly extreme, there exists an ε > 0 and a sequence {Tn}n≥1 such
that ‖Tn‖ > ε and ‖T±Tn‖ ≤ 1+ 1

n
(see Theorem 2 in [4]). For each n choose unit vectors

xn with ‖Tn(xn)‖ > ε. Let y∗n ∈ ∂eY
∗ and y∗n(Tn(xn)) = T ∗

n(y
∗
n)(xn) > ε. Now using the

hypothesis we get a weak∗ accumulation point y∗ ∈ ∂eY
∗
1 and a subnet of {y∗n}n≥1 that

weak∗ converges to y∗. Since T is a compact operator T ∗ maps it to a norm convergent
net. As T ∗(y∗) is a strongly extreme point we get the required contradiction as in the
proof of Theorem 2 in [4].

When T is not a compact operator we only get weak∗ convergence in the last part of the
above proof. But if T ∗(y∗) is a weak∗ denting point then any net in the unit ball weak∗

converging to T ∗(y∗), converges in the norm. Thus we again get norm convergence to
complete the proof.

Our next Corollary should be compared with Theorem 2 in [8] where the authors proved
that if F is a uniformly rotund space, any isometry in L(E,F ) is a strongly extreme point.
We recall that T is a coisometry if T ∗ is an isometry, also any uniformly rotund space is
reflexive.

Corollary 2.10. Let E∗ be a reflexive and locally uniformly rotund space and let F be
such that the weak∗ closure of ∂eF

∗
1 consists of unit vectors. Let T ∈ L(E,F ) be a

coisometry. Then T is a strongly extreme point.

Proof. Let f ∗ ∈ (∂eF
∗
1 )

−w∗
. Since T ∗ is an isometry, T ∗(f ∗) is in particular a point of

mid-point locally uniform rotundity and hence a strongly extreme point. Also any net
from T ∗(F ∗

1 ) that converges weakly to T ∗(f ∗) converges in the norm by local uniform
rotundity. Thus the conclusion follows from the proof of the above Proposition.
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We next give a partial converse to Proposition 2.9 when Y is an L1- predual space, that
is, Y ∗ is isometric to L1(µ).

Proposition 2.11. Let Y be an L1-predual space and let T ∈ K(X, Y )1 be a strongly
extreme point. Then for any y∗ ∈ ∂eY

∗
1 , T

∗(y∗) is strongly extreme in X∗
1 .

Proof. Since Y is an L1-predual, by a result of Kakutani (see [14], Chapter 6) Y ∗∗

is canonically isometric to C(K) space and in the canonical identification ∂eY
∗
1 ⊂ K

(extreme points correspond to indicator functions of normalized µ-atoms). Also since Y
has the metric approximation property (see [14] page 212), K(X, Y ) can be identified with
the injective tensor product X∗⊗ε Y . We now recall the well-known canonical embedding
X∗⊗εY ⊂ X∗⊗εY

∗∗ ⊂ (X∗⊗εY )∗∗ (see [5]). Applying the result of Kunen and Rosenthal
[13] once again,we get that T is strongly extreme in (X∗ ⊗ε Y )∗∗1 . In particular T is a
strongly extreme in (X∗ ⊗ε Y

∗∗)1. We now note that this latter space is identified with
C(K,X∗). Thus applying Theorem 2 from [4], as ∂eY

∗
1 ⊂ K we conclude that T ∗(y∗) is

strongly extreme in of X∗
1 .

3. Relationship with Very smooth points

In this section we study the relationship between weak∗-extreme points of X∗
1 and very

smooth points of X. A unit vector x ∈ X is said to be a very smooth point if x, under the
canonical embedding, is a smooth point of X∗∗ (i.e, there is a unique norming functional
for x in X∗∗∗). As noted in [6] if x∗ ∈ X∗

1 attains its norm at such an x then x∗ is an
extreme point of X∗

1 and also a point of weak∗-weak continuity for the identity map on
X∗

1 .

We first note that if an extreme point x∗
0 ∈ ∂eX

∗
1 is also a point of weak∗-weak continuity

for the identity map on X∗
1 , then it is an weak∗-extreme point. For if x∗

0 = 1
2
{Λ1 + Λ2}

for Λi ∈ X∗∗∗
1 then x∗

0 = Λ1/X = Λ2/X. Since X∗
1 is weak∗ dense in X∗∗∗

1 let {x∗
α} ⊂ X∗

1

be a net converging in the weak∗ topology of X∗∗∗ to Λ1. Thus x
∗
α → Λ1/X in the weak∗

topology of X∗. Therefore by the continuity assumption this net also converges in the
weak topology. Thus x∗

0 = Λ1. Hence x∗
0 ∈ ∂eX

∗∗∗.

In [6] the authors gave an example of a Banach space X and an x∗ ∈ ∂eX
∗
1 that is a point

of weak∗-weak continuity of the identity map on X∗
1 but is not a point of weak∗-weak

continuity for the identity map on X∗∗∗
1 . Thus these extreme points do not belong to the

precise class in the bidual.

A natural question to consider is when do extreme points belong to a better class of ex-
treme points as they pass through the higher ordered duals. Our next example illustrates
such a phenomenon.

Example 3.1. Let K be a compact set and k0 ∈ K be an accumulation point. Since
χ{k0} ∈ C(K)∗∗ it is easy to see that δ(k0) ∈ ∂eC(K)∗1 is not a point of weak∗-weak
continuity for the identity map on C(K)∗1. However since δ(k0) it is a denting point, it is
a weak∗-denting point of C(K)∗∗∗1 and hence is a point of weak∗-weak (in fact weak∗-norm)
continuity for the identity map on C(K)∗∗∗1 .

Remark 3.2. If Λ ∈ ∂eX
∗∗∗
1 is a point of weak∗- weak continuity for the identity map

on X∗∗∗
1 then again by the denseness of X∗

1 in X∗∗∗
1 we have that Λ = x∗ ∈ ∂eX

∗
1 . The

above example shows that x∗ in general need not be a point of weak∗- weak continuity
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of the identity map on X∗
1 . By taking X = c0, since every extreme point of X∗

1 is a
weak∗-denting point, it is easy to see that X∗

1 and X∗∗∗
1 have the same extreme points

that are points of weak∗-weak continuity for the identity map on the respective unit balls.
However since X(4) can be identified with a C(K) space we get from the above example

that ∂eX
(5)
1 has points of weak∗-weak continuity that are no longer points of weak∗- weak

continuity for the identity map on X∗∗∗
1 .

In the following theorem we describe extreme points of L(X, Y )∗1 that are points of weak
∗-

weak continuity for the identity map on L(X, Y )∗1 under some additional hypothesis on
X or Y involving the compact metric approximation property (see [16], page 94). Recall
that for any x∗∗ ∈ X∗∗ and y∗ ∈ Y ∗ by x∗∗ ⊗ y∗ we denote the functional defined on
L(X, Y ) by (x∗∗ ⊗ y∗)(T ) = x∗∗(T ∗(y∗)).

Theorem 3.3. Suppose X∗ or Y has the compact metric approximation property. Let
τ ∈ ∂eL(X, Y )∗1 be a point of weak∗-weak continuity for the identity map on L(X, Y )∗1.
Then τ = x ⊗ y∗ ∈ ∂eK(X, Y )∗1 where x ∈ ∂eX

∗∗and y∗ ∈ ∂eY
∗
1 are points of weak∗-weak

continuity in the respective unit balls.

If further x or y∗ is a weak∗-denting point then x⊗ y∗ is a point of weak∗-weak continuity
of the identity map on K(X, Y )∗1.

Proof. Since X∗ or Y has the compact metric approximation property it can be deduced
from the results of [12] that there is a projection P : L(X, Y )∗ → L(X, Y )∗ of norm
one such that ker(P ) = K(X, Y )⊥ and P (x ⊗ y∗) = x ⊗ y∗ for all x ∈ X and y∗ ∈ Y ∗.
Thus K(X, Y ) ⊂ L(X, Y ) satisfies condition (a) of Theorem 2.2. Since {x ⊗ y∗ : x ∈
X1 and y∗ ∈ Y ∗

1 } is weak∗ dense in L(X, Y )∗1, let xα ⊗ y∗α → τ in the weak∗ topology.
Since τ is a point of continuity we have that this net also converges in the weak topology.
P being identity on the net we have P (τ) = τ . As K(X, Y )∗ is isometric to the range of
P we get that τ ∈ ∂eK(X, Y )∗1. Any extreme point of the latter set is of the form (see
[24]) x∗∗ ⊗ y∗ for some x∗∗ ∈ ∂eX

∗∗
1 and y∗ ∈ ∂eY

∗
1 , we have τ = x∗∗ ⊗ y∗. Again since

τ is a point of continuity, using the remark preceding this theorem it is easy to see that
x∗∗ = x and y∗ are points of weak∗-weak continuity of the identity map on the respective
unit balls.

Now suppose x or y∗ is a weak∗-denting point. Since the hypothesis (a) of Theorem 2.2
is satisfied we have :

K(X, Y ) ⊂ L(X, Y ) ⊂ K(X, Y )∗∗ ⊂ L(X, Y )∗∗

under the canonical embedding. As any point of weak∗-weak continuity has a unique
norm preserving extension to the bidual (see [9] Lemma III.2.14), we have that τ has
unique norm preserving extension to L(X, Y )∗∗. Now since we are assuming that x or
y∗ is a weak∗-denting point, it follows from Theorem 3.7 in [17] that τ also has unique
norm preserving extension from K(X, Y ) to L(X, Y ). Thus applying Lemma III. 2. 14
in [9] again, we have τ is indeed a point of weak∗-weak continuity of the identity map on
K(X, Y )∗1.

We recall from [25] that X is said to be a very smooth space if all the unit vectors are
very smooth points. It was shown in [25] that if X is a very smooth space then X∗ has
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the RNP. Our next result is local version this result.

Proposition 3.4. If every equivalent norm on X has a very smooth point then X∗ has
the RNP.

Proof. Suppose X∗ fails the RNP. From Corollary 1.4 in [23] we get an equivalent norm
on X∗ whose unit ball B has no weak∗- extreme points. Thus B contains no extreme
points of its weak∗ closure in X∗∗∗. Let B1 = B−, where the closure is taken in the
weak∗-topology of X∗. Thus there is an equivalent norm on X whose dual unit ball is
B1. Hence from our hypothesis and the remarks made above, it follows that B1 contains
a weak∗-extreme point say x∗

0, which is also a point of weak∗-weak continuity for the
identity map on B1. Therefore x∗

0 ∈ B. Clearly x∗
0 is a weak∗- extreme point of B. This

contradicts our choice of B.

If x∗ is a very smooth point then sinceX1 is (under the canonical embedding) weak∗-dense
in X∗∗

1 , it follows from our remarks that x∗ attains its norm at a weak∗-extreme point of
X1. Sullivan also showed in [25] that if X∗ is very smooth then X is reflexive.

We next give an example of a non-reflexive space X in which every norm attaining unit
vector of X∗ is a very smooth point.

Example 3.5. Let X be any infinite dimensional non-reflexive Banach space with a
separable dual. It follows from Proposition 11 in [1] that there is an equivalent norm |.| on
X with (X, |.|)∗∗ rotund, weak and norm sequential convergence coincide for unit vectors
in the new norm. Thus if a unit vector x∗ of (X, |.|)∗ attains its norm, by rotundity on
X∗∗ and since weak and norm sequential convergence coincide on the surface, we conclude
that x∗ is a very smooth point (see [6]).

We conclude the paper with the following questions.

Question 3.6. Is there a notion of an extreme point that remains the same in all the
duals of even order and coincides with the usual notion of an extreme point when the
space is reflexive? In particular can one completely describe extreme points that remain
extreme in the unit ball of all the duals of even order of X, in terms of X alone?

Question 3.7. For every positive integer n, can one construct a strictly convex space X
all of whose unit vectors are extreme points of the unit ball of X(2n) but fail to be extreme
in the unit ball of X(2n+2)?

Note added on 14-07-2003 : In a recent work K. Jarosz and the second author (Weak∗-
extreme points of injective tensor product spaces, Contemporary Mathematics Vol 238,
Amer. Math. Soc., 2003) have showed that any weak∗-extreme point of C(K,X)1 takes
weak∗-extremal values.
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