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The Γ-limit of a family of functionals

u 7→
∫

Ω
f
(x

ε
,
x

ε2
, Dsu

)

dx

is obtained for s = 1, 2 and when the integrand f = f(x, y, v) is a continuous function, periodic in x and
y, and convex with respect to v. The 3-scale limits of second order derivatives are characterized.
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1. Introduction

The method of two-scale convergence was introduced by Allaire [1] and Nguetseng [27]
to render rigorous formal asymptotics techniques commonly used by practitioners in the
theory of homogenization. Although it is well understood that periodicity poses severe
constraints on physical realistic models, it is also agreed that the understanding of the
effective behavior of periodically structured composite materials may shed light into the
more complex and mathematically challenging media. For this reason, the theory of two-
scale convergence, as well as its sequel, the theory of (n+1)-scale convergence developed
by Allaire and Briane [2], have played a very important role in the theory of PDEs and
its applications in homogenization (see also [27]).

We may say that it all started with the result below, first established by Nguetseng in
[27], and subsequently generalized by Allaire and presented with a new proof (see [1],
Theorem 0.1). In it, and in the following, Q := (0, 1)N .

Proposition 1.1. Let Ω be an open subset of RN , and let {uε} be a bounded sequence in
Lp(Ω), 1 ≤ p < +∞. There exist a subsequence (not relabelled) and a function u0(x, y) ∈
Lp(Ω×Q) such that

lim
ε→0+

∫

Ω

ψ
(

x,
x

ε

)

uε(x) dx =

∫

Ω

∫

Q

ψ(x, y)u0(x, y) dx dy (1)
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for any smooth function ψ on Ω×Q which is Q−periodic in the second variable.

The (sub)sequence {uε} found in Proposition 1.1 is said to two-scale converge to u0(x, y).

In [1], and drawing from (1), Allaire introduced the concept of 2-scale convergence, which
later he extended to (n+1)-scale convergence (n ∈ N) in joint work with Briane [2].

For every i ∈ N, Yi denotes a copy of Q. Moreover, for 1 ≤ p ≤ +∞ we set p′ := +∞ if
p = 1, p′ := p

p−1
if 1 < p < +∞, and p′ = 1 if p = +∞.

Definition 1.2. A bounded sequence {uε} ⊂ Lp(Ω) is said to (n+ 1)−scale converge to
a function u0 ∈ Lp (Ω× Y1 × . . .× Yn), 1 ≤ p ≤ +∞, if

lim
ε→0+

∫

Ω

ϕ
(

x,
x

ε
, . . . ,

x

εn

)

uε(x) dx =

∫

Ω

∫

Y1

. . .

∫

Yn

ϕ(x, y1, . . . , yn)u0(x, y1, . . . , yn) dx dy1 . . . dyn,

(2)

for every ϕ ∈ Lp′ (Ω;Cper (Y1 × . . . Yn)), and we write

uε
(n+1)-s
⇀ u0.

Remark 1.3. As shown in Corollary 5.4 in [1], admissible test functions ϕ may also
be taken to be measurable in the oscillating variable and continuous with respect to x,
precisely, writing ϕ̄(y, x) := ϕ(x, y) then ϕ̄ ∈ Lp′

per(Y1 × . . . Yn;C(Ω)).

With the Definition 1.2 in hand, Allaire and Briane in [2] extended Proposition 1.1 to
read

Proposition 1.4. Let Ω be an open subset of RN , and let {uε} be a bounded sequence
in Lp(Ω), 1 ≤ p < +∞. There exist a subsequence (not relabelled) and a function u0 ∈
Lp (Ω× Y1 × . . .× Yn) such that {uε} (n+ 1)−scale converges to u0.

A class of functions for which it is easy to identify the (n+1)-scale limit is that of constant
functions. We start by recalling the well known Riemann-Lebesgue Lemma.

Lemma 1.5. Let w ∈ Lp
per(Q;Rd), 1 ≤ p < +∞, and let wε(x) := w

(

x
ε

)

, ε > 0. If
E ⊂ RN is a measurable set then

wε⇀

∫

Q

w(y) dy in Lp
loc(E,Rd) (

?
⇀ if p = ∞). (3)

Donato [14] (see also [3]) has extended (3) to the realm of multiscale convergence by
showing that

∫

Ω

ϕ
(

x,
x

ε
, . . .

x

εn

)

dx →
∫

Ω

∫

Y1

. . .

∫

Yn

ϕ(x, y1, . . . , yn) dx dy1 . . . dyn (4)

whenever ϕ ∈ Lp′(Ω;Cper(Y1 × · · · × Yn)). In particular, a sequence identically constant
(n+ 1)−scale converges to the constant itself.

Also, Allaire and Briane have characterized fully the (n + 1)-scale limits of gradients in
the theorem below (see [2], Thm 2.6).
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Theorem 1.6. For any bounded sequence {uε} ⊂ W 1,p(Ω) there exist u ∈ W 1,p(Ω), u1 ∈
Lp(Ω;W 1,p

per(Y1)) and n − 1 functions uk ∈ Lp(Ω×Y1× . . .×Yk−1;W
1,p
per(Yk)), k = 2, . . . , n,

such that, up to a subsequence,

uε
(n+1)-s
⇀ u, (5)

Duε
(n+1)-s
⇀ Du(x) +

n
∑

k=1

Dykuk(x, y1, . . . , yk). (6)

Moreover, any (n + 1)−tuple limit (u, u1, . . . , un) ∈ W 1,p(Ω) × Lp(Ω;W 1,p
per(Y1)) × · · · ×

Lp(Ω×Y1× . . . ×Yn−1;W
1,p
per(Yn)) may be (n+1)−scale attained, i.e. there exists a bounded

sequence {uε} in W 1,p(Ω;Rd) for which (5) and (6) hold.

Using the notion of 2-scale convergence Allaire provided a simple and elegant proof for
the “homogenizedÔ Γ-limit of a family of functionals (see [1] Theorems 3.1 and 3.3; see
also [22])

Iε(u) :=

∫

Ω

W
(x

ε
,Du

)

dx.

Precisely,

Theorem 1.7. Let W : RN × Rd×N → [0,+∞) be an integrand satisfying

(i) W (·, ξ) is measurable and Q-periodic for all ξ ∈ Rd×N ;

(ii) W (x, ·) is convex and C1 for a.e. x ∈ RN ;

(iii)
1

C
|ξ|p ≤ W (x, ξ) ≤ C(1 + |ξ|p) for some p > 1, C > 0, for all ξ ∈ RN and for a.e.

x ∈ RN .

Then

Γ(Lp(Ω))− lim
ε→+0

Iε(u) =

∫

Ω

Whom(Du)dx

for every u ∈ W 1,p(Ω;Rd), where

Whom(ξ) := inf

{∫

Q

W (y, ξ +Dϕ(y)) dy : ϕ ∈ W 1,p
per(Q;Rd)

}

.

Note that in Theorems 3.1 and 3.3 in [1] Allaire assumed further a growth condition
on ∂W

∂ξ
(x, ξ) (see (28)), but this latter hypothesis is superfluous in view of (iii) and the

convexity of W (x, ·).

It is our aim in this paper to extend Theorem 1.7 to multiscale, higher order, convex, and
periodic variational problems. As before, let Ω be an open, bounded subset of RN , let
s ∈ {1, 2} and consider a function

f : RN × RN × Rs
∗ → [0,+∞)

where R1
∗ := Rd×N and R2

∗ := (Sym(RN ,RN))d, with Sym(RN ,RN) being the space of all
linear symmetric transformations from RN onto RN .
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We seek to characterize the asymptotic behavior as ε→0+ of functionals

u ∈ W s,p(Ω;Rd) 7→ Jε(u,Ω) :=

∫

Ω

f
(x

ε
,
x

ε2
, Dsu(x)

)

dx

by providing an integral representation for the effective energy.

Our main result is the following:

Theorem 1.8. Let f : RN ×RN ×Rs
∗ → [0,+∞) be an integrand satisfying the assump-

tions:

(H1) f is continuous in RN × RN × Rs
∗;

(H2) f is separately Q−periodic in x and y;

(H3) f (x, y, ·) is convex for all x, y ∈ RN ;

(H4)
1

C
|ξ|p ≤ f(x, y, ξ) ≤ C(1 + |ξ|p) for some p > 1, C > 0 and for all (x, y, ξ) ∈ RN ×

RN × Rs
∗.

Then

Γ(Lp(Ω))− lim
ε→0+

Jε(u,Ω) =

∫

Ω

f s
hom(D

su)dx (7)

for every u ∈ W s,p(Ω;Rd), where

f s
hom(ξ) := inf

{∫

Q

f s
hom(x, ξ +Dsϕ(x)) dx : ϕ ∈ W s,p

per(Q;Rd)

}

(8)

and

f s
hom(x, ξ) = inf

{∫

Q

f(x, y, ξ +Dsψ(y)) dy : ψ ∈ W s,p
per(Q;Rd)

}

. (9)

When s = 1 we write simply fhom and fhom in place of f 1
hom and f 1

hom, respectively.

Remark 1.9. (i) It is not clear what is the natural regularity that f = f(x, y, ξ) should
satisfy with respect to x and y. A thorough discussion of the difficulties encountered when
only measurability is required on the pair (x, y) may be found in Allaire [1]. Indeed, in
this case not even the measurability of, say, f(x/ε, x/ε2, 0) is guaranteed, letting alone
the validity of results such as (4). As Allaire points out, this measurability is ensured
when there is continuity at least with respect to one of the arguments, and here we choose
it to be x (see (A1), (A2) below).

(ii) Theorem 1.8 was proven in the case where s = 1 by Braides and Lukkassen (see [8],
Theorem 1.1; see also [7]), where (H1) was on one hand relaxed to read

(H1)′ f (·, y, ·) is continuous for a.e. y ∈ RN and f(x, ·, ξ) is measurable for all (x, ξ) ∈
Ω× Rd×N ,

and on the other hand it was strengthened with the additional uniform continuity as-
sumption
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(H5)|f(x, y, ξ)− f(x′, y, ξ)| ≤ ω(|x−x′|)(a(y)+ f(x, y, ξ)) for all x, x′ ∈ RN , a.e. y ∈ RN ,
for all ξ ∈ Rd×N , where ω is a continuous, positive function with ω(0) = 0.

Note that this latter condition essentially entails some sort of decoupling between different
scales.

(iii) As it can be seen directly from the proof of Theorem 1.8, by analogy with the
statement of Theorem 1.7, it is possible to replace condition (H1) with the assumptions

(A1) f (·, y, ·) is continuous for a.e. y ∈ RN ;

(A2) f(x, ·, ξ) is measurable for all (x, ξ) ∈ Ω× Rs
∗;

(A3)
∂f

∂ξ
(x, y, ξ) exists for all x ∈ Ω, a.e. y ∈ RN , and for all ξ ∈ Rd×N , and it satisfies

(A1), (A2).

(iv) Theorem 1.8 has also been extended to the non convex case and for s = 1 by Braides
and Defranceschi [7] under assumptions (H1)′ , (H2), (H4) and (H5), and by Fonseca and
Leoni [15] under the hypotheses (H1), (H2) and (H4). The latter approach relies entirely
on the blow-up method.

The main idea of the proof of Theorem 1.8 is to combine a three-scale convergence gen-
eralization of Allaire’s 2-scale argument with iterated integrals to obtain the lower bound
in (7) (see [1] Theorem 3.1 and 3.3; see also [24]), with the blow-up method introduced
in [16] to assert the upper bound. To this end, we extend Theorem 1.6 to second order
derivatives to read

Theorem 1.10. If {uε} is a bounded sequence in W 2,p(Ω;Rd), ε > 0, then there exists a
subsequence (not relabelled) converging weakly in W 2,p(Ω;Rd) to a function u, and there
exist U ∈ Lp(Ω;W 2,p(Q;Rd)) and W ∈ Lp(Ω×Q;W 2,p(Q;Rd)) such that

(i) U(x, y)− A(x)y ∈ Lp(Ω;W 2,p
per(Q;Rd)) for some A ∈ Lp(Ω;Rd×N);

(ii) W (x, y, z)− C(x, y)z ∈ Lp(Ω×Q;W 2,p
per(Q;Rd)) for some C ∈ Lp(Ω×Q;Rd×N);

(iii) uε
3-s
⇀ u, Duε

3-s
⇀ Du, and

∂2uε

∂xi∂xj

3-s
⇀

∂2u

∂xi∂xj

+
∂2U

∂yi∂yj
(x, y) +

∂2W

∂zi∂zj
(x, y, z). (10)

Conversely, given u ∈ W 2,p(Ω;Rd), U ∈ Lp(Ω;W 2,p(Q;Rd)), and W ∈ Lp(Ω×Q;W 2,p(Q;
Rd)) satisfying (i), (ii), there exists a bounded sequence {uε} ⊂ W 2,p(Ω;Rd) for which
(iii) holds.

2. Preliminaries

In what follows Ω is an open, bounded domain in RN , Q := (0, 1)N , Y1, . . . , Yn, are n
identical copies of Q, with n ∈ N, Q(x, ε) := x + εQ for x ∈ RN and ε > 0, R1

∗ := Rd

and R2
∗ := (Sym(RN ,RN))d, where Sym(RN ,RN) is the space of all linear symmetric

transformations from RN onto RN . Ck
c (RN ;Rd) is the space of k-differentiable Rd-valued

functions in Ω with compact support, and Ck
per(RN ;Rd) stands for the space of Q-periodic

functions in Ck(RN ;Rd), 1 ≤ k ≤ +∞. Recall that f is said to be Q-periodic if f(x +
kei) = f(x) for all x, all k ∈ Zk, and for all i = 1, . . . , N , where {e1, . . . , eN} is the
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standard orthonormal basis of RN . Cc(RN) stands for the space of continuous functions
with compact support in RN , Cper(RN) is the space of Q-periodic continuous functions on
RN , Lp

per(RN ;Rd) is the closure in Lp
loc(R

N ;Rd) of C∞
per(RN ;Rd), and W k,p

per(Ω;Rd) is the

closure in W k,p
loc (R

N ;Rd) of C∞
per(RN ;Rd). LN is the N−dimensional Lebesgue measure,

and A(Ω) is the family of open subsets of Ω. C will stand for a generic positive constant
which may vary from expression to expression within the same formula.

The following well known lowersemicontinuity result will be used in the proof of the
continuity of fhom (for a proof we refer the reader to [19], [20]).

Theorem 2.1. Let Ω be an open, bounded subset of RN , and let f : Ω × Rd × Rm →
[0,+∞), f = f(x, u, v), be a function Lebesgue measurable with respect to x, and Borel
measurable with respect to (u, v). Suppose further that f(x, ·, ·) is lower semicontinuous
for a.e. x ∈ Ω, f(x, u, ·) is convex for a.e. x ∈ Ω, u ∈ Rd, and there exists (u0, v0) ∈
Lq(Ω;Rd)× Lp(Ω;Rm) with 1 ≤ p, q < +∞ such that

∫

Ω

f(x, u0(x), v0(x)) dx < +∞.

If un → u in Lq(Ω;Rd) and vn ⇀ v in Lp(Ω;Rm) then

∫

Ω

f(x, u, v) dx ≤ lim inf
n→∞

∫

Ω

f(x, un, vn) dx.

Next we recall De Giorgi’s notion of Γ–convergence. Let (X, d) be a metric space and
let {Fε}ε>0 be a family of functionals defined on (X, d). We say that a functional F :
X ×A(Ω)→[0,+∞] is the Γ(d)–lim inf (resp. the Γ(d)–lim sup) of the family {Fε} if for
every sequence {εn} converging to 0+

F(u,Ω) = inf

{

lim inf
n→+∞

( resp. lim sup
n→+∞

)Fεn(un,Ω) : un→u in (X, d)

}

,

and we write

F = Γ(d)− lim inf
ε→0+

Fε (resp. F = Γ(d)− lim sup
ε→0+

Fε).

F is the Γ(d)-limit of the family {Fε}, and we write

F = Γ(d)− lim
ε

Fε,

if Γ(d)− lim inf and Γ(d)− lim sup coincide.

The following result is well known in the theory of Γ-convergence, and for the convenience
of the reader its proof may be found in the Appendix (see also [4], [9]).

Proposition 2.2. Let Fε : W 1,p(Ω;Rm)×A(Ω) → [0,+∞), ε > 0, be a sequence of
functionals satisfying the hypotheses

(i) Fε(u, ·) is the restriction to A(Ω) of a Radon measure;

(ii) Fε(u,D) = Fε(v,D) whenever u = v a.e. in D ∈ A(Ω);
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(iii) there exists a positive constant C such that for all D ∈ A(Ω)

1

C

(∫

D

|Du|p dx
)

≤ Fε(u,D) ≤ C

∫

D

(1 + |Du|p) dx, (11)

for every ε > 0.

For every sequence {εn} converging to 0+ there exists a subsequence {εj} such that the
functional F{εj} (u,D) is the Γ(Lp(D)) limit of

{

Fεj (·, D)
}

for every D ∈ A(Ω) and
u ∈ W 1,p(D;Rd), where for any sequence {δn} converging to 0+

F{δn} (u,D) := inf
{

lim inf
n→∞

Fδn(un, D) : un → u inLp(D)
}

.

For a comprehensive study of Γ–convergence we refer to [12], [11] and [7].

The proof of Theorem 1.10 uses a version of Aumann’s Measurability Selection Principle
and a simple corollary of the theory of A-quasiconvexity (see [13], [17], [10]). We recall

Theorem 2.3. Let (X,M) be a measurable space with µ a positive, finite and complete
measure, and let Z be a complete, separable metric space. Let F : X → {C ⊂ Z : C 6=
Ø, C is closed} be a multifunction such that {(x, y) ∈ X × Z : y ∈ F (x)} ∈ M × β(Z),
where β(Z) is the Borel σ-algebra of Z. Then there exists a sequence of measurable
functions fn : X → Z such that

F (x) = {fn(x) : n ∈ N} forµ a.e. x ∈ X.

As in [17], let

A : Lq(Ω;Rl) → W−1,q(Ω;Rm), Av :=
N
∑

i=1

A(i) ∂v

∂xi

,

be a constant–rank, first order linear partial differential operator, with A(i) : Rl → Rm

linear transformations, i = 1, . . . , N .

We recall that A satisfies the constant-rank property if there exists r ∈ N such that (see
[26])

rankAw = r for all w ∈ SN−1,

where

Aw :=
N
∑

i=1

wiA
(i), w ∈ RN .

For each w ∈ RN the operator P (w) : Rl → Rl is the orthogonal projection of Rl onto
kerA (w), and S (w) : Rm → Rl is defined by S (w)A (w) z := z − P (w) z for z ∈ Rl and
S ≡ 0 on (range(A(w))⊥. It may be shown that P : RN\ {0} →Lin

(

Rl;Rl
)

is smooth and
homogeneous of degree zero and S : RN\ {0} →Lin

(

Rm;Rl
)

is smooth and homogeneous
of degree −1.

We introduce the operators

S : Lp
per (Q;Rm) → W 1,p

per

(

Q;Rl
)

, T : Lp
per

(

Q;Rl
)

→ Lp
per

(

Q;Rl
)
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given by

Sv (x) :=
∑

λ∈ZN\{0}

S (λ) Ýv (λ) e2πix·λ

and

T v (x) :=
∑

λ∈ZN

Ýv (λ) e2πix·λ −
∑

λ∈ZN\{0}

S (λ)A (λ) Ýv (λ) e2πix·λ (12)

whenever

v (x) =
∑

λ∈ZN

Ýv (λ) e2πix·λ,

and where the Fourier coefficients of a function f ∈ L1
per (Q) are defined by

Ýf (λ) :=

∫

Q

f (x) e−2πix·λdx, λ ∈ ZN .

The following proposition may be found in [17].

Proposition 2.4. T : Lp
per

(

Q;Rl
)

→ Lp
per

(

Q;Rl
)

is a bounded linear operator, and

S : Lp
per (Q;Rm) → W 1,p

per

(

Q;Rl
)

is a pseudo differential bounded operator of order −1
such that

(i) if v ∈ Lp
per

(

Q;Rl
)

then T ◦T v = T v and A (T v) = 0;

(ii) ||v−T v||Lp
per(Q;Rl) ≤Cp||A (v) ||W−1,p

per (Q;Rm) for all v ∈ Lp
per

(

Q;Rl
)

such that
∫

Q
v dx =

0, for some Cp > 0;

(iii) v − T v = SAv for all v ∈ Lp
per

(

Q;Rl
)

.

Just as in the case of first order gradients (see [21], [18]), Lp bounded, A-constrained
sequences may be modified on small sets so as to render them equi-integrable. Precisely
(see [17]),

Proposition 2.5. Let 1 < p < +∞, let {Vn} be a bounded sequence in Lp(Ω;Rl) such
that AVn → 0 in W−1,p(Ω;Rl), Vn ⇀ V in Lp(Ω;Rl). Then there exists a sequence
{vn} ⊂ Lp(Ω;Rl) ∩ ker(A) such that {|vn|p} is equi-integrable,

lim
n→∞

LN ({x ∈ Ω : Vn(x) 6= vn(x)}) = 0, (13)

and
∫

Ω

vn dx =

∫

Ω

V dx, ||vn − Vn||Ls(Ω) → 0 for all 1 ≤ s < p.

Moreover, if Ω = Q then vn − V ∈ Lp
per(RN ;Rl) ∩ ker(A).

The relevance of this general framework lies on the fact that in continuum mechanics
and electromagnetism PDEs other than curl v = 0 arise naturally (see [29]), and this
calls for a relaxation theory which encompasses PDE constraints of the type Av = 0.
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Included in this general setting are gradients of arbitrary order. Indeed, for gradi-
ents of order zero (i.e., unconstrained fields) it suffices to set Av ≡ 0. Here, due to
Jensen’s inequality A-quasiconvexity reduces to convexity. For gradients of order one,
Av = 0 if and only if curl v = 0. Note that w ∈ C∞

per(RN ;Rl) is such that curl w = 0
and

∫

Q
w(y) dy = 0 if and only if there exists ϕ ∈ C∞

per(RN ;Rd) such that ∇ϕ = v, where
l = d × N . Thus, in this case we recover the well known notion of quasiconvexity intro-
duced by [25] (see also [13]). For higher order gradients we replace the target space Rl by
an appropriate finite dimensional vector space Ed

s of d-tuples of symmetric s-linear maps
on RN , and it is then possible to find a first order linear partial differential operator A
such that v ∈ Lp(Ω;Ed

s ) and Av = 0 if and only if there exists ϕ ∈ W s,p(Ω;Rd) such that
v = ∇sϕ.

3. Proof of Theorem 1.10

We are now in position to characterize the multiscale limit for the Hessian tensor.

In order to simplify the exposition, we consider the case where n = 2, although the proof
may be carried out for arbitrary n ∈ N with the obvious adaptations.

Proof of Theorem 1.10. By working with each coordinate separately, without loss of
generality we may assume that uε is scalar valued. Applying Theorem 1.6 to the sequence
{(uε, Duε)} ⊂ W 1,p(Ω;R×RN), we get

uε(x)
3-s
⇀ u(x), Duε(x)

3-s
⇀ Du(x)

and

∂2uε

∂xi∂xj

=
∂

∂xi

(

∂uε

∂xj

)

3-s
⇀

∂2u

∂xi∂xj

(x) +
∂U (j)

∂yi
(x, y) +

∂W (j)

∂zi
(x, y, z), (14)

for some U (j) ∈ Lp(Ω;W 1,p
per(Y1)) and W (j) ∈ Lp(Ω×Y1;W

1,p
per(Y2)), j=1,. . . , N.

For any function ϕ ∈ C∞
c (Ω;C∞

per(Y1×Y2)) we have

∫

Ω

∫

Y1

∫

Y2

(

∂U (j)

∂yi
(x, y)− ∂U (i)

∂yj
(x, y)

+
∂W (j)

∂zi
(x, y, z)− ∂W (i)

∂zj
(x, y, z)

)

ϕ(x, y, z) dx dy dz = 0,

where we have used the fact that ∂2uε

∂xi∂xj
= ∂2uε

∂xj∂xi
.

Choosing ϕ(x, y, z) := θ(x)ψ(y, z) with θ belonging to a countable, dense subset of C∞
c (Ω),

and ψ belonging to a countable, dense subset of C∞
per(Y1 × Y2), we get for a.e. x ∈ Ω

∫

Y1

∫

Y2

(

∂U (j)

∂yi
(x, y)− ∂U (i)

∂yj
(x, y) +

∂W (j)

∂zi
(x, y, z)− ∂W (i))

∂zj
(x, y, z)

)

ψ(y, z)dydz = 0.

(15)
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If, in addition, ψ(y, z) = ψ(y) then (15) becomes

0 =

∫

Y1

(

∂U (j)

∂yi
(x, y)− ∂U (i)

∂yj
(x, y)

)

ψ(y) dy

+

∫

Y1

ψ(y)

(∫

Y2

(

∂W (i)

∂zj
(x, y, z)− ∂W (j)

∂zi
(x, y, z)

)

dz

)

dy

=

∫

Y1

(

∂U (j)

∂yi
(x, y)− ∂U (i)

∂yj
(x, y)

)

ψ(y)dy

for a.e. x ∈ Ω, in light of the periodicity of W (i)(x, y, ·) and W (j)(x, y, ·). We conclude
that

∂U (j)

∂yi
(x, y) =

∂U (i)

∂yj
(x, y) for a.e. x ∈ Ω and y ∈ Y1. (16)

Now (15) reduces to

∫

Y1

∫

Y2

(

∂W (i)

∂zj
− ∂W (j)

∂zi

)

ψ(y, z)dydz = 0,

and choosing as test function ψ(y, z) := ψ1(y)ψ2(z), with ψ1 and ψ2 smooth and periodic,
we obtain

∂W (j)

∂zi
(x, y, z) =

∂W (i)

∂zj
(x, y, z) for a.e. (x, y, z) ∈ Ω× Y1 × Y2. (17)

Note that in (15), (16) and (17) we have used the fact the tensor product space C∞
per(X1)

⊗ . . .⊗C∞
per(Xn) is dense in C∞

per(X1× . . . ×Xn), where X1, . . . Xn are arbitrary Banach
spaces.

We claim that there exists U ∈ Lp(Ω;W 2,p(Y1)) such that

∂U

∂yi
(x, y) = U (i)(x, y) (18)

for a.e. x ∈ Ω, y ∈ Y1. We define

U :=
(

U (1), . . . , U (N)
)

∈ Lp
(

Ω;W 1,p
per(Y1)

N
)

.

Although it is clear from (16) that for a.e. x ∈ Ω there exists gx ∈ W 2,p(Y1) such that
Dygx(y) = U(x, y) a.e. y ∈ Y1, we need to ensure the measurability and integrability in x
of (x, y) 7→ gx(y). Choose piecewise affine functions θk ∈ Lp

(

Ω;W 1,p
per(Y1)

N
)

such that

lim
k→∞

‖θk − U‖Lp(Ω;W 1,p
per (Y1)N) = 0. (19)

Consider the first order linear system of PDEs given by Av := curl v for v ∈ Lp
(

Y1;RN
)

.
We show that

‖A(θk)‖Lp(Ω;Lp(Y1)) → 0 (20)
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where here A(θk) := curly θk(x, y) for a.e. x ∈ Ω. Indeed, for every i, j = 1, . . . , N , we
have

∫

Ω

∥

∥

∥

∥

∥

∂θk
(i)

∂yj
(x, ·)− ∂θk

(j)

∂yi
(x, ·)

∥

∥

∥

∥

∥

p

Lp(Y1)

dx ≤ C

∫

Ω

∥

∥

∥

∥

∥

∂θk
(i)

∂yj
(x, ·)− ∂U (i)

∂yj
(x, ·)

∥

∥

∥

∥

∥

p

Lp(Y1)

dx

+ C

∫

Ω

∥

∥

∥

∥

∂U (i)

∂yj
(x, ·)− ∂U (j)

∂yi
(x, ·)

∥

∥

∥

∥

p

Lp(Y1)

dx+ C

∫

Ω

∥

∥

∥

∥

∥

∂θk
(j)

∂yi
(x, ·)− ∂U (j)

∂yi
(x, ·)

∥

∥

∥

∥

∥

p

Lp(Y1)

dx

≤ C

∫

Ω

∥

∥θk(x, ·)− U(x, ·)
∥

∥

p

W 1,p(Y1)
dx → 0,

where we have used (16) and (19).

We are now in position to apply Theorem 2.3, where here (X,M) := (Ω,L), Z :=
W 1,p

per(Y1), µ is the Lebesgue measure and L is the σ-algebra of Lebesgue measurable sets
in RN . For each k ∈ N consider

Fk : Ω →
{

C ⊂ W 1,p
per(Y1) : C 6= Ø, C is closed

}

x 7→Fk(x) :=

{

v ∈ W 1,p
per(Y1) :

∫

Y1

v dy = 0, Dyv = T (θk(x, y))

}

where T is the operator introduced in (12). Note that since T (θk) is curl free, then Fk(x)
is nonempty for a.e. x ∈ Ω, and it is trivially closed. Note also that, with θk(x, y) =
∑k

i=1 χAi
(x)λk

(i)(y) for some k ∈ RN , Ai ⊂ Ω mutually disjoint and λk
(i) ∈ W 1,p

per(Y1), we
have

{(x, v) : x ∈ Ω, v ∈ Fk(x)} = ∪k
i=1Ai ×

{

v ∈ W 1,p(Y1) :

∫

Y1

v dy = 0, Dyv = T
(

λk
(i)
)

}

,

which belongs to L × β (W 1,p(Y1)) because the sets

{

v ∈ W 1,p(Y1) :

∫

Y1

vdy = 0, Dyv = T
(

λk
(i)
)

}

are closed. By Theorem 2.3 we may find measurable functions fn,k : Ω → W 1,p
per(Y1) such

that
Fk(x) = {fn,k(x)}.

Now set vk(x) := f1,k(x). By Poincaré-Friedrichs inequality, and in view of Proposition
2.4, we have

∫

Ω

‖vk(x, ·)‖pW 1,p
per (Y1)

dx ≤ C

∫

Ω

‖Dyvk(x, ·)‖pLp
per(Y1)

dx

≤ C

∫

Ω

‖θk(x, ·)‖p
(Lp

per(Y1))
N dx →

∫

Ω

‖U(x, ·)‖p
(Lp

per(Y1))
N dx,

and so there exists a subsequence (not relabelled), and there exists Ũ ∈ Lp(Ω;W 1,p
per(Y1))

such that
vk ⇀ Ũ in Lp(Ω;W 1,p

per(Y1)).
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Now since the norm is weakly lower semicontinuous, by Poincaré-Friedrichs inequality we
have

∫

Ω

∥

∥

∥

∥

∥

∂Ũ

∂yi
(x, ·)−

(

U (i)(x, ·)−
∫

Y1

U (i)(x, z) dz

)

∥

∥

∥

∥

∥

p

Lp
per(Y1)

dx

≤ lim inf
k→∞

∫

Ω

C

∥

∥

∥

∥

∂vk
∂yi

(x, ·)−
(

U (i)(x, ·)−
∫

Y1

U (i)(x, z) dz

)∥

∥

∥

∥

p

Lp
per(Y1)

dx

≤ lim sup
k→∞

∫

Ω

C

∥

∥

∥

∥

∂vk
∂yi

(x, ·)− (T (θk(x, ·)))(i)
∥

∥

∥

∥

p

Lp
per(Y1)

dx

+ lim sup
k→∞

∫

Ω

C

∥

∥

∥

∥

(T (θk(x, ·)))(i) −
(

θ
(i)
k (x, ·)−

∫

Y1

θ
(i)
k ((x, z) dz

)∥

∥

∥

∥

p

Lp
per(Y1)

dx

+ lim sup
k→∞

∫

Ω

C

∥

∥

∥

∥

θ
(i)
k (x, ·)−

∫

Y1

θ
(i)
k (x, z) dz

−
(

U (i)(x, ·)−
∫

Y1

U (i)(x, z) dz

)∥

∥

∥

∥

p

Lp
per(Y1)

dx

=: I1 + I2 + I3,

where I1 = 0 by definition of Fk, (19) implies that I3 → 0, and by Proposition 2.4(ii) and
(20) it follows that

I2 ≤ C lim sup
k→∞

‖A(θk)‖Lp(Ω;W−1,p(Y1))
≤ C lim sup

k→∞
‖A(θk)‖Lp(Ω;Lp(Y1)) → 0.

Therefore, setting A(x) :=
∫

Y1
U(x, z) dz then A ∈ Lp(Ω;RN) and

∂U

∂yi
(x, y) = U (i)(x, y)

for a.e. x ∈ Ω, y ∈ Y1, where
U := Ũ + A(x) · y

clearly satisfies condition (i) of Theorem 1.10, and this concludes the proof of (18). In a
similar way, it can be shown that there existsW verifying (ii) in the statement of Theorem
1.10, and such that

∂W

∂zi
(x, y, z) = W (i)(x, y, z)

for a.e. x ∈ Ω, y ∈ Y1, z ∈ Y2. These, together with (14), assert the 3-scale compactness
of W 2,p bounded sequences.

Finally we show that any such triple (u, U,W ) may be attained as a 3-scale limit.

Assume first that we have the extra regularity ÝU(x, y) := U(x, y) − A(x)y ∈ C∞
c (Ω;C∞

per

(Y1)) and ÝW (x, y, z) := W (x, y, z) − C(x, y)z ∈ C∞
c (Ω×Y1;C

∞
per(Y2)). Extend ÝW (x, ·, z)

to RN periodically with period Y1. Using (4) it is easy to verify that the sequence

uε(x) := u(x) + ε2 ÝU
(

x,
x

ε

)

+ ε4 ÝW
(

x,
x

ε
,
x

ε2

)
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satisfies

uε
3-s
⇀ u, Duε

3-s
⇀ Du, and D2

xxuε
3-s
⇀ D2

xxu+D2
yy
ÝU(x, y) +D2

zz
ÝW (x, y, z).

Since D2
yy
ÝU = D2

yyU and D2
zz

ÝW = D2
zzW , we have obtained (10).

The result for arbitrary U ∈ Lp(Ω;W 2,p(Y1)) with U − A(x)y ∈ Lp(Ω;W 2,p
per(Q;Rd)) for

some A ∈ Lp(Ω;Rd×N), andW ∈ Lp(Ω×Y1;W
2,p(Y2)) withW−C(x, y)z ∈ Lp(Ω×Q;W 2,p

per

(Q;Rd)) for some C ∈ Lp(Ω×Q;Rd×N), will now follow via a standard density and diag-
onalization argument.

4. Proof of Theorem 1.8: The Case s = 1

We divide the proof of Theorem 1.8 into a series of lemmas, the first of which establishes
the regularity of fhom.

Lemma 4.1. Under the hypotheses (A1), (A2), (H3) and (H4), fhom : Ω × Rd×N →
[0,+∞) is continuous.

Proof. We recall that (see (9))

fhom(x, ξ) := inf

{∫

Q

f(x, y, ξ +Dψ(y)) dy : ψ ∈ W 1,p
per(Q;Rd)

}

.

Fix (x, ξ) ∈ Ω× Rd×N and consider a sequence {(xn, ξn)} converging to (x, ξ). Let ε > 0
and choose ψ ∈ W 1,p

per(Q;Rd) such that

fhom(x, ξ) + ε ≥
∫

Q

f(x, y, ξ +Dψ(y)) dy.

We then have

lim sup
n→∞

fhom(xn, ξn) ≤ lim sup
n→∞

∫

Q

f(xn, y, ξn +Dψ(y)) dy

=

∫

Q

f(x, y, ξ +Dψ(y)) dy ≤ fhom(x, ξ) + ε, (21)

where we have used (A1), (A2) and (H4).

Conversely, let ψn ∈ W 1,p
per(Q;Rd) be such that

fhom(xn, ξn) + ε ≥
∫

Q

f(xn, y, ξn +Dψn(y)) dy.

By the coercivity condition (H4), using Poincaré-Friedrichs inequality we deduce that
{

ψn −
∫

Q
ψn(z) dz

}

is a sequence bounded in W 1,p
per(Q;Rd), and thus, up to a subsequence

not relabelled,

ψn −
∫

Q

ψn(z) dz ⇀ ψ in W 1,p
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for some function ψ ∈ W 1,p
per(Q;Rd). In view of (A1), (A2), and by Theorem 2.1, we

conclude that

fhom(x, ξ) ≤
∫

Q

f(x, y, ξ +Dψ(y)) dy

≤ lim inf
n→∞

∫

Q

f(xn, y, ξn +Dψn(y)) dy ≤ lim inf
n→∞

fhom(xn, ξn) + ε.

(22)

Letting ε → 0+ in (21) and in (22) yields

lim
n→∞

fhom(xn, ξn) = fhom(x, ξ).

Consider a sequence {εn} converging to 0+ and set

F{εn}(u,D) := inf
{

lim inf
n→∞

Fεn(un, D) : un → u inLp(D;Rd)
}

where

Fε(u,D) :=

∫

D

f
(x

ε
,
x

ε2
, Du

)

dx

for every u ∈ W 1,p(Ω;Rd) and D ∈ A(Ω).

We define

F (u,D) := inf

{∫

D

∫

Y1

∫

Y2

f (y, z,Du(x) +DyU(x, y) +DzW (x, y, z)) dx dy dz : (23)

U ∈ Lp
(

D;W 1,p
per(Y1)

)

,W ∈ Lp
(

D × Y1;W
1,p
per(Y2)

)

}

.

Lemma 4.2. If f satisfies hypotheses (A1), (A2), (H2), (H3) and (H4), then

F{ε}(u,Ω) ≤ F (u,Ω) (24)

for every u ∈ W 1,p(Ω;Rd).

Proof. In view of (H4) it suffices to prove (24) when we have the extra regularity U ∈
C∞

c

(

Ω;C∞
per(Y1)

)

and W ∈ C∞
c

(

Ω× Y1;C
∞
per(Y2)

)

. Extend W (x, ·, ξ) to RN as a Y1-

periodic function, and set uε(x) := u(x) + εU
(

x, x
ε

)

+ ε2W
(

x, x
ε
, x
ε2

)

. By (4) we have
that

uε ⇀ u ∈ W 1,p(Ω;Rd),

and so

F{ε}(u,Ω) ≤ lim inf
ε→0+

∫

Ω

f
(x

ε
,
x

ε2
, Du(x) + εDxU

(

x,
x

ε

)

+DyU
(

x,
x

ε

)

+ ε2DxW
(

x,
x

ε
,
x

ε2

)

+ εDyW
(

x,
x

ε
,
x

ε2

)

+DzW
(

x,
x

ε
,
x

ε2

))

dx.
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Since by (H3) and (H4) the function f(x, y, ·) is convex and has a growth of order p, it is
p-Lipschitz continuous, precisely (see [23])

|f(x, y, ξ)− f(x, y, ξ′)| ≤ C
(

1 + |ξ|p−1 + |ξ′|p−1
)

|ξ − ξ′| (25)

for some constant C > 0, all x ∈ RN , a.e. y ∈ RN , and all ξ, ξ′ ∈ Rd×N . Thus

F{ε}(u,Ω) ≤ lim inf
ε→0+

∫

Ω

f
(x

ε
,
x

ε2
, Du(x) +DyU

(

x,
x

ε

)

+DzW
(

x,
x

ε
,
x

ε2

))

dx

+ lim sup
ε→0+

∫

Ω

C

(

1 + |Du(x)|p−1 +
∣

∣

∣εDxU
(

x,
x

ε

)∣

∣

∣

p−1

+
∣

∣

∣DyU
(

x,
x

ε

)∣

∣

∣

p−1

+
∣

∣

∣ε2DxW
(

x,
x

ε
,
x

ε2

)∣

∣

∣

p−1

+
∣

∣

∣εDyW
(

x,
x

ε
,
x

ε2

)∣

∣

∣

p−1

+
∣

∣

∣DzW
(

x,
x

ε
,
x

ε2

)∣

∣

∣

p−1
)

·
∣

∣

∣εDxU
(

x,
x

ε

)

+ ε2DxW
(

x,
x

ε
,
x

ε2

)

+ εDyW
(

x,
x

ε
,
x

ε2

)∣

∣

∣ dx

=

∫

Ω

∫

Y1

∫

Y2

f (y, z,Du(x) +DyU(x, y) +DzW (x, y, z)) dx dy dz,

where we have used (4), (A1), (A2), and the fact that, by Hölder inequality,

lim sup
ε→0+

∫

Ω

(

1 + |Du(x)|p−1 +
∣

∣

∣εDxU
(

x,
x

ε

)∣

∣

∣

p−1

+
∣

∣

∣DyU
(

x,
x

ε

)∣

∣

∣

p−1

+
∣

∣

∣ε2DxW
(

x,
x

ε
,
x

ε2

)∣

∣

∣

p−1

+
∣

∣

∣εDyW
(

x,
x

ε
,
x

ε2

)∣

∣

∣

p−1

+
∣

∣

∣DzW
(

x,
x

ε
,
x

ε2

)∣

∣

∣

p−1
)

·
∣

∣

∣εDxU
(

x,
x

ε

)

+ ε2DxW
(

x,
x

ε
,
x

ε2

)

+ εDyW
(

x,
x

ε
,
x

ε2

)∣

∣

∣ dx

≤ lim sup
ε→0+

Cε

[∫

Ω

(

1 + |Du(x)|p +
∣

∣

∣DxU
(

x,
x

ε

)∣

∣

∣

p

+
∣

∣

∣DyU
(

x,
x

ε

)∣

∣

∣

p

+
∣

∣

∣DxW
(

x,
x

ε
,
x

ε2

)∣

∣

∣

p

+
∣

∣

∣DyW
(

x,
x

ε
,
x

ε2

)∣

∣

∣

p

+
∣

∣

∣DzW
(

x,
x

ε
,
x

ε2

)∣

∣

∣

p)

dx
]

p−1
p

·
[∫

Ω

(∣

∣

∣DxU
(

x,
x

ε

)∣

∣

∣

p

+
∣

∣

∣DxW
(

x,
x

ε
,
x

ε2

)∣

∣

∣

p

+
∣

∣

∣DyW
(

x,
x

ε
,
x

ε2

)∣

∣

∣

p)

dx

] 1
p

which converges to zero by virtue of (4). This concludes the proof.

Next we want to establish

Lemma 4.3. If f satisfies hypotheses (H1) [or (A1), (A2), (A3)], (H2), (H3) and (H4),
then

F{ε}(u,Ω) ≥ F (u,Ω) (26)

for every u ∈ W 1,p(Ω;Rd).

The proof of Lemma 4.3 is hinged on the two general multiscale lowersemicontinuity
results below, the first of which is proven following step by step Allaire’s argument in the
proof of Theorem 1.7 in [1]).
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Lemma 4.4. Let 1 ≤ p ≤ +∞. If f satisfies hypotheses (A1), (A2), (A3), (H2), (H3),
and (H4) if 1 ≤ p < +∞, and if a sequence {wε} ⊂ Lp(Ω;Rd) 3-scale converges to a
function w0 ∈ Lp (Ω× Y1 × Y2), then

lim inf
ε→0+

∫

Ω

f
(x

ε
,
x

ε2
, wε(x)

)

dx ≥
∫

Ω

∫

Y1

∫

Y2

f(y, z, w0(x, y, z)) dx dy dz. (27)

Proof. As it is well known, if 1 ≤ p < +∞ and if (H4) holds then we have

∣

∣

∣

∣

∂f

∂ξ
(x, y, ξ)

∣

∣

∣

∣

≤ C(1 + |ξ|p−1) (28)

for all x ∈ RN , a.e. y ∈ RN , and all ξ ∈ Rd×N . Indeed,

f(x, y, ξ′) ≥ f(x, y, ξ) +
∂f

∂ξ
(x, y, ξ) · (ξ′ − ξ)

and taking ξ′ := ξ±Ei, with i = 1, . . . , d×N , and {E1, . . . ,Ed×N} an orthonormal basis
of Rd×N , we have by (25) and in view of (H4)

∂f

∂ξ
(x, y, ξ) · (±Ei) ≤ f(x, y, ξ ± Ei)− f(x, y, ξ) ≤ C

(

1 + |ξ ± Ei|p−1 + |ξ|p−1
)

,

and (28) follows.

Let {θj} ⊂ Cc (Ω;Cper (Y1 × Y2)) be such that

θj → w0 in Lp (Ω× Y1 × Y2) . (29)

By the convexity of f we now have for fixed j ∈ N

lim inf
ε→0+

∫

Ω

f
(x

ε
,
x

ε2
, wε

)

dx ≥

≥ lim
ε→0+

∫

Ω

f
(x

ε
,
x

ε2
, θj

(

x,
x

ε
,
x

ε2

))

dx

− lim sup
ε→0+

∫

Ω

∂f

∂ξ

(x

ε
,
x

ε2
, θj

(

x,
x

ε
,
x

ε2

))

·
[

wε(x)− θj

(

x,
x

ε
,
x

ε2

)]

dx

≥
∫

Ω

∫

Y1

∫

Y2

f (y, z, θj(x, y, z))) dx dy dz − lim sup
ε→0+

Ij,ε,

where we have used (A1), (A2), (A3), (H2) and (4) to obtain the iterated integral (note
that here, and in light of Remark 1.9, the continuity of ∂f

∂ξ
is crucial), and where

Ij,ε :=

∫

Ω

∂f

∂ξ

(x

ε
,
x

ε2
, θj

(

x,
x

ε
,
x

ε2

))

· wε(x) dx

−
∫

Ω

∂f

∂ξ

(x

ε
,
x

ε2
, θj

(

x,
x

ε
,
x

ε2

))

· θj
(

x,
x

ε
,
x

ε2

)

dx.
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By the definition of 3-scale convergence (see Definition (1.2)) and in light of Remark 1.3,
the first term in this expression converges, as ε → 0+, to

∫

Ω

∫

Y1

∫

Y2

∂f

∂ξ
(y, z, θj(x, y, z)) · w0(x, y, z) dx dy dz,

and by (4) the second term tends to

∫

Ω

∫

Y1

∫

Y2

∂f

∂ξ
(y, z, θj(x, y, z)) · θj(x, y, z) dx dy dz.

Given the arbitrariness of j, we conclude that

lim inf
ε→0+

∫

Ω

f
(x

ε
,
x

ε2
, wε

)

dx ≥

≥ lim inf
j→∞

∫

Ω

∫

Y1

∫

Y2

f (y, z, θj(x, y, z)) dx dy dz

− lim sup
j→∞

∫

Ω

∫

Y1

∫

Y2

∂f

∂ξ
(y, z, θj(x, y, z)) · (w0(x, y, z)− θj(x, y, z)) dx

=

∫

Ω

∫

Y1

∫

Y2

f (y, z, w0(x, y, z)) dx dy dz,

where to assert the equality above we have used (H4), Hölder inequality with respect to
s, (28), (29), and this entails (27).

Lemma 4.5. If f satisfies hypotheses (H1), (H2), (H3), and if a sequence {wε} ⊂
L∞(Ω;Rd) 3-scale converges to a function w0 ∈ L∞ (

Ω× Y1 × Y2;Rd
)

, then

lim inf
ε→0+

∫

Ω

f
(x

ε
,
x

ε2
, wε(x)

)

dx ≥
∫

Ω

∫

Y1

∫

Y2

f(y, z, w0(x, y, z)) dx dy dz.

Proof. Note that in order to be in a position to apply Lemma 4.4 we need to modify f so
as to guarantee the differentiability with respect to ξ requested in (A3). Let ρk, k ∈ RN ,
denote the standard radially symmetric mollifiers. Define for k ∈ RN

fk(x, y, ξ) :=

∫

B1/k(0)

ρk(ξ
′)f(x, y, ξ − ξ′) dξ′, (x, y, ξ) ∈ RN × RN × Rd×N .

It is clear that fk satisfies (H1), (H2), (H3), and (A3). Fix M > 0 such that ‖wε‖L∞(Ω),
‖w0‖L∞(Ω×Y1×Y2) ≤ M for all ε > 0. Fix δ > 0 and choose k ∈ N such that

max
x∈Y1,y∈Y2,ξ,ξ′∈B(0,M)

|f(x, y, ξ)− f(x, y, ξ′)| < δ whenever |ξ − ξ′| ≤ 1

k
.

Since f(·, ·, ξ) is periodic, we then have

sup
x,y∈RN ,ξ,ξ′∈B(0,M)

|f(x, y, ξ)− f(x, y, ξ′)| < δ whenever |ξ − ξ′| ≤ 1

k
,
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and thus
sup

x,y∈RN ,ξ∈B(0,M)

|fk(x, y, ξ)− f(x, y, ξ)| ≤ δ.

By Lemma 4.4 we have

lim inf
ε→0+

∫

Ω

f
(x

ε
,
x

ε2
, wε

)

dx ≥ lim inf
ε→0+

∫

Ω

fk

(x

ε
,
x

ε2
, wε

)

dx− δ

≥
∫

Ω

∫

Y1

∫

Y2

fk(y, z, w0(x, y, z)) dx dy dz − δ

≥
∫

Ω

∫

Y1

∫

Y2

f(y, z, w0(x, y, z)) dx dy dz − 2δ.

Now it suffices to let δ → 0+.

Proof of Lemma 4.3. Step 1. We assume first that f satisfies (A1), (A2), (A3), (H2),
(H3) and (H4). Let uε ⇀ u inW 1,p(Ω;Rd). Extracting a subsequence if necessary, without
loss of generality and by Theorem 1.6 we may assume that

uε
3-s
⇀ u, Duε

3-s
⇀ Du+DyU(x, y) +DzW (x, y, z)

for some U ∈ Lp
(

Ω;W 1,p
per(Y1)

)

and W ∈ Lp
(

Ω× Y1;W
1,p
per(Y2)

)

. We are in a position to
apply Lemma 4.4, where (27) becomes

lim inf
ε→0+

∫

Ω

f
(x

ε
,
x

ε2
, Duε

)

dx ≥
∫

Ω

∫

Y1

∫

Y2

f (y, z,Du(x) +DyU(x, y)

+DzW (x, y, z)) dx dy dz

≥ F (u,Ω).

Step 2. Now assume that f satisfies (H1), (H2), (H3) and (H4) (but not necessarily
(A3)), and uε ⇀ u in W 1,p(Ω;Rd). By Proposition 2.5 we may find a subsequence (not
relabelled) and a new sequence {vε} (if p = 1 or p = +∞ we set vε := uε), which still
converges weakly in W 1,p(Ω;Rd) to u and {|Dvε|p} is equi-integrable. If 1 < p < +∞ we
have by (H4)

lim inf
ε→0+

∫

Ω

f
(x

ε
,
x

ε2
, Duε

)

dx ≥ lim inf
ε→0+

∫

Ω

f
(x

ε
,
x

ε2
, Dvε

)

dx

− C lim sup
ε→0+

∫

{uε 6=vε}
(1 + |Dvε|p) dx

= lim inf
ε→0+

∫

Ω

f
(x

ε
,
x

ε2
, Dvε

)

dx, (30)

where we have used the equi-integrability property and (13).

Extracting a subsequence if necessary, without loss of generality and by Theorem 1.6 we
may assume that

vε
3-s
⇀ u, Dvε

3-s
⇀ T := Du+DyU(x, y) +DzW (x, y, z),
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and
τM (Dvε)

3-s
⇀ TM

for all M ∈ N, and for some U ∈ Lp
(

Ω;W 1,p
per(Y1)

)

, W ∈ Lp
(

Ω× Y1;W
1,p
per(Y2)

)

, and
TM ∈ Lp(Ω× Y1 × Y2;Rd×N). Here τM(·) stands for the usual truncation function

τM(ξ) :=

{

ξ if |ξ| ≤ M,

M ξ
|ξ| otherwise.

Note that

sup
M∈N

‖TM‖Lp(Ω×Y1×Y2) ≤ sup
M∈N

lim inf
ε>0

‖τM (Dvε) ‖Lp(Ω) ≤ sup
ε>0

‖Dvε‖Lp(Ω) < +∞,

and thus every subsequence of {TM} admits a further subsequence converging weakly in
Lp(Ω × Y1 × Y2;Rd×N). We claim that the weak limit is T , thus asserting that the full
sequence {TM} converges to T weakly in Lp(Ω×Y1×Y2). Indeed, fix ϕ ∈ C∞

c (Ω;C∞
per(Y1×

Y2)). We have

lim
M→+∞

∫

Ω

∫

Y1

∫

Y2

ϕ(x, y, z)TM(x, y, z) dx =

= lim
M→+∞

lim
ε→0+

∫

Ω

[∫

Ω

ϕ
(

x,
x

ε
,
x

ε2

)

Dvε(x) dx

−
∫

{|Dvε|>M}
ϕ
(

x,
x

ε
,
x

ε2

)

(Dvε − τM(Dvε)) dx

]

=

∫

Ω

∫

Y1

∫

Y2

ϕ(x, y, z)T (x, y, z) dx dy dz,

where we have used (2), and where due to (4) and to the equi-integrability of {|Dvε|p},
by Hölder inequality we deduce

lim sup
M→+∞

lim sup
ε→0+

∫

{|Dvε|>M}

∣

∣

∣ϕ
(

x,
x

ε
,
x

ε2

)∣

∣

∣ |Dvε − τM(Dvε)| dx

≤ C

[

lim
ε→0+

(∫

Ω

∣

∣

∣ϕ
(

x,
x

ε
,
x

ε2

)∣

∣

∣

p′

dx

)1/p′

lim sup
M→+∞

sup
ε>0+

(∫

{|Dvε|>M}
|Dvε|p dx

)1/p
]

= C

(∫

Ω

∫

Y1

∫

Y2

|ϕ(x, y, z)|p′ dx dy dz
)1/p

′ (

lim sup
M→+∞

sup
ε>0+

(∫

{|Dvε|>M}
|Dvε|p dx

)1/p
)

= 0.

By Lemma 4.5 and for every fixed M ∈ N we have

lim inf
ε→0+

∫

Ω

f
(x

ε
,
x

ε2
, Dvε

)

dx ≥ lim inf
ε→0+

∫

Ω

f
(x

ε
,
x

ε2
, τM(Dvε)

)

dx

− lim sup
ε→0+

∫

{|Dvε|>M}
f
(x

ε
,
x

ε2
, τM(Dvε)

)

dx

≥
∫

Ω

∫

Y1

∫

Y2

f(y, z, TM(x, y, z)) dx dy dz

− sup
ε>0

C

∫

{|Dvε|>M}
(1 + |Dvε|p) dx,
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where we have used (H4). Letting M → +∞, since TM ⇀ T in Lp by Theorem 2.1 and
in view of the equi-integrability of {|Dvε|p} we obtain

lim inf
ε→0+

∫

Ω

f
(x

ε
,
x

ε2
, Dvε

)

dx ≥
∫

Ω

∫

Y1

∫

Y2

f(y, z, T (x, y, z)) dx dy dz,

which, together with (30), concludes the proof.

Lemma 4.6. If f satisfies hypotheses (H1) [or (A1), (A2)], (H2), (H3) and (H4), then

F{ε}(u,Ω) ≤
∫

Ω

fhom(Du(x)) dx (31)

for every u ∈ W 1,p(Ω;Rd).

Proof. Fix u ∈ W 1,p(Ω;Rd). In view of (H4) it can be shown easily that F{ε}(u, ·) is
the trace on A(Ω) of a Radon measure absolutely continuous with respect to the N -
dimensional Lebesgue measure LN (for proofs of similar results see [5], [9]). Therefore,
proving (31) is equivalent to showing that

lim
δ→0+

F{ε}(u,Q(x0, δ))

δN
≤ fhom(Du(x0))

for a.e. x0 ∈ Ω. Choose x0 to be a p-Lebesgue point for Du, i.e.

lim
δ→0+

1

δN

∫

Q(x0,δ)

|Du(x)−Du(x0)|p dx = 0, (32)

fix α > 0, and using the definition of fhom(Du(x0)) choose ϕ ∈ C∞
per(Q;Rd) such that

fhom(Du(x0)) + α ≥
∫

Q

fhom(x,Du(x0) +Dϕ(x)) dx. (33)

In order to apply Theorem 2.3, with (X,M) := (Ω,L), Z := W 1,p
per(Q;Rd), µ is the

Lebesgue measure, and L is the σ-algebra of Lebesgue measurable sets in RN , we introduce
the multi-valued map

H : Ω →
{

C ⊂ W 1,p
per(Q) : C 6= Ø, C is closed

}

x 7→H(x) :=

{

ψ ∈ W 1,p
per(Q;Rd) :

∫

Q

ψ(y) dy = 0,

fhom(x,Du(x0) +Dϕ(x)) + α ≥
∫

Q

f(x, y,Du(x0) +Dϕ(x) +Dψ(y)) dy

}

.

By definition of fhom, the set H(x) is nonnempty and by (H4) it is closed. Also, the set
{

(x, ψ) ∈ Ω×W 1,p
per(Q;Rd) : ψ ∈ H(x)

}

is closed (hence Borel) because it coincides with H−1([0,+∞)× {0}) where

H(x, ψ) := (fhom(x,Du(x0) +Dϕ(x)) + α

−
∫

Q

f(x, y,Du(x0) +Dϕ(x) +Dψ(y)) dy,

∫

Q

ψ(y) dy

)

,
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and by (H4), and in view of the continuity of Dϕ and of fhom (see Lemma 4.1), the
function H is continuous. By Theorem 2.3 we may find a measurable selection

x 7→ ψ(x, ·), ψ(x, ·) ∈ W 1,p
per(Q;Rd),

∫

Q

ψ(x, y) dy = 0,

and

fhom(x,Du(x0) +Dϕ(x)) + α ≥
∫

Q

f(x, y,Du(x0) +Dϕ(x) +Dyψ(x, y)) dy. (34)

By (H4) and (34) we now have

+∞ >

∫

Q

[fhom(x,Du(x0) +Dϕ(x)) + α] dx

≥ C

∫

Q

{∫

Q

[|Dyψ(x, y)|p − |Du(x0)|p − |Dϕ(x)|p] dy
}

dx

≥ C ′
∫

Q

‖ψ(x, ·)‖p
W 1,p

per (Q)
dx− 1

C ′ ,

where we have used Poincaré-Friedrichs inequality. We conclude that ψ ∈ Lp
(

Q;W 1,p
per(Q;

Rd)
)

. Now let ψk ∈ C∞
c

(

Q;W 1,p
per(Q;Rd)

)

be such that

‖ψk − ψ‖Lp(Q;W 1,p
per (Q;Rd)) → 0, (35)

and define
uk,ε := u(x) + εϕ

(x

ε

)

+ ε2ψk

(x

ε
,
x

ε2

)

.

For fixed δ > 0 it is clear that uk,ε → u in Lp(Q(x0, δ)), and so

lim
δ→0+

F{ε}(u,Q(x0, δ))

δN

≤ lim inf
δ→0+

lim
ε→0+

1

δN

∫

Q(x0,δ)

f
(x

ε
,
x

ε2
, Du(x) +Dϕ

(x

ε

)

+ εDxψk

(x

ε
,
x

ε2

)

+

+Dyψk

(x

ε
,
x

ε2

))

dx

≤ lim
δ→0+

lim
ε→0+

1

δN

∫

Q(x0,δ)

f
(x

ε
,
x

ε2
, Du(x0) +Dϕ

(x

ε

)

+Dyψk

(x

ε
,
x

ε2

))

dx

+ C lim sup
δ→0+

lim sup
ε→0+

1

δN

[∫

Q(x0,δ)

(

1 + |Du(x)|p +
∣

∣

∣Dϕ
(x

ε

)∣

∣

∣

p

+
∣

∣

∣εDxψk

(x

ε
,
x

ε2

)∣

∣

∣

p

+
∣

∣

∣Dyψk

(x

ε
,
x

ε2

)∣

∣

∣

p)

dx
]

p−1
p

·
[∫

Q(x0,δ)

(

|Du(x)−Du(x0)|p +
∣

∣

∣εDxψk

(x

ε
,
x

ε2

)∣

∣

∣

p)

dx

] 1
p

=

∫

Y1

∫

Y 2

f(x, y,Du(x0) +Dϕ(x) +Dyψk(x, y)) dx dy
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where we have used (25), (4), (32) and Hölder inequality. We deduce that

lim
δ→0+

F{ε}(u,Q(x0, δ))

δN
≤

∫

Y1

∫

Y 2

f(x, y,Du(x0) +Dϕ(x) +Dyψk(x, y)) dx dy,

and in view of (H4) and by (33), (34) and (35), letting k → +∞ we obtain

lim
δ→0+

F{ε}(u,Q(x0, δ))

δN
≤

∫

Y1

∫

Y 2

f(x, y,Du(x0) +Dϕ(x) +Dyψ(x, y)) dx dy

≤ fhom(Du(x0)) + 2α.

Letting α → 0+ we conclude (31).

Proof of Theorem 1.8. Fix u ∈ W 1,p(Ω;Rd) and let {εn} be a sequence converging
to 0+. By Theorem 2.2 we may extract a subsequence {εj} such that the Γ(Lp(Ω)) −
limj→∞ Fεj(u,A) exists and is given by F{εj}. As before, for simplicity of notation we
write simple ε in place of εj. We claim that

F{εj}(u,A) =

∫

A

fhom(Du(x)) dx.

If the claim is asserted, then due to the arbitrariness of the initial sequence {εn} we
conclude the proof of Theorem 1.8. Now Lemma 4.6 establishes that

F{εj}(u,A) ≤
∫

A

fhom(Du(x)) dx,

and in view of Lemma 4.3, it suffices to prove that

F (u,A) ≥
∫

A

fhom(Du(x)) dx.

Let U ∈ Lp
(

Ω;W 1,p
per(Y1)

)

and W ∈ Lp
(

Ω× Y1;W
1,p
per(Y2)

)

. By the very definitions of fhom

and fhom (see (9) and (8)) we have by Fubini’s Theorem

∫

A

∫

Y1

∫

Y2

f(y, z,Du(x) +DyU(x, y) +DzW (x, y, z)) dx dy dz

≥
∫

A

∫

Y1

[∫

Y2

f(y, z,Du(x) +DyU(x, y) +DzW (x, y, z)dz

]

dy dx

≥
∫

A

∫

Y1

fhom(y,Du(x) +DyU(x, y)) dx dy ≥
∫

A

fhom(Du(x))dx,

and so

F (u,A) ≥
∫

Ω

fhom(Du(x)) dx.
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5. Proof of Theorem 1.8: The Case s = 2

The proof of Theorem 1.8 for second order derivatives follows closely that of the case
where s = 1 treated in the previous section, with the obvious adaptations. In particular,
in Lemma 4.3 the compactness with respect to 3-scale convergence should now invoke
Theorem 1.10 in place of Theorem 1.6, and the function F introduced in (23) should be
replaced by

F (u,D) := inf

{∫

D

∫

Y1

∫

Y2

f(y, z,D2
xxu(x) +D2

yyU(x, y) +D2
zzW (x, y, z)) dx dy dz :

U ∈ Lp(D;W 2,p
per(Y1)),W ∈ Lp(D × Y1;W

2,p
per(Y2)),

U − A(x)y ∈ Lp(D;W 2,p
per(Q;Rd)) for some A ∈ Lp(D;Rd×N),

W −C(x, y)z ∈Lp(D×Q;W 2,p
per(Q;Rd)) for some C ∈Lp(D×Q;Rd×N)

}

.

We leave the details to the reader.

6. Appendix

Here we present the proof of Proposition 2.2, which, in turn, uses the following result (see
Theorem 2.2. in [4] and Theorem 2.5 in [9]).

Proposition 6.1. Let Fε : W 1,p(Ω;Rd)×A(Ω) → [0,+∞) be a sequence of functionals
verifying the assumptions (i)–(iii) of Proposition 2.2. Then for any u ∈ W 1,p(Ω,Rd) and
A ∈ A(Ω),

Γp(u,A) := Γ(Lp)− lim inf
ε→0

Fε(u,A) = inf
{

lim inf
ε→0

Fε(uε, A) : uε→u in Lp(A)
}

coincides with

Γp
0(u,A) := inf

{

lim inf
ε→0

Fε(uε, A) : uε→u in Lp(A), uε = u on a neighborhood of ∂A
}

.

Proof of Proposition 6.1. Clearly Γp(u,A) ≤ Γp
0(u,A), so it remains to prove the op-

posite inequality.

Define for every u ∈ W 1,p(Ω;Rd) the functional G(u,A) :=
∫

A
(1 + |Du|p) dx. For ev-

ery γ > 0 there exists a sequence {uε} ⊂ W 1,p(A,Rm) such that uε→u in Lp(A,Rd)
and lim infε Fε(uε, A) ≤ Γp(u,A) + γ. By the coercivity assumption (11) there exists a
subsequence {uεk} of {uε} such that limk→∞ Fεk(uεk , A) = lim infε→0+ Fε(uε, A) and the

sequence of measures νk := G(u, ·) + G(uεk , ·)
∗
⇀ ν, where ν is a finite Radon measure.

For every t > 0 let At := {x ∈ A : dist(x, ∂A) > t}, fix η > 0 and for any 0 < δ < η/2
define Lδ := Aη−2δ\Aη+δ. Next, Consider a smooth cut off function ϕδ ∈ C∞

c (Aη−δ; [0, 1])
such that ϕδ = 1 on Aη, ‖Dϕδ‖∞ ≤ C

δ
and set wε := ϕδuε + (1 − ϕδ)u. Then wε→u in

Lp(A,Rd) as ε → 0+ and wε = u on a neighborhood of ∂A. Thus,
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Fεk(wεk , A) ≤ Fεk(wεk , Aη) + Fεk(wεk , A\Aη−δ) + Fεk(wεk , Aη−2δ\Aη+δ)

≤ Fεk(uεk , Aη) + Fεk(u,A\Aη−δ)

+ C

[

G(uεk , Lδ) + G(u, Lδ) +
1

δp

∫

Lδ

|uεk − u|p dx
]

.

Letting εk→0+ we get

lim sup
εk→0+

Fεk(wεk , A) ≤ Γp(u,A) + Cν(A\Aη−δ) + Cν(Lδ) + γ,

and so
Γp
0(u,A) ≤ Γp(u,A) + γ + Cν(A\Aη−δ) + Cν(Lδ).

Letting δ go to 0+ we have

Γp
0(u,A) ≤ Γp(u,A) + γ + Cν(A\Aη) + Cν(∂Aη).

Choosing a sequence {ηj} such that ηj→0+ and ν(∂Aηj) = 0, letting first j→ +∞ and
finally γ→0+, now yields

Γp
0(u,A) ≤ Γp(u,A).

Proof of Proposition 2.2. We consider a countable collection C of open subsets of Ω
such that for all δ > 0 and A ∈ A(Ω) there exists a finite union CA of disjoint elements
of C such that

{

CA ⊂ A
LN(A) ≤ LN(CA) + δ.

Denote by R the countable collection of all finite unions of elements of C, i.e. R :=
{

∪k
i=1Ci : k ∈ N, Ci ∈ C

}

. Since Lp is a separable metric space, by using a diagonalization
argument we can assert that there exists a subsequence {εR} ⊂ {ε}, εR → 0, such that
for every C ∈ R and for every v ∈ W 1,p(C;Rd) there exists {uC

εR
} in W 1,p(C;Rd) such

that uC
εR
→v in Lp(C;Rd) and

Γ(Lp(C))− lim
εR→0+

FεR(v, C) = lim
εR→0+

FεR(u
C
εR
, C). (36)

In other words, we get the existence of the Γ−limit of a fixed subsequence and for every
C ∈ R. We seek to extend (36) from the elements of R to any open subset A of Ω and
every u ∈ W 1,p(A;Rd). Let A be an open subset of Ω and u ∈ W 1,p(A;Rd). Fix δ > 0
and choose a subset Cδ of A in R such that

{

Cδ ⊂ A,
∫

A\Cδ (1 + |Du|p) dx ≤ δ
C
,

where C is the constant of the growth condition (11). Consider a sequence {vCδ

εR} in

W 1,p(Cδ;Rd) such that vC
δ

εR→u in Lp(Cδ;Rd) satisfying

lim
εR→0+

FεR(v
Cδ

εR , C
δ) = F−

εR
(u,Cδ) = Γ(Lp(C))− lim

εR→0+
FεR(u,C

δ).
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By Proposition 6.1 we may assume that vC
δ

εR
= u nearby ∂Cδ, and extend vC

δ

εR as u outside

Cδ, so that the extension (not relabeled) vC
δ

εR belongs to W 1,p(A;Rd). We have

lim sup
δ→0+

lim sup
εR→0+

FεR(v
Cδ

εR , A) ≤ lim sup
δ→0+

lim sup
εR→0+

{

FεR(v
Cδ

εR , C
δ) + C

∫

A\Cδ

(1 + |Du|p) dx
}

= lim sup
δ→0+

F{εR}(u,C
δ)

≤ F{εR}(u,A) ≤ lim inf
δ→0+

lim inf
εR→0+

FεR(v
Cδ

εR , A). (37)

A diagonalization argument (cf. Lemma 7.1 [9]) and (37) concludes the proof.
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through PGR Omogeneizzazione di materiali perforati and by GNAMPA. The authors thank

the Center for Nonlinear Analysis (NSF Grant No. DMS–9803791), Carnegie Mellon University,

Pittsburgh, PA, USA, for its support during the preparation of this paper. E. Zappale is indebted

to the Department of Mathematical Sciences at Carnegie Mellon University for its hospitality

during her residence at CMU in 2000/01.

References

[1] G. Allaire: Homogenization and two scale convergence, SIAM J. Math. Anal. 23 (1992)
1482–1518.

[2] G. Allaire, M. Briane: Multiscale convergence and reiterated homogenization, Proc. Royal
Soc. Edin. 126 (1996) 297–342.

[3] Y. Amirat, K. Hamdache, A. Ziani: Homogénéisation non-locale pour des équations
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