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We consider shape optimisation problems in the class of convex sets. Assuming that the shape functional
satisfies a Lipschitz like property with respect to a distance issued from the γ-convergence, we prove that
the minimiser has the boundary of class C1. In particular, we prove that large classes of functionals
depending on the eigenvalues of the Dirichlet Laplacian satisfy this property. The key point of the paper
is the understanding of the asymptotic behaviour of the γ-convergence near the “angular” points of the
convex set.
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1. Introduction

We consider shape optimisation problems of the form

min
A∈K(D)

F (A) + α|A|, (1)

K(D) = {A ⊆ D : A open and convex},
D is a fixed bounded open set, α is a fixed positive constant and |A| denotes the measure of
A. Although in general a shape optimisation problem may fail to have a solution, as soon
as the class of admissible domains is restricted to open convex subsets of D, the existence
of a solution comes rather easily under mild assumptions on the cost functional F . We
refer the reader to [4] for a detailed survey of the existence question in shape optimisation.
The purpose of this paper is to investigate the regularity of those solutions, if the cost
functional depends on the domain A via the eigenvalues of the Dirichlet Laplacian on
A, or the solution of the Dirichlet problem for the Laplacian. The typical examples we
consider here are

F1(A) =
k

∑

j=1

|λj(A)− αj| and F2(A) =

∫

D

|uA,f − g|dx, (2)

where α1, ...αk ∈ IR and f, g ∈ L2(D) are fixed. By λ1(A), ..., λk(A) we denote the first
k eigenvalues of the Dirichlet Laplacian counted with their multiplicities and by uA,f the
solution of the Laplace equation with Dirichlet boundary conditions (see Section 2).

The regularity of the minimising domains is, in general, difficult to treat. Sometimes, a
shape optimisation problem takes the form of a usual free boundary problem. We refer the
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reader to the pioneering result of Alt and Caffarelli [1] (see also [13]), where the regularity
of the free boundary is proved for a large class of energy type functionals inH1

0 -spaces. See
also [7], [14] for questions regarding the regularity of optimal shapes minimising energies;
we also refer to [2], [20] for optimisation problems where the unknown shape is a level
set. As a general remark, in all those papers the regularity is obtained for optimal shapes
minimising energy type functionals. Shape functionals like F1 or F2, defined above, are
implicitly excluded. The very interesting part in all these results is that no regularity of
the free boundary is a priori assumed. In general, one gets either the regularity of the
free boundary or the regularity of the state, the free boundary being a level set of the
state.

We restrict ourself to the class of convex shapes. This simplifies a lot the problem since
a minimal regularity of the optimum (i.e. convex) is known a priori. Nevertheless, the
necessary optimality conditions are difficult to write for two reasons. First, one can not
perform the shape derivative to get an extra condition on the free boundary if the cost
functional is not enough smooth. Second, since the class of admissible domains consists
only of convex sets, the convexity constraint may be lost upon a small variation of the
boundary, therefore getting optimality conditions would require arguments like in [6].

In the first part of the paper we prove the C1 regularity of the domains minimising shape
functionals which satisfy a Lipschitz like property with respect to a distance related to the
γ-convergence (see Section 2 and [5] for the definition of the γ-convergence). There are
several distances which induce a metric space structure on the family of open sets, and
the choice of the distance has to be done in order to achieve the following equilibrium:
strong enough to obtain the abstract regularity result, but weak enough in order to apply
the result in concrete examples. The key point of the proof is the understanding of the
asymptotic behaviour of the γ-convergence near the “angularÔ points of the boundary.

In the second part of the paper, we prove that all the eigenvalues of the Dirichlet Laplacian
(more precisely the functionals A → 1/λk(A)) satisfy the Lipschitz like property. As a
consequence, a large class of problems of type (1) have smooth solutions (all results
concerning the eigenvalues are valid in any dimension of the space). For functionals
depending on the state, if f ∈ L∞(D), the same kind of results hold in any dimension of
space. If f ∈ L2(D) \ L∞(D), finer estimates of the solution uA,f near an angular point
are needed; in this case, we can prove the regularity only in dimension 2.

We refer the reader to [6] where the authors discuss variational problems on convex
functions. Although the problem and the arguments are different, the regularity results
are of the same type: a solution is of class C1. In [16], the authors perform a detailed
study of the solution of (1) for F (A) = λ2(A). Moreover, they prove that the optimal
boundary is not of class C2. For this functional, the proof of the C1 regularity is obtained
in a direct way, using its shape differentiability. In this paper we do not assume the shape
differentiability of the cost functional F . In concrete examples, the shape differentiability
may not hold for two reasons: either the simplicity of the eigenvalues at the optimum can
not be proved (this is a necessary condition for the shape differentiability see [17, 22]),
or the functional A → F (λ1(A), ..., λk(A)) is not itself differentiable as a real function
depending on (λ1, ..λk) (like F1, for example).
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2. Some basic facts: γ-convergence, eigenvalues and asymptotic behaviour
near angular points

The γ-convergence. Let f ∈ L2(D) be fixed and denote for every A open subset of D
by uA,f the weak solution of the following equation

{

−∆uA,f = f in A
uA,f ∈ H1

0 (A).
(3)

By extension with zero on D \ A, the function uA,f can be seen as an element of H1
0 (D).

Definition 2.1. A sequence (An)n of open subsets of D γ-converges to A if for every
f ∈ L2(D) we have that uAn,f → uA,f strongly in H1

0 (D).

Following [4, 23], the fact that An γ-converges to A is equivalent to each of the following

A.1 uAn,1 → uA,1 strongly in H1
0 (D)

A.2 RAn → RA in L(L2(D)), where RA is the resolvent operator for problem (3), i.e.
RA : L2(D) → L2(D), RA(f) = uA,f .

Assertion A.1 allows us to introduce the following distance which induces a metric struc-
ture in the family of open sets. The topology generated by this distance has the same
convergent sequences as the γ-convergence. For simplicity, and to respect the traditional
notation, we set wA := uA,1, the solution of equation (3) for f ≡ 1. For every A1, A2 we
set

dγ(A1, A2) =

∫

D

|wA1 − wA2|dx.

The choice of this distance, instead for example of |RA1 −RA2|L(L2(D)), will become more
clear in Section 4. The main benefit is that, when computing the distance between
two arbitrary sets, we evaluate the resolvent operators on a fixed function, i.e. f ≡ 1.
Moreover, the functions {wA}A∈K(D) are uniformly bounded in L∞(D). We refer the
reader to the recent paper of Savaré and Schimperna [21] for a detailed study of the
mapping A 7→ uA,f in the family of uniformly Lipschitz domains.

Eigenvalues. Assertion A.2 gives information about the behaviour of the eigenvalues of
the Dirichlet Laplacian with respect to the γ-convergence. We recall the following two
inequalities (see [9, Corollaries 3 and 4, pages 1089-1090]) in a more general setting. Let
T1, T2 : L2(D) → L2(D) be two linear operators which are bounded and compact. Then
for every k,m, n ∈ IN

|µk(T1)− µk(T2)| ≤ |T1 − T2|L(L2(D)) (4)

µn+m−1(T1T2) ≤ µn(T1)µm(T2), (5)

where µk(T ) are the singular values of T defined by

µk(T ) = min
Vk−1⊆L2(D)

max
ϕ⊥Vk−1
ϕ 6=0

|Tϕ|
|ϕ|

,

Vk−1 denoting a vector space of dimension k−1. If T is moreover positive and self adjoint,
then µk(T ) is the k-th eigenvalue of T , the index k taking into account the multiplicities.
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Observe that for the resolvent operator RA, we have µk(RA)
−1 = λk(A), λk(A) being the

k-th eigenvalue of the Dirichlet Laplacian on the open set A.

For our purposes, at some point, we will apply (5) for the product between a resolvent
operator and a projector. Since the projector we consider is of finite rank, it is also
compact, hence (5) has full sense.

We recall the following result from [8, Example 2.1.8].

Lemma 2.2. Let A be a bounded open set in IRN . Let λ be an eigenvalue of the Dirichlet
Laplacian on Ω and φ a normalised eigenfunction corresponding to λ. Then

|φ|L∞(A) ≤ 3
(8π

λ

)N
4
.

This result is needed in the proof of the Lipschitz character of the eigenvalues with respect
to the distance dγ.

Asymptotic behaviour near the angular points. Let A ⊆ IRN be a bounded, open
and convex set. By misuse of notation, we call a point x ∈ ∂A “angularÔ, if the dimension
of the normal cone Nx at A in the point x is at least 2. A convex set is of class C1 if it
has no angular points on the boundary. We are interested in the asymptotic behaviour of
the solution uA,f in a neighbourhood of an angular point of the boundary. We refer the
reader to the books of Grisvard [11, 12] for a detailed study of this question.

In this paper, we denote by ε : (0, 1) → IR a generic function such that limε→0 ε(ε) = 0.

Lemma 2.3. We set the dimension of the space N = 2. Let the origin be an angular
point of a convex set A ∈ K(D) and let f ∈ L2(D). Then uA,f (x) = |x|ε(|x|).

Note that the decreasing rate depends on f (see Remark 4.3 of Section 4).

Proof. Using the maximum principle, it is enough to prove Lemma 2.3 for a bounded
sector, with a vertex at the origin and an angle ω, ω ∈ (0, π). Let us denote Ýω this sector.
Using the result of Kondratiev [19] we have

∫

A

|D2uA,f |2 +
|∇uA,f |2

|x|2
+

u2
A,f

|x|4
dx ≤ C1

∫

A

|f |2dx,

where C1 is a constant depending only on A. On the other hand, the Sobolev embedding
theorem applied in K0,1,2 ∩ Ýω gives that the injection H2(K0,1,2 ∩ Ýω) ↪→ L∞(K0,1,2 ∩ Ýω)
is continuous. Here K0,a,b denotes the open ring K0,a,b = B0,b \ B0,a. Consequently, for
every v ∈ H2(K0,1,2 ∩ Ýω)

|v|2∞ ≤ C2

∫

K0,1,2∩Ýω

|D2v|2 + |∇v|2 + v2dx. (6)

Let us denote, for every r > 0, ur(x) = v(x
r
). Performing the change of variable in (6) we

have

|ur|2L∞(K0,r,2r∩Ýω) ≤ C2r
2

∫

K0,r,2r∩Ýω

|D2ur|2 +
|∇ur|2

|r|2
+

u2
r

|r|4
dx.
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Taking ur = uA,f |K0,r,2r∩Ýω and using the fact that

∫

K0,r,2r∩Ýω

|D2uA,f |2 +
|∇uA,f |2

|x|2
+

u2
A,f

|x|4
dx → 0, as r → 0,

we conclude the proof.

In the particular case when f ∈ L∞(A), the decreasing rate is stronger. Following [11, 12],
one can prove that |uA,f (x)| ≤ c|x|1+δ for some δ > 0. Nevertheless, for our purposes,
Lemma 2.3 is enough.

In an arbitrary dimension of space N ≥ 2 we are able to prove a similar estimate only for
f ∈ L∞(A). Let A be convex, such that the origin is an angular point. Suppose moreover
that the dimension of Nx ∩ {x3 = .. = xN = 0} is two and that (up to a change of the
system of coordinates)

A ∩ {x3 = .. = xN = 0} ⊆ {(r cos θ, r sin θ) : r > 0, θ ∈ (0, ω)},

where ω < π is fixed. We define the following set

C = {(r cos θ, r sin θ, x3, .., xN) : θ ∈ (0, ω), r ∈ (0, d), xi ∈ (−d, d), i = 3, .., N},

where d is the diameter of A.

Lemma 2.4. Let f ∈ L∞(A). Under the previous hypotheses on A, we have

|uA,f (x)| ≤ (x2
1 + x2

2)
1
2 ε((x2

1 + x2
2)

1
2 ).

Proof. From the maximum principle, it is enough to consider only the case f ≡ 1 and
the convex C defined above. We observe that the function C 3 x 7→ u(x1, x2, .., xN) =
wS(x1, x2) satisfies

−∆u = 1, in C and u ≥ 0 on ∂C.

Here S = {(r cos θ, r sin θ) : θ ∈ (0, ω), r ∈ (0, d)} ⊆ IR2 and wS := uS,1 ∈ H1
0 (S).

Consequently, from the maximum principle we get that

wA(x) ≤ u(x) = w(x1, x2).

We conclude using Lemma 2.3.

Existence of optimal shapes. We briefly recall that the existence of a solution for
problem (1) can be proved using the direct method of the calculus of variations. The
following result is a direct consequence of the closure of K(D) for the Hc-convergence and
of the stability property (in the sense of Keldysh-Hedberg [15]) of convex sets. See [4] for
details.

Proposition 2.5. The family K(D) is γ-compact.

One can check that the Lebesgue measure is, in general, γ-lower semi-continuous but
continuous in K(D). As a consequence, as soon as the functional F is γ-l.s.c., problem
(1) has at least one solution. This follows using the direct method of the calculus of
variations.

If D = IRN , one has to use a concentration-compactness argument like in [3] or [18,
Kawohl, Chapter 1] in order to discuss existence of solutions for (1).
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3. Regularity of optimal convex shapes

3.1. Functionals depending on the eigenvalues of the Laplacian

Definition 3.1. Let
F : K(D) → IR.

We say that F is γ-Lip, if for every A ∈ K(D) there exists a constant L = L(A) such that
for every B ∈ K(D), B ⊆ A

|F (A)− F (B)| ≤ Ldγ(A,B). (7)

Notice that this is a sort of local-Lipschitz property only for sub domains.

The main result of the paper is formulated as follows.

Theorem 3.2. Let F : K(D) → IR be a γ-Lip functional. Then all solutions of problem
(1) are of class C1.

Proof. Let A be a solution A 6= ∅. Suppose for contradiction that A is not of class C1.
This implies that A has an angular point x0. Up to a translation, we can assume that
x0 is the origin of the system of coordinates. Suppose moreover that the dimension of
Nx ∩ {x3 = .. = xN = 0} is two and that

A ∩ {x3 = .. = xN = 0} ⊆ {(r cos θ, r sin θ) : r > 0, θ ∈ (0, ω)},

where ω < π is fixed.

Let Aε = conv(A \ Cε) the convex hull of the set A \ Cε, where Cε denotes the cylinder
{(x1, .., xN) : x

2
1 + x2

2 ≤ ε}. For every k = 3, .., N let us denote

gk(ε) = H1(Pk(A ∩ Cε)) > 0,

where H1 denotes the one dimensional Hausdorff measure and Pk the orthogonal projec-
tion on the k-th axis. From the convexity of A, there exists a constant C (depending only
on the geometry of A near x0) such that

|A| − |Aε| ≥ Cε2g3(ε) · .. · gN(ε).

Within this notation we implicitly cover the case N = 2, as soon as we think to ε2 in the
previous formula, as being equivalent to g1(ε)g2(ε). The value of the constant C could
be evaluated more precisely by computing the measure of the greatest polyhedron with
vertex at the origin and which is contained in A \ Aε.

The main idea is to prove that, as soon as F is γ-Lip, the asymptotic behaviour of
|F (A)− F (Aε)| when ε → 0 is of the form

|F (A)− F (Aε)| = ε2g3(ε) · .. · gN(ε)ε(ε), (8)

where, as usual, ε(ε) → 0 for ε → 0. If we achieve this goal, then we can prove that A can
not be the optimal set, in contradiction with our initial assumption. Indeed, we would
have that

F (Aε) + α|Aε| ≤ F (A) + α|A|+ ε2g3(ε) · .. · gN(ε)(ε(ε)− αC).
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Since for ε small ε(ε)− αC is negative, we deduce that A can not be optimal.

To prove (8), we relay on the γ-Lip property of F which is assumed by hypothesis, and
prove that

dγ(A,Aε) = ε2g3(ε) · ... · gN(ε)ε(ε). (9)

We have

dγ(A,Aε) =

∫

A

|wA − wAε|dx =

∫

A

wA − wAεdx,

since from the maximum principle and the fact that Aε ⊆ A, we have wA ≥ wAε a.e.
Since wA and wAε solve equation (3) for f ≡ 1 on A and Aε respectively, we write

∫

A

wA−wAεdx =

= 2[

∫

A

1

2
|∇wAε|2 − wAεdx−

∫

A

1

2
|∇wA|2 − wAdx]

= 2
[

min
u∈H1

0 (Aε)

1

2

∫

A

|∇u|2 − udx−
∫

A

1

2
|∇wA|2 − wAdx

]

.

(10)

Let us denote ϕ ∈ C∞
c (B0,2, [0, 1]) a function such that ϕ(x) = 1 on B0,1, and ϕε the

mollifier defined by

ϕε(x) = ϕ
(x1

ε
,
x2

ε
,

x3

g3(ε)
, ..,

xN

gN(ε)

)

.

The function wA(1− ϕε) belongs to H1
0 (Aε) hence can be taken as test function in (10).

Consequently we have

dγ(A,Aε) ≤ 2[

∫

A

1

2
|∇wA(1− ϕε)|2 − wA(1− ϕε)dx−

∫

A

1

2
|∇wA|2 − wAdx].

Using the fact that wA solves (3), we write

∫

A

wAϕεdx =

∫

A

∇wA∇(wAϕε)dx. Easy

computation gives

dγ(A,Aε) ≤
∫

A

|∇(wAϕε)|2dx ≤ 2

∫

A

w2
A|∇ϕε|2dx+ 2

∫

A

ϕ2
ε|∇wA|2dx. (11)

We study each term of the last relation separately. Following Lemma 2.4, we have that

|wA(x)| = εε(ε), (12)

where ε = (x2
1 + x2

2)
1/2. Consequently we have

∫

A

w2
A|∇ϕε|2dx =

∫

A∩K0,ε,2ε

w2
A|∇ϕε|2dx

≤ ε2ε(ε)

∫

A∩K0,ε,2ε

|∇ϕε|2dx

≤ ε2ε(ε)

∫

B0,2

ε2g3(ε)..gN(ε)
[ 1

ε2

( ∂ϕ

∂x1

)2

+
1

ε2

( ∂ϕ

∂x2

)2

+
1

g23(ε)

( ∂ϕ

∂x3

)2

+..+
1

g2N(ε)

( ∂ϕ

∂xN

)2]

dx

= ε2g3(ε)..gN(ε)ε(ε).
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Indeed, the last equality holds because all the derivatives of ϕ are bounded (from the
choice of ϕ) and for every k, the function ε

gk(ε)
is bounded from the convexity of A. For

the second term in (11) we have

∫

A

ϕ2
ε|∇wA|2dx =

∫

B0,2ε

ϕ2
ε|∇wA|2dx

= −
∫

B0,2ε

div(ϕ2
ε∇wA)wAdx

= −
∫

B0,2ε

∇ϕ2
ε∇wAwAdx−

∫

B0,2ε

ϕ2
ε∆wAwAdx

= −
∫

B0,2ε

∇ϕ2
ε∇wAwAdx+

∫

B0,2ε

ϕ2
εwAdx.

We have

I =

∫

B0,2ε

∇ϕ2
ε∇wAwAdx = −

∫

B0,2ε

∆ϕ2
εw

2
Adx− I,

hence
∫

A

ϕ2
ε|∇wA|2dx =

∫

B0,2ε

ϕ2
εwAdx+

1

2

∫

B0,2ε

∆ϕ2
εw

2
Adx.

Using again the estimation of Lemma 2.4 for wA and using the same scheme we get

∫

A

ϕ2
ε|∇wA|2dx = ε2g3(ε)..gN(ε)ε(ε),

hence relation (9) holds.

A weaker version of the γ-Lip property is still enough to get the conclusion of Theorem
3.2. Let A ∈ K(D) and x ∈ ∂A an angular point; in the sequel, the set Aε is constructed
as in the proof of Theorem 3.2.

Corollary 3.3. Let F : K(D) → IR be a functional such that for every A ∈ K(D) and
for every angular point x ∈ ∂A there exists a constant L = L(A, x) and δ > 0 such that
∀ε ∈ (0, δ) we have

|F (A)− F (Aε)| ≤ Ldγ(A,Aε). (13)

Then all solutions of problem (1) are of class C1.

Note that if F is γ-Lip, and A ∈ K(D) is such that F (A) 6= 0, then 1
F
satisfies (13) i.e.

for ε ∈ (0, δ′) we have
∣

∣

∣

1

F (A)
− 1

F (Aε)

∣

∣

∣ ≤ L′(A)dγ(A,Aε), (14)

with the constant L′(A) = |F (A)|(|F (A)| + 1). Here δ′ is chosen such that |F (Aε)| ≤
|F (A)|+ 1.

This property is intended to be applied for the eigenvalues of the Dirichlet Laplacian.
We will prove that A 7→ 1

λk(A)
is γ-Lip, hence A 7→ λk(A) satisfies (14). The mapping
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A 7→ λk(A) is not itself γ-Lip, since one can take in definition (7) a sequence of sets such
that dγ(Bε, ∅) → 0, therefore λk(Bε) → +∞.

In a first step we intend to consider shape functionals like in relation (2) or, more general,

F (A) = F (λ1(A), ..., λk(A)). (15)

Functionals depending on the state are discussed in the next paragraph.

First, we prove that for every k ∈ IN , the mappings A 7→ 1
λk(A)

are γ-Lip.

Theorem 3.4. Let A ⊆ D be a fixed open set. For every k ∈ IN , there exists a constant
ck(A) depending only on A such that for every j ≤ k and for every open set B ⊆ A we
have

∣

∣

∣

1

λj(A)
− 1

λj(B)

∣

∣

∣ ≤ ck(A)dγ(A,B). (16)

Proof. Observe that µk(RA) =
1

λk(A)
, hence one could try to apply inequality (4) in order

to prove (16). Unfortunately, we are not able to prove that |RA−RB|L(L2(D)) ≤ cdγ(A,B).
This would give straight forwardly a uniform constant c in (16) which does not depend
on k. One can only prove that (see [3]) that |RA − RB|L(L2(D)) ≤ cdγ(A,B)α, for some
α < 1.

Let us fix k ∈ IN . We consider Vk ⊆ L2(D) the linear space generated by the first
k eigenfunctions of the Dirichlet Laplacian on A. The space Vk is, a priori, a finite
dimensional subspace of H1

0 (A), but extending all the functions with zero on D \ A, we
can see it as a subspace of L2(D). We denote

TA
k = Pk ◦RA ◦ Pk,

TB
k = Pk ◦RB ◦ Pk,

where Pk : L
2(D) → Vk is the orthogonal projector on Vk. Then we have the following.

Lemma 3.5. For every j = 1, .., k the following hold

µj(T
A
k ) =

1

λj(A)
(17)

µj(T
B
k ) ≤ 1

λj(B)
(18)

Proof of Lemma 3.5. Inequality (18) is a direct consequence of (5). Indeed, for every
j = 1, .., k

µj(T
B
k ) = µj(Pk ◦RB ◦ Pk) ≤ µ1(Pk)µj(RB ◦ Pk) ≤ µ1(Pk)

2µj(RB).

Following Section 2 we have µ1(Pk) = |Pk|L(L2(D)) = 1 hence (18) comes trivially.

For proving (17) we notice in the same way that

µj(T
A
k ) ≤ µj(RA). (19)
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Since TA
k is positive compact and self-adjoint, it has a spectrum consisting only of eigen-

values. Moreover, for every j = 1, .., k if uj is the j-th eigenfunction of RB we have
that

TA
k uj = Pk ◦RA ◦ TA

k uj = µj(A)uj, (20)

since Pkuj = uj. Combining (19) and (20) we get (17).

Proof of Theorem 3.4, continuation. Using Lemma 3.5 we have for every j = 1, .., k

0 ≤ 1

λj(A)
− 1

λj(B)
≤ µj(T

A
k )− µj(T

B
k )

≤ |TA
k − TB

k |L(L2(D)) = |Pk ◦RA ◦ Pk − Pk ◦RB ◦ Pk|L(L2(D)).

But

|Pk ◦RA ◦ Pk − Pk ◦RB ◦ Pk|L(L2(D)) =

= sup
|u|L2(D)≤1

〈(Pk ◦RA ◦ Pk − Pk ◦RB ◦ Pk)u, u〉L2(D)×L2(D)

= sup
|u|L2(D)≤1

〈(RA −RB)Pku, Pku〉L2(D)×L2(D).

Let us notice that from Lemma 2.2 Range(Pk) ⊆ L∞(D) and moreover

Pk : L
2(D) → L∞(D)

is bounded. Indeed, let u ∈ L2(D), |u|L2(D) ≤ 1 and Pku = α1u1 + ... + αkuk. Here, the
eigenfunctions u1, .., uk of the Dirichlet Laplacian on A are supposed to be L2-normalised.
Since |Pku|L2(D) ≤ 1 we get

∑k
j=1 α

2
j ≤ 1, hence αj ≤ 1 for every j = 1, .., k. From Lemma

2.2 we have that

|uj|L∞(D) ≤ Cλj(A)
−N/4,

where the constant C depends only on the dimension of the space. Finally, we observe
that

|Pku|L∞(D) ≤ C
k

∑

j=1

αjλj(A)
−N/4 := Ck(A).

We have

〈(RA −RB)Pku, Pku〉L2(D)×L2(D)

≤
∫

A

|uA,Pku − uB,Pku||Pku|dx ≤ Ck(A)

∫

A

|uA,Pku − uB,Pku|dx

≤ 2Ck(A)

∫

A

uA,|Pku| − uB,|Pku|dx ≤ 2C2
k

∫

A

wA − wBdx = 2C2
kdγ(A,B).

The last inequality is a consequence of the weak maximum principle.

We are now able to formulate the following regularity result for shape functionals depend-
ing on eigenvalues.
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Theorem 3.6. Let F : IRk → [0,+∞) be a Lipschitz function. Every solution of the
problem

min
A∈K(D)

F (λ1(A), λ2(A), .., λk(A)) + α|A|, (21)

is of class C1.

Proof. It is a direct consequence of Theorem 3.4 and Corollary 3.3.

Remark 3.7. The existence of a solution for problem (21) is a consequence of the fact
that K(D) is γ-compact, under a coerciveness-like assumption on F . In order to get
the existence, one has only to rule out the situation in which a minimising sequence
γ-converges to the empty set; this would imply that all the eigenvalues diverge to +∞.

3.2. Functionals depending on the state

We consider in the sequel shape functionals depending on the state, i.e. of the form

F (A) =

∫

D

j(x, uA,f )dx, (22)

where j : D × IR → IR is a Carathéodory function (uA,f is assumed extended by zero on
D \A in (22)), i.e. s 7→ j(x, s) is continuous on IR for almost every x ∈ D and x 7→ j(x, s)
is measurable for every s ∈ IR.

If j : D × IR → IR is Lipschitz in the second variable, then for every f ∈ L∞(D), the
functional

A →
∫

D

j(x, uA,f (x))dx

is γ-Lip, thus Theorem 3.2 applies. Indeed, let us consider A1 ⊆ A2. Then

|
∫

D

j(x, uA1,f (x))dx−
∫

D

j(x, uA2,f (x))dx| ≤ L

∫

D

|uA1,f (x)− uA2,f (x)|dx

≤ 2L|f |∞
∫

D

|wA1(x)− wA2(x)|dx = 2L|f |∞dγ(A1, A2).

This argument works only for f ∈ L∞(D). It is not clear whether for f ∈ L2(D) the
previous functional is γ-Lip. Nevertheless, in dimension 2 of the space, the existence of
smooth solutions for f ∈ L2(D) can be obtained in a direct way, using the same type
of arguments as in Theorem 3.2. The important feature which allows us to repeat the
arguments of Theorem 3.2 is that f ∈ L2(D) is fixed (see Remark 4.3 of the last section).

Lemma 3.8. We fix the dimension of space N = 2 and consider f ∈ L2(D). Let A ∈
K(D) be such that the origin is an angular point of ∂A. Let Aε be constructed like in
Theorem 3.2. The following estimate holds for ε → 0

∫

D

|uA,f − uAε,f |dx = ε2ε(ε). (23)
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Proof. We can fix f ≥ 0, if not we decompose f = f+ − f−. We have

∫

D

(uA,f − uAε,f )dx =

∫

A\Aε

uA,fdx+

∫

Aε

(uA,f − uA−ε,f )dx.

For the first term of the right hand side, we readily get

0 ≤
∫

A\Aε

uA,fdx ≤ |A \ Aε||uA,f |L∞(A\Aε) = ε3ε(ε).

For the estimate of the second term, we use the fact that uA,f − uAε,f is harmonic in Aε;
there exists a constant C > 0 such that for every ε ∈ (0, 1)

∫

Aε

(uA,f − uAε,f )dx ≤ C

∫

∂Aε

(uA,f − uAε,f )dσ = ε2ε(ε).

For the last inequality we used the fact that on ∂Aε∩∂A the function uA,f−uAε,f vanishes.
On ∂Aε \ ∂A the function uAε,f vanishes, while uA,f satisfies the estimate of Lemma 2.3.
Since there exists a positive constant C ′ such that H1(∂Aε \ ∂A) ≤ C ′ε the previous
inequality follows.

We give now the following.

Theorem 3.9. Let j : D × IR → IR be a Carathéodory function which is uniformly
Lipschitz in the second variable, and f ∈ L2(D) and α > 0 be fixed. Every solution of the
shape optimisation problem

min
A∈K(D)

∫

D

j(x, uA,f (x))dx+ α|A|, (24)

is of class C1.

Proof. The proof follows, step by step, as in Theorem 3.2. In order to estimate the
asymptotic behaviour of

∫

D

j(x, uA,f (x))dx−
∫

D

j(x, uAε,f (x))dx,

we use Lemma 3.8.

For a function f ∈ L2(D), the previous theorem does not apply to the typical case when
the energy is to be minimised, i.e. for the functional

F (A) = −1

2

∫

A

fuA,fdx,

since j(x, u) = f(x)u is not uniformly Lipschitz in u. To cover this case, we give the
following lemma. We still fix the dimension of the space N = 2.



D. Bucur / Regularity of Optimal Convex Shapes 513

Lemma 3.10. Let f ∈ L2(D) be fixed. Let A ∈ K(D) be such that the origin is an angular
point of ∂A. Let Aε be constructed like in the proof of Theorem 3.2. The following estimate
holds for ε → 0

∫

D

|f(uA,f − uAε,f )|dx = ε2ε(ε). (25)

Proof. The proof of (25) follows the same lines as the proof of Theorem 3.2, only relation
(12) is to be replaced by the estimate of Lemma 2.3. Since

∣

∣

∣

∫

D

f(uA,f − uAε,f )dx
∣

∣

∣ ≤
∫

D

|f |(uA,|f | − uAε,|f |)dx

it is enough to consider only f ≥ 0. So let us fix f ≥ 0. Then

0 ≤
∫

D

f(uA,f − uAε,f )dx

≤ 2
[

∫

A

1

2
|∇uAε,f |2 − fuAε,fdx−

∫

A

1

2
|∇uA,f |2 − fuA,fdx

]

≤ 2

∫

B0,2ε

u2
A,f |∇ϕε|2dx+ 2

∫

B0,2ε

ϕ2
εfuA,fdx+

∫

B0,2ε

∆ϕ2
εu

2
A,fdx.

(26)

The previous inequality was obtained as in Theorem 3.2 taking as test function on Aε the
function uA,f (1− ϕε), where ϕε is the usual mollifier. We clearly get

∫

B0,2ε

u2
A,f |∇ϕε|2dx ≤ |uA,f |2L∞(B0,2ε)

∫

B0,2ε

|∇ϕε|2dx = ε2ε(ε),

∫

B0,2ε

ϕ2
εfuA,fdx ≤ |uA,f |L∞(B0,2ε)

∫

B0,2ε

fdx ≤ |uA,f |L∞(B0,2ε)|f |L2(B0,2ε)|B0,2ε|
1
2 = ε2ε(ε),

∣

∣

∣

∫

B0,2ε

∆ϕ2
εu

2
A,fdx

∣

∣

∣ ≤ |uA,f |2L∞(B0,2ε)

∫

B0,2ε

|∆ϕ2
ε|dx = ε2ε(ε).

All these relations are a consequence of Lemma 2.3.

Lemma 3.10 is useful in proving regularity for shape functionals of energy type.

Theorem 3.11. Let N = 2 and j : D × IR → IR be a Carathéodory function which is
uniformly Lipschitz in the second variable. Let f ∈ L2(D) and α > 0 be fixed. Every
solution of the shape optimisation problem

min
A∈K(D)

∫

D

f(x) · j(x, uA,f (x))dx+ α|A|, (27)

is of class C1.

Proof. The proof is a consequence of Lemma 3.10 and follows the steps as Theorem
3.2.
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4. Further remarks

Remark 4.1. The choice of a bounded design region plays a role only in the existence
question. The proof of the regularity for unbounded design regions is the same, since
an optimal set, if it exists, it is bounded (since there does not exist unbounded open
convex sets with finite measure). If D = IRN for example, the existence of minimisers
has to be treated in a more careful way; in particular one should handle situations in
which a minimising sequence becomes longer and thiner. In this case, all the eigenvalues
diverge to +∞, thus a coerciveness-like assumption on F would straight forwardly solve
the existence problem (see Kawohl [18, Chapter 1]).

Remark 4.2. Let F : IRk → IR be homogeneous of degree one in all the variables. For
D = IRN , problem

min
A convex

F (λ1(A), .., λk(A)) + α|A| (28)

is equivalent to the isoperimetric problem

min
|A|=c, A convex

F (λ1(A), .., λk(A)), (29)

in the sense that the solutions have the same shape, up to a homothety.

Remark 4.3. A natural distance which has the same convergent sequences as the γ-
convergence would be the following

d̃(A1, A2) = |RA1 −RA2|L(L2(D)).

In the metric space (K(D), d̃), functionals like F1 or F2 in relation (2) are trivially Lip-
schitz, henceforth Theorem 3.4 would follow immediately. Nevertheless, this distance is
not suitable for proving the regularity result of Theorem 3.2. Indeed, in two dimensions of
the space, we can readily see that |RA−RAε|L(L2(D)) in Theorem 3.2 is not asymptotically
of the form ε2ε(ε). We can prove that there exists a constant c > 0 such that

|RA −RAε|L(L2(D)) ≥ cε2.

Indeed, for simplicity, let us assume that A is a sector of a disk, with angle ω ∈ (0, π) at
the origin. By definition, we have that

|RA −RAε|L(L2(D)) = sup
|f |L2(D)=1

|(RA −RAε)(f)|L2(D).

Take fε =
1

|A\Aε|
1
2
1A\Aε ; of course |fε|L2(D) = 1. Moreover RAε(fε) = 0, hence

|RA −RAε|L(L2(D)) ≥ |uA,fε|L2(D).

One can estimate this last norm using the usual blow up technique. Let

vε(x) :=
uA,fε(εx)

ε
.

Then

−∆vε(x) = εfε(εx) =
1

|T1|
1T1 in

1

ε
A,
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where T1 is the triangle of edge equal to 1 in the sector ω, and vε ∈ H1
0 (

1
ε
A). We have

|uA,fε|L2(A) = ε2|vε|L2( 1
ε
A).

Using the maximum principle, we get that vε ≥ v1, hence the conclusion follows.
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