
Journal of Convex Analysis
Volume 10 (2003), No. 2, 445–464

Examples of the Lavrentiev Phenomenon

with Continuous Sobolev Exponent Dependence

M. Foss
Kansas State University, Department of Mathematics,

Manhattan, KS 66506-2602, USA
foss@math.ksu.edu

Received November 8, 2002

We construct variational problems with infima that have non-trivial continuous dependence upon the
Sobolev space from which the competing functions are taken. It is shown, for each µ in a particular class
of continuous functions, that there is a variational integral and boundary conditions such that, for every
p ∈ [1,∞], the infimum is equal to µ(p) if the admissible class is a subset of W 1,p. Thus, the manner in
which the infimum depends upon the Sobolev exponent may be prescribed.

1. Introduction

In 1926, M. Lavrentiev [9] demonstrated that there exists a functional of the form
∫ b

a
f(x,

u(x), u′(x)) dx such that the infimum for the functional over the absolutely continuous
functions is strictly less than its infimum over the continuously differentiable functions,
when u : R→ R is required to meet certain boundary conditions. Thus, the infimum for
the functional exhibits a sensitivity to the regularity required of the admissible functions.
This phenomenon is called Lavrentiev’s phenomenon.

To be more precise, we record the following definitions. Let the domain Ω ⊂ Rm, the
functional J : W 1,1(Ω; Rn)→ R and the admissible class A1 ⊆ W 1,1(Ω; Rn) be given. For
each p ∈ [1, +∞], set Ap := A1 ∩W 1,p(Ω; Rn).

Definition 1.1. Given p∗ ∈ (1, +∞), the functional J is said to have property (Λp∗) if

inf
u∈Ap

J [u] < inf
u∈Ap′

J [u] (Λp∗)

for each p, p′ ∈ [1, +∞] satisfying 1 ≤ p < p∗ < p′ ≤ +∞.

Definition 1.2. The functional J exhibits the Lavrentiev phenomenon if it has the prop-
erty

inf
u∈A1

J [u] < inf
u∈A∞

J [u]. (Λ)

Note that if the functional J has property (Λp∗) for some p∗ ∈ (1, +∞), then it has
property (Λ) and thus exhibits the Lavrentiev phenomenon.

Remark 1.3. As we have defined it, there exist trivial examples of the Lavrentiev phe-
nomenon. The class A∞ may be empty for instance. Although they are not very interest-
ing, technically, this is an example of Lavrentiev’s phenomenon by our definitions. One
way to exclude many such trivial examples is to require A1 to be such that A∞ is dense in
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A1. Although this is true for the examples presented in this article, we are not including
this requirement in our definition.

Numerous examples of such functionals have been published since Lavrentiev’s first. In
1934, B. Manià [11] improved Lavrentiev’s example; the Lagrangian f was a simple poly-
nomial. In 1984, J. Ball & V. J. Mizel [2] gave an example with an f that was strictly
convex with respect to its third argument. V. J. Mizel & A. C. Heinricher [7], in 1988,
provided one dimensional constructions with property (Λ); for these examples, they were
also able to give explicit expressions for the pseudo-minimizers. G. Alberti & P. Majer [1]
provided a two dimensional example with an autonomous integrand in 1994. An example
without boundary conditions was found by K. Dani, W. Hrusa & V. J. Mizel [5] in 1996.
W. Hrusa [8] also created an example in one dimension where the functional depends only

on u, u′ and u′′; that is J has the form
∫ b

a
f(u(x), u′(x), u′′(x)) dx, where u : (a, b) → R.

The diversity of examples in the literature demonstrate that the Lavrentiev phenomenon
can appear in a wide variety of variational problems; in fact, recent work by W. Hrusa and
V. J. Mizel strongly suggests, at least for one dimensional problems, that the phenomenon
is generic [12]. For a more extensive survey of the Lavrentiev phenomenon, we refer to
G. Buttazzo & M. Belloni [3].

One question that has arisen concerns the possible sensitivity of the infimum for J to the
regularity of the class of admissible functions. If we define the function I : [1,∞]→ R by

I(p) := inf
u∈Ap

J [u],

how might I depend on the Sobolev exponent p? This is the question we consider in this
article.

Until fairly recently, in all examples of the Lavrentiev phenomenon, there existed some
p∗ ∈ (1,∞) and constants c0, c1 ∈ R such that for each p0 ∈ [1, p∗) and p1 ∈ [p∗,∞]

c0 = I(p0) < I(p1) = c1.

In other words, the examples have an increasing function I that was right continuous
and piecewise constant. In 1999, however, A. Siegal [14], constructed one dimensional
examples of J with smooth integrands such that

I(p) =


c1, 1 ≤ p < p∗;
c2, p = p∗;
c3, p∗ < p ≤ ∞;

where p∗ ∈ [1,∞] and c1, c2, c3 ∈ R satisfy c1 < c2 < c3. These examples show that I
can have a jump discontinuity at any p∗ ∈ [1,∞] and that I may be right continuous, left
continuous or neither.

We will provide examples where for every p∗ in a given interval the functional has property
(Λp∗). Moreover, we will show that, given p0, p1 ∈ (1,∞) and c ∈ [0,∞), if µ is a monotone
absolutely continuous function such that

µ(p) = 0 ∀p ∈ [1, p0),

and
µ(p) = c ∀p ∈ [p1,∞],
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then there is a functional J such that, for each p ∈ [1,∞], one finds I(p) = µ(p). Thus, the
infima for our examples will have a prescribed continuous dependence upon the exponent
of the Sobolev space from which the admissible functions are taken. As the exponent
decreases and the class of admissible functions expands, we are able to more closely
approach the absolute infimum of the functional. This absolute minimum, however, can
never be attained until the exponent of the Sobolev space decreases to at least p1.

2. The Basic Idea

The underlying idea for all the examples to be presented is simple. The purpose of this
section is to provide some intuition for what we will prove.

To begin, we extract from Heinricher & Mizel [7] a result which is the principal basis for our

constructions. For each q ∈ (1, +∞), let us define the integrand f( · ; q) : (0, 1)×R×R→ R
by

f(x, u, ξ; q) := (|u|q − x)2 |ξ|
3q

q−1

and the functional J [ · ; q] : W 1,1((0, 1); R)→ R by

J [u; q] :=

1∫
0

f(x, u(x), u′(x); q) dx.

For the admissible classes, we set

A1 :=
{
u ∈ W 1,1((0, 1); R) | u(0) = 0 and u(1) = 1

}
,

and for each p ∈ (1, +∞], we set

Ap := A1 ∩W 1,p((0, 1); R).

Each member in our family of integrands has the following homogeneity property: given
q ∈ (1, +∞), if we select p∗ = q

q−1
, then

f(eτx, e
p∗−1

p∗
τu, e−

1
p∗

τξ; q) = e−τf(x, u, ξ; q) (HP)

for every τ ∈ R. Using the invariance of f under this rescaling the solutions to the Euler-
Lagrange equations for J can be determined and used to construct a Mayer field. With
this field, it can be shown (see Theorem A in [7]) that

1 ≤ p < q
q−1
⇒ inf

u∈Ap
J [u; q] = J [x

1
q ; q] = 0, (1)

while
q

q−1
≤ p ≤ +∞⇒ inf

u∈Ap
J [u; q] = J [x

3
2q+1 ; q] = 2

3
(q−1)2

q+2

(
3

2q+1

) 3q
q−1

> 0. (2)

Thus, there is a jump in the infimum for J as the Sobolev exponent for the admissible

class increases past q
q−1

, i.e. the functional has property (Λ
q

q−1 ).

For us, the particularly important part of this result is that it gives us the exact value
for the infimum of the functional in the different admissible classes and provides us with
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the functions at which J attains these different infima. For convenience, let us define
I : [1, +∞]× (1, +∞)→ R by

I(p, q) := inf
u∈Ap

J [u; q].

From (1) and (2), we have an explicit formula for I, namely

I(p, q) =

 0, 1 ≤ p < q
q−1

;

2
3

(q−1)2

q+2

(
3

2q+1

) 3q
q−1

, q
q−1
≤ p.

(3)

We now parameterize the functions that give us each of the above infima. For q ∈ (1, +∞)

we let uam( · ; q) ∈ A1 and upm( · ; q) ∈ A
q

q−1 be given by

uam(x; q) := x
1
q and upm(x; q) := x

3
2q+1 .

We may thus write

I(p, q) = inf
u∈Ap

J [u; q] =

{
J [uam( · ; q); q], 1 ≤ p < q

q−1
;

J [upm( · ; q); q], q
q−1
≤ p ≤ +∞.

The essential idea for the examples in this article is to add a dimension to the domain
of the admissible functions and use this additional dimension to parameterize q. For the
moment, the domain we use is the unit square

Ω := (0, 1)× (0, 1),

and we set

Ã
1

:=
{
u ∈ W 1,1(Ω; R) | u(0, · ) = 0 and u(1, · ) = 1

}
.

Letting q : (0, 1) → (1, +∞) be a given continuous function, define a new functional

J̃ : W 1,1(Ω; R)→ R by

J̃ [u] :=

1∫
0

J [u( · , y); q(y)] dy =

1∫
0

1∫
0

f(x, u(x), u,x(x); q(y)) dxdy, (4)

where x = (x, y) ∈ R2 and u,x(x) := ∂
∂x

u(x, y). Define Ĩ : [1, +∞]→ R by

Ĩ(p) := inf
u∈eAp

J [u].

From (3), we have that

Ĩ(p) =

1∫
0

I(p, q(y)) dy =

∫
{y| q(y)

q(y)−1
≤p}

J [upm( · ; q(y)); q(y)] dy (5)

=

∫
{y|1≤p<

q(y)
q(y)−1}

J [uam( · ; q(y)); q(y)] dy +

∫
{y| q(y)

q(y)−1
≤p}

J [upm( · ; q(y)); q(y)] dy
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and one might expect that the infimum in Ã
p

is attained at the function u∗ : Ω → R
given by

u∗(x) :=

{
uam(x; q(y)), 1 ≤ p < q(y)

q(y)−1
;

upm(x; q(y)), q(y)
q(y)−1

≤ p ≤ +∞.
(6)

If u∗ were in Ã
p

and q( · ) were non-constant, then (5) would imply that we have an
example of the Lavrentiev phenomenon where the infimum increases continuously with
the exponent of the Sobolev space.

Figure 1:
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Figure 2.1: Possible discontinuity for u∗

The function given in (6), however, is generally not a member of the admissible space

Ã
p
. One reason we may not find u∗ in Ã

p
is that it suffers a jump discontinuity whenever

q(y)
q(y)−1

increases (or decreases) past p (Figure 2.1 illustrates the situation). What we can

do though is construct a sequence
{

u
(n)
∗

}∞
n=1
⊂ Ã

p
such that J̃ [u

(n)
∗ ]→ J̃ [u∗] as n→ +∞.

To see that such a sequence might be found, observe that the integrand for the functional

J̃ has no dependence on u,y and the discontinuity in u∗ is with respect to the y argument.

Hence, it seems reasonable to expect that J̃ of an appropriate point-wise approximation

of u∗ will approximate J̃ [u∗]. This would allow us to conclude

Ĩ(p) ≤
1∫

0

I(p, q(y)) dy.

Meanwhile, the results in [7] show that

Ĩ(p) ≥
1∫

0

I(p, q(y)) dy.

It would follow that the guess in (5) is correct.

This is the main idea behind the results and proofs that we will present in this chapter.

We will not, however, use the J̃ defined in (4). Instead, a modified version of that
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functional will be used. In addition to having properties similar to those of (4), this
modified functional will give us greater control on the regularity of its integrand and how
its infimum increases with the Sobolev exponent.

3. The Functional

In this section we construct the functionals we wish to examine. A simple remark regard-
ing the regularity of our Lagrangians is also discussed.

First, we define a subclass of the monotone absolutely continuous functions. These func-
tions can be used to prescribe how the infimum of our functionals depends upon the
Sobolev exponent. For each p1, p2 ∈ (1,∞) satisfying p1 < p2, set

Mp1,p2 :=
{
µ ∈ W 1,1

loc ([1, +∞]; [0, +∞)) | conditions (a)–(c) are satisfied
}

, (7)

where conditions (a)-(c) are the following:

(a) µ [1, p1] = 0;

(b) ∂
∂p

µ (p1, p2) ≥ 0 a.e.;

(c) ∂
∂p

µ [p2, +∞] = 0 a.e.

We also put

M :=
⋃

p1>1

⋃
p2>p1

Mp1,p2 .

If µ ∈ Mp1,p2 , then it must be an absolutely continuous nondecreasing function that is 0
on [1, p1] and constant on [p2, +∞]. Given a µ ∈M, we will construct a functional whose
infimum duplicates µ as the Sobolev exponent p increases from 1 to +∞.

For the sequel, fix µ ∈ M. By definition, there exist p̃1, p̃2 ∈ (1, +∞) such that µ ∈
Mep1,ep2 . Put

p1 := sup {p ∈ (1, +∞) | µ ∈Mp,ep2} (8)

and
p2 := inf {p ∈ (1, +∞) | µ ∈Mep1,p} . (9)

So µ ∈Mp1,p2 , but µ /∈Mp,p2 and µ /∈Mp1,p for any p ∈ (p1, p2).

Now, we will define the integrand for our functional. For each q ∈ (1, +∞) and m ∈
[3q, +∞), let h( · ; q, m), f( · ; q, m) : (0, 1)× R× R→ R be given by

h(x, u, ξ; q, m) := |u|
m−3q
q−1
(
|u|

q
q−1 − x

)2|ξ|m (10)

and
f(x, u, ξ; q, m) := [µ,p(q)][s(q, m)][h(x, u, ξ; q, m)], (11)

where we have put

s(q, m) := (m−3)(m−2)
2

[
m−1

m
q

q−1

]m
. (12)

Later we will prove that, for an appropriate admissible class, the functional associated
with h( · ; q, m) has property (Λq). The magnitude of the jump in the infimum for this
functional is exactly 1

s(q,m)
. So if f were used as an integrand for a functional, the infimum

would be either 0 or µ,p(q) depending on whether or not the competing functions were
allowed to be in the Sobolev space with exponent less than q.
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As was described in the previous section, the domain for the competing functions is two-
dimensional, and one of these dimensions will be used to parameterize the m and q in
(11). As a domain, we use the rectangle

Ω := (0, 1)× (p1, p2). (13)

For our parameterizations of m and q, we choose m ∈ [3p2, +∞) to be a fixed integer
and define q(y) := y. Note that these choices satisfy the condition m ≥ 3q(y) at each
y ∈ (p1, p2), which we required for definitions (10) and (11).

Now we define the functional we wish to examine along with the admissible class A1. Let
J : W 1,1(Ω; R)→ R be given by

J [u] :=

∫
Ω

f(x, u(x), u,x(x); y, m) dx. (14)

For A1, set
A1 :=

{
u ∈ W 1,1(Ω; R) | u(0, · ) = 0 and u(1, · ) = 1

}
. (15)

Note that the admissible class Ap = A1 ∩W 1,p(Ω; R) is a dense subset of A1 for every

p ∈ [1, +∞]. We also define I(p) : [1, +∞]→ R by

I(p) := inf
u∈Ap

J [u]. (16)

Our objective is to show that

I(p) =

∫
{y| y≤p}

µ,p(y) dy = µ(p).

Notice that we have only required m to be some fixed integer in [3p2, +∞).

Let us make a few remarks regarding the integrand f and the functional J . We first
comment on the differentiability of the integrand.

Remark 3.1. The regularity of the integrand f is essentially determined by the regularity
of µ over the interval (p1, p2) and the value chosen for m ∈ [3p2, +∞). In many cases
(particularly when µ ∈ C∞((p1, p2); R)), larger values of m provide more differentiability
for f . An easy way to see this is to rewrite (11): we have

f(x, u, ξ; y, m) = µ,p(y)M
[

y
y−1

]m [
|u|

m−y
y−1 − 2x|u|

m−2y
y−1 + x2|u|

m−3y
y−1

]
|ξ|m,

where M := (m−3)(m−2)
2

[
m−1

m

]m
. If p1, p2 ∈ (1, +∞) and x ∈ Ω, then y ∈ (p1, p2), and

it follows that x 7→ 1
y−1
∈ C∞(Ω; R). Recalling that m was chosen to be an integer in

[3p2, +∞), we see that the differentiability of f is completely determined by the differen-
tiability of the terms

∂
∂p

µ (p1, p2), |u|
m−3y
y−1 and |ξ|m.

The last term is infinitely differentiable when m is even, and the second term is k-
differentiable when m ≥ k(p2 − 1) + 3p2. Thus if µ,p is k-differentiable and m ≥
k(p2 − 1) + 3p2 is an even integer, then f is k-differentiable.
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Our next remark concerns a homogeneity property of f .

Remark 3.2. For each fixed y ∈ (p1, p2), we claim f has the homogeneity property (HP)
with p∗ = y (Section 2). Indeed by definition (10), for each τ ∈ R we find

h
(
eτx, e

y−1
y

τu, e−
1
y
τξ; y, m

)
=
∣∣∣e y−1

y
τu
∣∣∣m−3y

y−1

(∣∣∣e y−1
y

τu
∣∣∣ y

y−1 − eτx

)2 ∣∣∣e− 1
y
τξ
∣∣∣m

=e
m−3y

y
τe2τe−

m
y

τh(x, u, ξ; y, m) = e−τh(x, u, ξ; y, m).

Therefore h has property (HP). It follows from definition (11) that f also has property
(HP) for each fixed y ∈ (p1, p2).

We also wish to record

Remark 3.3. The integrand f is nonnegative and convex with respect to ξ. Clearly, we

have ∂2

∂ξ2 f(x, u, ξ; y, m) ≥ 0 at every (x, u, ξ) ∈ Ω×R×R since m ≥ 3p2 > 3 is an integer.

Our final remark concerns the functional J .

Remark 3.4. We obviously have h ≥ 0. Since µ ∈ Mp1,p2 implies µ,p ≥ 0, we also have
f ≥ 0 and therefore J ≥ 0 (14). Let us define uam ∈ A1 by

uam(x) := x
y−1

y . (17)

We see that

J [uam] =

∫
Ω

µp(y)s(y, m)h
(
x, x

y−1
y , y−1

y
x−

1
y ; y, m

)
dx,

but h
(
x, x

y−1
y , ξ; y, m

)
= 0 at any ξ ∈ R. It follows that J [uam] = 0, and hence uam is an

absolute minimizer for J over A1.

For a concrete example illustrating our definitions to this point, let us take µ ∈M to be

µ(p) =


0, 1 ≤ p < 3

2
;

p− 3
2
, 3

2
≤ p < 5

2
;

1, 5
2
≤ p.

So µ,p 6= 0 only over the interval (3
2
, 5

2
). Therefore µ ∈Mep1,ep2 for any p̃1 ≤ 3

2
and p̃2 ≥ 5

2
.

By definitions (8) and (9), we put p1 = 3
2

and p2 = 5
2
. By (13), the domain Ω is the

rectangle (0, 1)× (3
2
, 5

2
). Selecting m = 14, our integrand (11) becomes

f(x, u, ξ; y, 14) = 66
(

13
14

)14 ( y
y−1

)14

|u|
14−3y
y−1
(
|u|

y
y−1 − x

)2
ξ14,

and the functional (14) is

J [u] =

∫
Ω

f(x, u(x), u,x(x); y, 14) dx.

The convexity of f with respect to ξ is obvious. Furthermore, for this example, it is clear
that f is C∞ with respect to x, y and ξ. The exponent on |u| is always larger than 4.
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Therefore f is C3 with respect to u. In fact, the integrand f( · , · , · ; · , 14) is jointly C3

with respect to all its arguments. To obtain a Lagrangian that has more differentiability,
we may simply chose m to be a larger integer. Finally, we note that for any ξ ∈ R we

have f
(
x, x

y−1
y , ξ; y, m) = 0. Thus uam given in (17) is the absolute minimizer for J .

With the functional J in hand, we now proceed to prove that it has the desired property,
namely that I(p) = µ(p). Our proof splits naturally into two sections. The first of which
establishes that I(p) ≥ µ(p). In the second section we prove the counterpart: I(p) ≤ µ(p).
With these two inequalities, the proof will be completed.

4. I(p) ≥ µ(p)

The goal for this section is to prove the inequality I(p) ≥ µ(p).

Lemma 4.1. For each p ∈ [1, +∞] we have I(p) ≥ µ(p).

Proof. The proof is split into three parts. The first is the case 1 ≤ p ≤ p1. In the second
case, we prove the lemma for p1 < p < p2. The last case covers p2 ≤ p ≤ +∞.

Case 1. 1 ≤ p ≤ p1:

Since p ∈ [1, p1] and µ ∈Mp1,p2 , we have µ(p) = 0. Hence

I(p) = inf
u∈Ap

∫
Ω

f(x, u(x), u,x(x); y, m) dx

 ≥ 0,

because f ≥ 0. Therefore I(p) ≥ µ(p).

For the remaining two cases, we will reduce our problem to a family of one-dimensional
problems. To this end, it will be useful to define the following one-dimensional admissible
classes. For each p ∈ [1, +∞], we set

Bp :=
{
v ∈ W 1,p((0, 1); R) | v(0) = 0 and v(1) = 1

}
. (18)

We now proceed to Case 2.

Case 2. p1 < p < p2:

Of the three cases, this is the most complicated. The idea is to treat the two-dimensional
problem as a one-dimensional variational problem at each of the y ∈ (p1, p]. Employing
techniques that Heinricher & Mizel use in [7], a lower bound can be established for each
of these one-dimensional problems. This will lead to the desired lower bound for the
two-dimensional problem.

Let u ∈ Ap be given. We first reduce the two-dimensional problem to a family of one-
dimensional problems. Define Ω∗ := (0, 1) × (p1, p] ⊂ Ω. Using the non-negativity of f ,
we have

J [u] =

∫
Ω

f(x, u(x), u,x(x); y, m) dx ≥
∫
Ω∗

f(x, u(x), u,x(x); y, m) dx

=

∫
Ω∗

µp(y)s(y, m)h(x, u, u,x; y, m) dx.
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By Fubini’s theorem and the definition for Ω∗, we may write

J [u] ≥
∫

(p1,p]

µ,p(y)s(y, m)

 ∫
(0,1)

h(x, u, u,x; y, m) dx

 dy.

Since u ∈ Ap ⊂ W 1,p(Ω; R), for almost every y ∈ (p1, p] we find u( · , y) in Bp. It follows
that

J [u] ≥
∫

{y|p1<y≤p}

µ,p(y)s(y, m)

 ∫
(0,1)

h(x, u, u,x; y, m) dx

 dy

≥
∫

{y|p1<y≤p}

µ,p(y)s(y, m)

 inf
v∈Bp

∫
(0,1)

h(x, v(x), v′(x); y, m) dx

 dy

≥
∫

{y|p1<y≤p}

µ,p(y)s(y, m)

 inf
v∈By

∫
(0,1)

h(x, v(x), v′(x); y, m) dx

 dy, (19)

where v′(x) = d
dx

v(x). In the last step we have used the fact that Bp ⊆ By for any

y ∈ (p1, p]. Let us define G : W 1,1((0, 1); R)→ L1((p1, p); R) by

G[v](y) :=

∫
(0,1)

h(x, v(x), v′(x); y, m) dx. (20)

We now rewrite (19) as

J [u] ≥
∫

{y|p1<y≤p}

µ,p(y)s(y, m)

[
inf

v∈By
G[v](y)

]
dy. (21)

For the proof of this case, it is clear that it suffices to show infv∈By G[v](y) is bounded
below by 1

s(y,m)
for each y ∈ (p1, p). We will use exactly the same argument presented

in [7] to do this.

Our objective is to determine
inf

v∈By
G[v](y)

at each y ∈ (p1, p]. As stated before, we will treat this as a one-dimensional variational
problem at each y ∈ (p1, p] and use a field theory argument essentially taken from [7].
The key ingredients are the solutions to the Euler-Lagrange equations associated with
functional G[ · ](y) (which we will not write out explicitly) and the convexity of h with
respect to ξ.

We fix y ∈ (p1, p] for now. To find the solutions of these Euler-Lagrange equations, we
recall the homogeneity property (HP) of h: for any τ ∈ R

h(eτx, e
y−1

y
τu, e−

1
y
τξ; y, m)eτ = h(x, u, ξ; y, m). (22)



M. Foss / Lavrentiev’s Phenomenon with Continuous Sobolev Exponent Dependence 455

This property gives us a variational symmetry for G[ · ](y), and a theorem of E. Noether’s
tells us that this symmetry has a corresponding conservation law (see Olver [13]). The
conservation law provides a means of reducing the order of the Euler-Lagrange equations
by one. One way of finding the conservation law (see Logan [10]) is to observe that for
every τ ∈ R (at τ = 0 in particular) we have

∂

∂τ

[
h(eτx, e

y−1
y

τv(x), e−
1
y
τv′(x); y, m)eτ

]
= 0.

It follows that for every v ∈ By

xh,x +
(y − 1)v

y
h,u −

v′

y
h,ξ + h = 0. (23)

Suppose v ∈ C2((0, 1); R). Then we can use (23) to write

d

dx

[
xh +

(y − 1)v

y
h,ξ − xv′h,ξ

]
=

(
h,u −

d

dx
h,ξ

)(
xv′ − (y − 1)v

y

)
. (24)

Now, let us further suppose that v satisfies the Euler-Lagrange equations

h,u −
d

dx
h,ξ = 0. (E-L)

Then (24) reduces to

xh +
(y − 1)v

y
h,ξ − xv′h,ξ = K, (25)

where K is a constant. This is the conservation law corresponding to the variational
symmetry (22): if v ∈ C2((0, 1); R) is a solution to (E-L), then the quantity on the left
hand side of (25) must remain constant along that solution. Moreover, it is clear that if
(25) holds for some K, then (24) implies that either the Euler-Lagrange equations (E-L)

are satisfied, or there is a λ ∈ R such that v(x) = λx
y−1

y for all x ∈ (0, 1). Hence, one way
to find solutions to (E-L) is to find solutions to the conservation law that are not in the

family of functions x 7→ λx
y−1

y . We do this for K = 0.

We seek a v that satisfies

xh +
(y − 1)v

y
h,ξ − xv′h,ξ = 0 (26)

and that is not in the family x 7→ λx
y−1

y . From the definition for h, we easily find

h,ξ =
m

ξ
h.

With ξ = v′, the conservation law (26) can be reformulated as

h

[
(y − 1)m

y

v

v′
− (m− 1)x

]
= 0. (27)

For v to satisfy (27) it is sufficient that it satisfy

v(x)

v′(x)
=

(y − 1)m

(m− 1)y

1

x
.
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Thus for any λ ∈ R
v(x; λ) := λx

(y−1)m
(m−1)y (28)

is a solution to (27) which implies it is a solution to the conservation law (25). As argued
above, the mapping v( · ; λ) must also satisfy the Euler-Lagrange equations (E-L) for each
λ ∈ R; for this last statement, we have used the observation that, as with any constant
function, the function v = 0 is a trivial solution for (E-L) since m ≥ 3.

Of course, only v(· ; 1) is actually a member of By, but we are going to use all the solutions
we have found to construct a point-slope field. Observe that the family of curves v(· ; λ)
covers the slab (0, 1)×R simply. So for each point in (0, 1)×R there is exactly one λ ∈ R
such that v(· ; λ) passes through this point. In fact, by defining λ : (0, 1)× R→ R as

λ(x̃, ṽ) := ṽ x̃
(1−y)m
(m−1)y , (29)

we have
v(x̃; λ(x̃, ṽ)) = ṽ.

Thus λ(x̃, ṽ) provides the unique member of our family v( · ; λ) with a graph that includes
the point (x̃, ṽ). To each point (x̃, ṽ) ∈ (0, 1) × R, we assign the slope of the curve
v( · ; λ(x̃, ṽ)) at that point: define π : (0, 1)× R→ R by

π(x̃, ṽ) :=
d

dx
v(x; λ(x̃, ṽ))

∣∣∣
x=ex =

(y − 1)m

(m− 1)y

ṽ

x̃
.

The mapping π constitutes the point-slope field we wanted to construct. Observe that
one finds π ∈ C∞

loc((0, 1)× R; R).

Since we constructed the map π using the solutions of the Euler-Lagrange equations
and π is differentiable away from the line {0} × R, it follows that the mapping h∗ :
(0, 1)×W 1,y((0, 1); R)→ R given by

h∗(x, v) := h(x, v(x), π(x, v(x)); y, m)

+ [v′(x)− π(x, v(x))]h,ξ(x, v(x), π(x, v(x)); y, m)

is a total derivative. Indeed, one may compute

h∗(x, v) :=
d

dx
S(x, v(x))

with

S(x, v) :=
1

(m− 3)(m− 2)

[
(y − 1)m

(m− 1)y

]m
(

v
y

y−1

x

)m−3

×

(m− 2)(m− 1)− 2(m− 3)(m− 1)

(
v

y
y−1

x

)
+ (m− 3)(m− 2)

(
v

y
y−1

x

)2
 .

Thus h∗ is an integrand for a path independent Hilbert integral [4, 6], provided that x
remains away from zero. Actually, if ṽ is a member of By, then it satisfies

lim
x→0+

ṽ(x)

x
y−1

y

= lim
x→0+

ṽ
y

y−1

x
= 0,



M. Foss / Lavrentiev’s Phenomenon with Continuous Sobolev Exponent Dependence 457

and since m > 3, we have that limx→0+ S(x, ṽ(x)) = 0. It follows that∫
(0,1)

h∗(x, ṽ(x)) dx = S(1, ṽ(1)) (30)

for any ṽ ∈ By. This property of h∗ is vital to our proof.

Another property that we need is the convexity of h with respect to the argument ξ. This
convexity implies that Weierstrass’ excess function is nonnegative. That is

E(x, v, ξ, ξ̃) := h(x, v, ξ; y, m)− h(x, u, ξ̃; y, m)− (ξ − ξ̃)h,ξ(x, u, ξ̃; y, m) ≥ 0.

We are now prepared to compare the values of G[v( · ; 1)](y) with the value of G[ · ](y) for
other competing functions. Let ṽ ∈ By. Using (30) and the nonnegativity of the excess
function, we may write

G[ṽ](y) =

∫
(0,1)

[h(x, ṽ, ṽ′; y, m)− h∗(x, ṽ)] dx +

∫
(0,1)

h∗(x, ṽ) dx

=

∫
(0,1)

E(x, ṽ, ṽ′, π(x, ṽ); y, m) dx +

∫
(0,1)

h∗(x, v(x; 1)) dx

≥
∫

(0,1)

h(x, v(x; 1), v′(x; 1); y, m) dx = G[v( · ; 1)].

Hence

infev∈By
G[ṽ](y) = G[v( · ; 1)](y) =

1

s(y, m)

for each y ∈ (p1, p].

Recalling (21)

J [u] ≥
∫

{y|p1<y≤p}

µ,p(y)s(y, m)

[
inf

v∈By
G[v](y)

]
dy,

we may now write

J [u] ≥
∫

{y|p1<y≤p}

µ,p(y) dy = µ(p)− µ(p1).

Therefore I(p) ≥ µ(p) since µ ∈ Mp1,p2 implies µ(p1) = 0. The lemma has thus been
proven for this case.

There remains only the last case to prove. The proof for this case is brief as it essentially
follows from Case 2.

Case 3. p2 ≤ p :

Since p ≥ p2 and µ ∈ Mp1,p2 , we have µ(p) = µ(p2). Using what we have done in Case 2
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above, we find

J [u] ≥
∫

{y|p1<y≤p2}

µ,p(y)s(y, m)

 inf
v∈By

∫
(0,1)

h(x, v, v′; y, m) dx

 dy

=

∫
{y|p1<y≤p2}

µ,p(y)s(y, m)

[
inf

v∈By
G[v](y)

]
dy ≥

∫
{y|p1<y≤p2}

µ,p(y) dy = µ(p2)− µ(p1).

Again, we have I(p) ≥ µ(p) and the lemma is proven.

In this section, we have shown I(p) ≥ µ(p). In the next section we will prove the opposing
inequality.

5. I(p) ≤ µ(p)

We wish to prove

Lemma 5.1. For each p ∈ [1, +∞] we have I(p) ≤ µ(p).

Proof. As in Lemma 4.1, the proof splits naturally into three cases. The first of which
is 1 ≤ p ≤ p1; the second p1 < p < p2; and the third p2 ≤ p.

Case 1. 1 ≤ p ≤ p1 :

For this case, since p ∈ [1, p1] we may simply choose u ∈ Ap to be the absolute minimizer
given in Remark 3.4. Recall in (17), we defined uam by

uam(x) := x
y−1

y ,

and J [uam] = 0. Since x ∈ Ω, we have y > p1. Therefore uam ∈ Ap. Furthermore
µ(p) = 0, because µ ∈ Mp1,p2 and p ≤ p1. Thus I(p) ≤ J [uam] = 0 = µ(p) which proves
this case.

To prove the remaining cases, for each p ∈ (p1, +∞] we will construct a sequence
{
u(k)
}∞

k=1

⊂ Ap such that limk→+∞ J [u(k)] = µ(p). This, of course, implies that I(p) ≤ µ(p).

Case 2. p1 < p < p2 :

Let K be some integer such that both K > 1
p2−p

and K > m−p
p(p−1)

. For each of the

k ∈ {K, K + 1, . . . }, we will divide the domain Ω into 5 subdomains and construct a

sequence of mappings
{
u(k)
}∞

k=K
⊂ Ap over Ω using these subdomains (see Figure 5.1).

The sequence we construct will have the desired properties.

For each k ∈ {K, K + 1, · · · }, set

Ω
(k)
1 :=

{
(x, y) ∈ R2 | p + 1

k
< y < p2 and 0 < x < 1

}
;

Ω
(k)
2 :=

{
(x, y) ∈ R2 | p ≤ y ≤ p + 1

k
and 0 < x ≤ p− y + 1

k

}
;

Ω
(k)
3 :=

{
(x, y) ∈ R2 | p ≤ y ≤ p + 1

k
and p− y + 1

k
< x < 1

}
;

Ω
(k)
4 :=

{
(x, y) ∈ R2 | p1 < y < p and 0 < x ≤ 1

k

}
;

Ω
(k)
5 :=

{
(x, y) ∈ R2 | p1 < k < p and 1

k
< x < 1

}
.
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Figure 1:

y

x

Ω
(k )
1

Ω
(k )
3

Ω(k)
2

Ω(k)
5

Ω(k)
4

u(k)(x)»»»»»»9

Figure 5.1: The decomposition of Ω and an example of u(k)

Also let l(k) : R→ R be given by

l(k)(y) :=
(p− 1)m

(m− 1)p
+ k

[
p + 1

k
− 1

p + 1
k

− (p− 1)m

(m− 1)p

]
(y − p).

For each k ∈ {K, K + 1, · · · }, the union
⋃

1≤i≤5 Ω
(k)
i = Ω. Furthermore, since K > m−p

p(p−1)

we have (
p + 1

k

)
− 1(

p + 1
k

) ≤ 1− K

Kp + 1
< 1− m− p

p(m− 1)
=

(p− 1)m

(m− 1)p
;

so the function l(k) is linear and satisfies

l(k)(p) =
(p− 1)m

(m− 1)p
>

(
p + 1

k

)
− 1(

p + 1
k

) = l(k)
(
p + 1

k

)
. (31)

Now, we define the sequence
{
u(k)
}∞

k=K
⊂ Ap as

u(k)(x, y) :=



x
y−1

y , (x, y) ∈ Ω
(k)
1 ;(

p− y + 1
k

)l(k)(y)−1
x, (x, y) ∈ Ω

(k)
2 ;

xl(k)(y), (x, y) ∈ Ω
(k)
3 ;

( 1
k
)

(y−1)m
(m−1)y

−1x, (x, y) ∈ Ω
(k)
4 ;

x
(y−1)m
(m−1)y , (x, y) ∈ Ω

(k)
5 .



460 M. Foss / Lavrentiev’s Phenomenon with Continuous Sobolev Exponent Dependence

It is a straightforward computation to verify that
{
u(k)
}∞

k=K
is in fact a subset ofAp. First,

we establish that
{
u(k)
}∞

k=K
⊂ W 1,p(Ω;R). It is obvious that the sequence is contained in

Lp(Ω; R), hence we need only show∫
Ω

(k)
i

∣∣u(k)
,x (x)

∣∣p dx < +∞ and

∫
Ω

(k)
i

∣∣u(k)
,y (x)

∣∣p dx < +∞

for each i = 1, 2, 3, 4, 5. We do this for i = 1, 2; the remaining inequalities being similar.

Let k ∈ {K, K + 1, · · · } be given. For Ω
(k)
1 , we have (here and in the sequel, we allow the

constant C to change from line to line)

∫
Ω

(k)
1

∣∣u(k)
,x

∣∣p dx =

p2∫
p+ 1

k

1∫
0

∣∣∣y−1
y

x−
1
y

∣∣∣p dxdy ≤ C

1∫
0

x
−kp
kp+1 dx < +∞, (32)

and ∫
Ω

(k)
1

∣∣u(k)
,y

∣∣p dx =

p2∫
p+ 1

k

1∫
0

∣∣∣ 1
y2 x

y−1
y ln x

∣∣∣p dxdy ≤ C

1∫
0

x
−kp
kp+1 dx < +∞. (33)

For Ω
(k)
2 , we write

∫
Ω

(k)
2

∣∣u(k)
,x

∣∣p dx =

p+ 1
k∫

p

p−y+ 1
k∫

0

∣∣∣(p− y + 1
k

)l(k)(y)−1
∣∣∣p dxdy

=

p+ 1
k∫

p

(
p− y + 1

k

)p[l(k)(y)−1]+1
dy ≤

p+ 1
k∫

p

(
p− y + 1

k

) 1
kp+1 dy < +∞; (34)

in the last line we used (31). Also

∫
Ω

(k)
2

∣∣u(k)
,y

∣∣p dx =

p+ 1
k∫

p

α(y)∫
0

∣∣∣∣[C̃ ln α(y)− 1

α(y)

]
α(y)l(k)(y)−1x

∣∣∣∣p dxdy,

where for convenience, we have put C̃ := k
[
l(k)(p + 1

k
)− l(k)(p)

]
= d

dy
l(k)(y) and α(y) :=

p− y + 1
k
. Continuing, we have

∫
Ω

(k)
2

∣∣u(k)
,y

∣∣p dx =
1

p + 1

p+ 1
k∫

p

∣∣∣∣C̃ ln α(y)− 1

α(y)

∣∣∣∣p α(y)pl(k)(y)+1 dy

≤ C

p+ 1
k∫

p

(
p− y + 1

k

)p[l(k)(y)−1]+1
dy ≤ C

p+ 1
k∫

p

(
p− y + 1

k

) 1
kp+1 dy < +∞;

(35)
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again we used (31) to reach the last line. In a similar fashion, one proves∫
Ω

(k)
i

∣∣u(k)
,x

∣∣p dx < +∞ and

∫
Ω

(k)
i

∣∣u(k)
,y

∣∣p dx < +∞

for i = 3, 4, 5. This in conjunction with (32)–(35) implies u(k) ∈ W 1,p(Ω; R). We addi-

tionally find that u(k)( · , 0) = 0 and u(k)( · , 1) = 1. Thus
{
u(k)
}∞

k=K
⊂ Ap.

We now show limk→+∞ J [u(k)] = µ(p). For each element of the sequence, we have

u(k) Ω
(k)
1 = uam. Using Remark 3.4, we may write

J [u(k)] =

∫
Ω

f(x, u(k), u(k)
,x ; y, m) dx =

∫
Ω\Ω(k)

1

f(x, u(k), u(k)
,x ; y, m) dx

=

∫
Ω

(k)
2

f(x, u(k), u(k)
,x ; y, m) dx +

∫
Ω

(k)
3

f(x, u(k), u(k)
,x ; y, m) dx (36)

+

∫
Ω

(k)
4

f(x, u(k), u(k)
,x ; y, m) dx +

∫
Ω

(n)
5

f(x, u(k), u(k)
,x ; y, m) dx

It is fairly straightforward to show that the first three integrals in (36) go to zero as k →
+∞. We do this for the first integral, the others being similar. Let k ∈ {K, K + 1, · · · }
be given. We first observe, from the definition (10) for h, that

|u| ≤ x
y−1

y =⇒ h(x, u, ξ; y, m) ≤ x
m−y

y |ξ|m (37)

when x ∈ (0, 1). Now it is clear from the definition of u(k) that u(k)(x) ≤ xl(k)(y) for each

x ∈ Ω
(k)
2 . Furthermore, by (31) and since l(k) is linear, we see that l(k)(y) ≥ y−1

y
for each

y ∈ [p, p + 1
k
]. Hence

u(k)(x) ≤ x
y−1

y

for all x ∈ Ω
(k)
2 . Using this last inequality and (37), we have

h(x, u(k)(x), u(k)
,x (x); y, m) ≤ x

m−y
y |u,x(x)|m = x

m−y
y
(
p− y + 1

k

)m[l(k)(y)−1]
,

when x ∈ Ω
(k)
2 . From definition (11) for f , we may now write∫
Ω

(k)
2

f(x, u(k), u(k)
,x ; y, m) dx

≤

p+ 1
k∫

p

µ,p(y)s(y, m)
(
p− y + 1

k

)m[l(k)(y)−1]

 p−y+ 1
k∫

0

x
m−y

y dx

 dy

=

p+ 1
k∫

p

y

m
µ,p(y)s(y, m)

(
p− y + 1

k

)m[l(k)(y)−1+ 1
y ] dy.
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For y ∈ [p, p + 1
k
], we find that l(k)(y)− 1 + 1

y
≥ 0 by (31). Therefore

∫
Ω

(k)
2

f(x, u(k), u(k)
,x ; y, m) dx ≤

p+ 1
k∫

p

y

m
µ,p(y)s(y, m) dy ≤ C

k
‖µ,p‖L1((p1,p2);R),

where C is a constant not dependent upon k. So the first integral in (36) approaches zero
as k → +∞. In a somewhat similar manner, the second and third integrals in (36) may
also be shown to tend to zero as k → +∞.

It only remains to examine the last integral from (36). For this integral, we have

∫
Ω

(k)
5

f(x, u(k), u(k)
,x ; y, m) dx =

p∫
p1

µ,p(y)s(y, m)

 1∫
1
k

h(x, u(k), u(k)
,x ; y, m) dx

 dy. (38)

At each y ∈ (p1, p) we see that u(k)( · , y) = v( · ; 1), where v( · ; 1) was the solution to the
Euler-Lagrange equations that we found earlier in (28). We thus have that as k → +∞,
the inner integral in (38) approaches 1

s(y,m)
at each y ∈ (p1, p2). Thus

lim
k→+∞

J [u(k)] =

p∫
p1

µ,p(y) dy = µ(p)− µ(p1) = µ(p).

This implies infu∈Ap J [u] ≤ µ(p). Therefore I(p) ≤ µ(p) for this case.

The final case for this lemma is analogous to but simpler than the previous case.

Case 3. p2 ≤ p :

For this case, we will only divide the domain into two subdomains. For every k ∈
{1, 2, · · · }, set

Ω
(k)
1 :=

{
(x, y) ∈ R2 | p1 < y < p2 and 0 < x ≤ 1

k

}
Ω

(k)
2 :=

{
(x, y) ∈ R2 | p1 < y < p2 and 1

k
< x < 1

}
.

So Ω
(n)
1 ∪ Ω

(n)
2 = Ω for each k ∈ {1, 2, · · · }.

We let the sequence
{
u(k)
}∞

k=1
⊂ A∞ ⊂ Ap be defined as

u(k)(x, y) :=

{
( 1

k
)

(y−1)m
(m−1)y

−1x, (x, y) ∈ Ω
(k)
1 ;

x
(y−1)m
(m−1)y , (x, y) ∈ Ω

(k)
2 .

Clearly, each element of this sequence is in A∞.

For any k ∈ {1, 2, · · · } we have

J [u(k)] =

∫
Ω

f(x, u(k), u(k)
,x ; y, m) dx

=

∫
Ω

(k)
1

f(x, u(k), u(k)
,x ; y, m) dx +

∫
Ω

(k)
2

f(x, u(k), u(k)
,x ; y, m) dx. (39)
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The first integral in (39) approaches zero as k → +∞. As before, for the second integral
we have

∫
Ω

(k)
2

f(x, u(k), u(k)
,x ; y, m) dx =

p2∫
p1

µ,p(y)s(y, m)

 1∫
1
k

h(x, u(k), u(k)
,x ; y, m) dx

 dy.

For each y ∈ (p1, p2), the inner integral above approaches 1
s(y,m)

as k → +∞ (see Case 2).

It follows that

lim
k→+∞

J [u(k)] =

p2∫
p1

µ,p(y)dy = µ(p2).

Since µ ∈Mp1,p2 and p ≥ p2, by definition ofMp1,p2 we must have µ(p) = µ(p2). Therefore
infu∈Ap J [u] ≤ µ(p) and I(p) ≤ µ(p) as desired. Thus the lemma is proven.

6. Main Result and Summary

Lemma 4.1 and Lemma 5.1, from the previous two sections, imply the following result.

Theorem 6.1 (Main Result). For each p ∈ [1, +∞], we have I(p) = µ(p).

What we have shown is that there are functionals that exhibit the Lavrentiev phenomenon
and have an infimum that depends continuously upon the amount of regularity required
of the competing functions. In fact, for each µ ∈ M, we have provided functionals
and boundary conditions such that if we require the competing functions to be in W 1,p,
then the infima for the functionals are equal to µ(p). Moreover, if µ ∈ Mp1,p2 and µ,p is
smooth over the interval (p1, p2), then for each non-negative integer k, we have constructed
(Remark 3.1) an integrand that is in Ck(Ω × R× R; R).

There are many ways to generalize the result we have presented. In our construction of the
functionals (Section 3), we restricted our attention to particular parameterizations of the
exponents on u and ξ in (10). By modifying this parametrization, one can also construct a
functional with an infimum that matches a µ with a finite number of jump discontinuities.
By using an approximation similar to that in Lemma 5.1 (Case 2), it can be shown that
one may impose full Dirichlet boundary conditions such that Theorem 6.1 remains true.
Another possible generalization is to increase the dimensions for the domain and range
of the admissible mappings. It is still unknown, however, whether or not there exists a
one-dimensional version of the result we have presented. In other words, we do not know
if there exists any non-constant µ ∈ M and a one-dimensional variational problem such
that the infimum for the functional is µ(p) when the admissible functions are required to
be in W 1,p.
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