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We prove existence, uniqueness, duality results and give a characterization of optimal measure-preserving
maps for a class of optimal transportation problems with several marginals with compact support in
R under the requirement that the cost function satisfies a so-called monotonicity of order 2 condition.
Explicit formulas for the minimizers are given and links with some rearrangement inequalities are sketched.

1. Introduction

Optimal transportation problems (with two marginals) have received a lot of attention
in the last decade mainly for two reasons. The first one is that since the seminal paper
of Brenier [2] and his polar factorization theorem, our understanding of the geometry
of the problem, of existence, uniqueness and duality issues has radically improved. We
refer the reader of course to Brenier [2], to Mc Cann and Gangbo [6] and to Gangbo
[5] who developed a dual approach that is of particular interest in the present article.
The second reason results from the importance of mass transportation problems in very
different applied fields: probability theory and statistics [15], [14], fluid mechanics [3],
shape optimization [1], interacting gases [12], mathematical economics [10], [4] to name
only a few.

In contrast, there are only few known results on existence of solutions to Monge’s problem
with several marginals. Gangbo and Świȩch in [7] however completely solved the problem
in the case of a particular (quadratic) cost function and with several marginals with
support in Rn. In the present article, we restrict ourselves to the case of marginals
supported on the real line but consider a wider class of transportation costs than in [7].

1.1. Monge’s optimal problem with several marginals in R

We first recall that, given a probability space (Ω,A, µ), a measurable space (Ω′,A′) and
a measurable map s : Ω → Ω′, the push-forward of µ through s, denoted by s]µ is the
probability measure on (Ω′,A′) defined by:

s]µ(B) := µ(s−1(B)) for every B ∈ A′.

Assume now that we are given n+ 1 Borel probability measures (µ0, . . . , µn) on R and a
cost function f , our aim is to study the following problem (Monge’s optimal transportation

ISSN 0944-6532 / $ 2.50 c© Heldermann Verlag



518 G. Carlier / On a Class of Multidimensional Optimal Transportation Problems

with n+ 1 marginals in R):

(M) inf
s∈Γ

C(s) :=

∫

R
f(t, s1(t), . . . , sn(t))dµ0(t)

where

Γ := {s = (s1, . . . , sn) each si: R → R is Borel, and si]µ0 = µi for i = 1, . . . , n} .

In the sequel, given some subset K of Rk, we shall denote by C0(K,R) the space of
continuous real-valued functions on K. In what follows, given a Borel measure, with
support K ⊂ R and h a real-valued µ-integrable function that is only defined on K,
slightly abusing notations, we shall write

∫

R hdµ instead of
∫

K
hdµ that is we will extend

h by 0 outside K.

Closely following Wilfrid Gangbo’s approach developed in [5] to prove Brenier’s theorem
and extended in [7] for a certain class of transportation problems with several marginals,
our analysis is based on the study of the dual problem. This dual problem is the
optimization program:

(D) sup
h∈H

F (h) :=
n

∑

i=0

∫

R
hi(ti)dµi(ti)

with

H := {h = (h0, . . . , hn) : hi ∈ C0(Ti,R) for i = 0, . . . , n, and
n

∑

i=0

hi(ti) ≤ f(t0, . . . , tn) for all (t0, . . . , tn) ∈ T0 × . . .× Tn}

and Ti := supp(µi), i = 0, . . . , n.

1.2. Assumptions and main result

In what follows, we will assume that each measure µi has a compact support and that µ0

does not charge points (simple examples show that otherwise Γ could be empty):

Ti is a compact subset of R for i = 0, . . . , n (1)

µ0({t}) = 0, for all t ∈ T0. (2)

The main assumption on the cost function f is the monotonicity of order 2 condition,
introduced and discussed in the next section. We further assume that

f ∈ C0(T,R) (3)

where

T := T0 × . . .× Tn.
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Let us remark at this early stage that if s ∈ Γ and h ∈ H then by the very definitions of
Γ and H we have

C(s) =

∫

R
f(t, s1(t), . . . , sn(t))dµ0(t)

≥
∫

R
h0(t)dµ0(t) +

n
∑

i=1

∫

R
hi(si(t))dµ0(t)

=
n

∑

i=0

∫

R
hi(ti)dµi(ti) = F (h)

hence

inf(M) ≥ sup(D). (4)

Further, if s ∈ Γ and h ∈ H are such that F (h) = C(s) then s solves (M) and h solves
(D). Note also that (4) implies that the value of each problem is finite.

The main results of the paper may be summarized as follows. If conditions (1), (2), (3)
are satisfied and if f is strictly monotone of order 2 on T (see Definition 2.1), then we
have:

• (M) admits a unique (up to µ0 - a.e. equivalence) solution s = (s1, . . . , sn),

• each component si of s is nondecreasing,

• (D) is dual to (M) in the sense that inf(M) = sup(D),

• (D) admits solutions and if h = (h0, . . . , hn) ∈ H solves (D) one has for µ0 - a.e.
t ∈ T0:

h0(t) +
n

∑

i=1

hi(si(t)) = f(t, s1(t), . . . , sn(t)).

In the next section, the monotonicity of order 2 assumption on the cost function is intro-
duced and some preliminary results are given. In Section 3, we study the dual problem.
In Section 4, we state and prove the announced existence, uniqueness, duality and charac-
terization results. Section 5 is devoted to two concluding remarks, in particular we relate
the monotonicity of the solution of (M) to Hardy-Littlewood’s rearrangement inequality.

2. Preliminaries

2.1. Monotone functions of order 2

In what follows (e1, . . . , ep) denotes the canonical basis of Rp.

Definition 2.1. A real-valued function g defined on some nonempty set A of Rp is strictly
monotone of order 2 on A if for all (i, j) ∈ {1, . . . , p}2 with i 6= j, for all x ∈ A, for all
t > 0 and all s > 0 such that (x+ tei + sej, x+ sej, x+ tei) ∈ A3 one has:

g(x+ tei + sej)− g(x+ sej) < g(x+ tei)− g(x).

Note that if g is of class C2, and A is convex, a sufficient condition for g to be strictly
monotone of order 2 on A is that all second order derivatives ∂ijg with i 6= j are negative.
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This requirement holds for instance in the case (considered in [7]) A = Rp and:

g(x1, . . . , xp) :=
1

2

∑

1≤i6=j≤p

(xi − xj)
2.

Note also that Definition 2.1 does not imply partial concavity of g, that is concavity of
the partial functions xi 7→ g(x1, . . . , xi, . . . , xn) with fixed (xj)j 6=i (e.g. exp(x1−x2) in R2,
ϕ(x1)ψ(x2) with ϕ convex increasing, and ψ decreasing...).

We shall use in the sequel two elementary lemmas.

Lemma 2.2. Let A1 and A2 be two nonempty compact subsets of R, let g be a continuous
strictly monotone of order 2 function on A1 × A2, let f2 ∈ C0(A2,R) and let

f1(x1) := inf
x2∈A2

(g(x1, x2)− f2(x2)) , for all x1 ∈ A1.

Then there exists a subset N1 of A1 which is at most countable and a nondecreasing map
γ1 from A1 to A2 such that for all x1 ∈ A1 \N1 and all x2 ∈ A2 one has:

f1(x1) + f2(x2) = g(x1, x2) ⇐⇒ x2 = γ1(x1).

Proof. Let us firstly note that in the definition of f1, the inf actually is achieved. Sec-
ondly, let us set

B := {(x1, x2) ∈ A1 × A2 : f1(x1) + f2(x2) = g(x1, x2)}

and let ((x1, x2), (y1, y2)) ∈ B2. We then have

g(x1, x2)− f2(x2) ≤ g(x1, y2)− f2(y2)

g(y1, y2)− f2(y2) ≤ g(y1, x2)− f2(x2)

which implies g(x1, x2)− g(y1, x2) ≤ g(x1, y2)− g(y1, y2). This latter inequality together
with the strict monotonicity of order 2 of g imply that (x1 − y1)(x2 − y2) ≥ 0.

For all x1 ∈ A1 define then

γ−(x1) := inf{x2 ∈ A2 : (x1, x2) ∈ B}
γ+(x1) := sup{x2 ∈ A2 : (x1, x2) ∈ B}.

From the above, γ− and γ+ are non decreasing and if (x1, y1) ∈ A2
1 with x1 < y1 then

γ−(y1) ≥ γ+(x1). Since A2 is bounded, the set {x1 ∈ A1 : γ+(x1)−γ−(x1) > ε} is finite for
every ε > 0, hence γ− = γ+ except on an at most countable subset of A1. Defining γ1 as a
selection of the set-valued map x1 ∈ A1 7→ [γ−(x1), γ+(x1)] (so that γ1 is nondecreasing)
there exists a subset N1 of A1 which is at most countable such that if x1 ∈ A1 \N1, then
(x1, x2) ∈ B if and only if x2 = γ1(x1).

Lemma 2.3. Let p ∈ N , p ≥ 2, let A1, . . . , Ap be nonempty compact subsets of R, let g
be a continuous strictly monotone of order 2 function on A1× . . .×Ap, let fp ∈ C0(Ap,R)
and define for all (x1, . . . , xp−1) ∈ A1 × . . .× Ap−1:

V (x1, . . . , xp−1) := inf
xp∈Ap

g(x1, . . . , xp−1, xp)− fp(xp).

Then V is continuous and strictly monotone of order 2 on A1 × . . .× Ap−1.



G. Carlier / On a Class of Multidimensional Optimal Transportation Problems 521

Proof. The continuity of V is straightforward. To prove strict monotonicity of order
2, what one has to prove is: for all (i, j) ∈ {1, . . . , p − 1}2 with i 6= j, for all x =
(x1, . . . , xp−1) ∈ A1 × . . . × Ap−1, all t > 0 and all s > 0 such that (x + tei + sej, x +
sej, x+ tei) ∈ (A1 × . . .× Ap−1)

3

V (x+ tei + sej) + V (x) < V (x+ tei) + V (x+ sej). (5)

For (y, z) ∈ (A1 × . . .× Ap−1)
2 let us observe that

V (y) + V (z) = inf
(yp,zp)∈A2

p

(g(y1, . . . , yp) + g(z1, . . . , zp)− fp(yp)− fp(zp)) .

Using the facts that the infimum is attained in the previous expression and that g is
strictly monotone of order 2 on A1 × . . .× Ap, we immediately get that (5) holds, hence
V is strictly monotone of order 2 on A1 × . . .× Ap−1.

2.2. From H to H0

Let us denote for all i = 0, . . . , n and all t := (t0, . . . , tn) ∈ T , πi(t) := ti and let us observe
that h ∈ H if and only if

hi(τi) ≤ inf{f(t)−
∑

0≤j≤n, j 6=i

hj(tj) : t ∈ T , πi(t) = τi}

for all i = 0, . . . , n and all τi ∈ Ti. In view of the maximization problem (D) this suggests
to pay special attention to the elements of H for which there are equalities in the previous
system of inequalities. To that end we define:

H0 :={h ∈ H : ∀i = 0, . . . , n, ∀τi ∈ Ti,

hi(τi) = inf{f(t)−
∑

0≤j≤n, j 6=i

hj(tj) : t ∈ T , πi(t) = τi}}.

Nonemptiness of H0 and the natural role of H0 in problem (D) follow from:

Lemma 2.4. Let h = (h0, . . . , hn) ∈ H. Then there exists k = (k0, . . . , kn) ∈ H0 such
that ki ≥ hi for i = 0, . . . , n.

Proof. Define for all τ0 ∈ T0:

g0(τ0) := inf{f(t)−
n

∑

j=1

hj(tj) : t ∈ T , π0(t) = τ0}

since h ∈ H, g0 ≥ h0.

Define then inductively for i = 1, . . . , n and τi ∈ Ti:

gi(τi) := inf{f(t)−
∑

j<i

gj(tj)−
∑

j>i

hj(tj) : t ∈ T , πi(t) = τi}.



522 G. Carlier / On a Class of Multidimensional Optimal Transportation Problems

Assuming 1 ≤ i ≤ n− 1, by the definition of gi, for all t ∈ T one has

gi(ti) ≤ f(t)−
∑

j<i

gj(tj)−
∑

j>i

hj(tj)

which can be rewritten as

hi+1(ti+1) ≤ f(t)−
∑

j<i+1

gj(tj)−
∑

j>i+1

hj(tj).

Taking the infimum in (t1, . . . , ti, ti+2 . . . tn) of the rightmost member of this inequality,
we exactly get hi+1 ≤ gi+1.

This proves that gi ≥ hi for i = 0, . . . , n. Note also that by construction of gn one has
g = (g0, . . . , gn) ∈ H.

Define now, for all τ0 ∈ T0:

k0(τ0) := inf{f(t)−
n

∑

j=1

gj(tj) : t ∈ T , π0(t) = τ0}.

Obviously, since g ∈ H, k0 ≥ g0. Define then inductively for i = 1, . . . , n and τi ∈ Ti:

ki(τi) := inf{f(t)−
∑

j<i

kj(tj)−
∑

j>i

gj(tj) : t ∈ T , πi(t) = τi}.

As previously, one has ki ≥ gi (≥ hi) for all i. We aim to prove now that ki ≤ gi for all i.
This actually follows from the definition of ki, gi and the fact that for given i, kj ≥ gj for
j < i and gj ≥ hj for j > i. Hence we have ki = gi for i = 0, . . . , n, so that for all i and
all τi ∈ Ti

ki(τi) := inf{f(t)−
∑

j 6=i

kj(tj) : t ∈ T , πi(t) = τi},

and hence k = (k0, . . . , kn) ∈ H0 and ki ≥ hi for i = 0, . . . , n.

2.3. Properties of H0

Lemma 2.5. Let h ∈ H0. Then there exist a subset N of T0 which is at most countable
and n nondecreasing maps s1, . . . , sn from T0 to T1, . . . , Tn such that for all t0 ∈ T0 \ N
and all (t1, . . . , tn) ∈ T1 × . . .× Tn one has:

n
∑

i=0

hi(ti) = f(t0, t1, . . . , tn) ⇐⇒ ti = si(t0), for i = 1, . . . , n.

Proof. Let (t0, . . . , tn) ∈ T be such that

n
∑

i=0

hi(ti) = f(t0, t1, . . . , tn). (6)
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Since h ∈ H0, (6) can be rewritten as

h0(t0) = inf
t′1∈T1

V1(t0, t
′
1)− h1(t

′
1) = V1(t0, t1)− h1(t1), (7)

where

V1(t0, t1) := inf
(t2,...,tn)∈T2×...×Tn

f(t0, t1, t2 . . . , tn)−
n

∑

i=2

hi(ti). (8)

Applying Lemma 2.3 inductively we obtain that V1 is strictly monotone of order 2 on
T0 × T1, and using Lemma 2.2, we obtain the existence of a nondecreasing function s1 :
T0 → T1 and of an at most countable set N1 ⊂ T0 such that if t0 ∈ T0 \ N1 and t1 ∈ T1

then condition (7) is equivalent to t1 = s1(t0). A similar argument for variables t2, . . . , tn
completes the proof.

Lemma 2.6. Let h ∈ H0, let N ⊂ T0 and let (s1, . . . , sn) be as in Lemma 2.5. Let
i ∈ {1, . . . , n}, let ϕi ∈ C0(Ti,R) and define for ε > 0 and all t0 ∈ T0:

hε
0(t0) := inf

(t1,...,tn)∈T1×...×Tn

f(t0, t1, . . . tn)−
n

∑

j=1

hj(tj)− εϕi(ti).

Then for every t0 ∈ T0 \N one has

lim
ε→0+

1

ε
[hε

0(t0)− h0(t0)] = −ϕi(si(t0)).

Proof. Since h ∈ H0, it is obvious that ‖hε
0−h0‖∞ = 0(ε). Now, let t0 ∈ T0\N , according

to Lemma 2.5, we have:

h0(t0) = f(t0, s1(t0), . . . , sn(t0))−
n

∑

i=1

hi(si(t0)).

Let also (tε1, . . . , t
ε
n) in T1 × . . .× Tn be such that

hε
0(t0) = f(t0, t

ε
1, . . . , t

ε
n)−

n
∑

i=1

hi(t
ε
i )− εϕi(t

ε
i ) (9)

and consider a cluster point (t1, . . . , tn) of (t
ε
1, . . . , t

ε
n). Passing to the limit in (9) yields

h0(t0) = f(t0, t1, . . . , tn)−
n

∑

i=1

hi(ti)

and since t0 ∈ T0 \ N this implies ti = si(t0) for all i, hence (s1(t0), . . . , sn(t0)) is the
only cluster point of (tε1, . . . , t

ε
n). Since Ti is compact for all i, (tε1, . . . , t

ε
n) converges to

(s1(t0), . . . , sn(t0)).

Further, since h ∈ H0, one has

h0(t0) ≤ f(t0, t
ε
1, . . . , t

ε
n)−

n
∑

i=1

hi(t
ε
i ) = hε

0(t0) + εϕi(t
ε
i ) (10)



524 G. Carlier / On a Class of Multidimensional Optimal Transportation Problems

and by the definition of hε
0 we have

hε
0(t0) ≤ f(t0, s1(t0), . . . , sn(t0))−

n
∑

i=1

hi(si(t0))− εϕi(si(t0))

= h0(t0)− εϕi(si(t0)).

(11)

Rewriting (10) and (11) as

−ϕi(t
ε
i ) ≤

1

ε
[hε

0(t0)− h0(t0)] ≤ −ϕi(si(t0))

and using the convergence of tεi to si(t0), we get the desired result.

3. The dual problem

3.1. Existence

Proposition 3.1. Problem (D) admits at least one solution. Moreover if h ∈ H is a
solution of (D), then there exists k ∈ H0 such that hi = ki µi - a.e. for i = 0, . . . , n.

Proof. The second statement follows from Lemma 2.4. Now note that H0 and the linear
functional F are invariant under any transformation of the form

h = (h0, . . . , hn) 7→ (h0 + λ0, . . . , hn + λn).

With

(λ0, . . . λn) ∈ Rn+1 and
n

∑

i=0

λi = 0

together with Lemma 2.4, this in particular implies that for any h ∈ H there exists k ∈ H0
0

such that F (k) ≥ F (h) where

H0
0 := {(h0, . . . , hn) ∈ H0 : max

T1

h1 = . . . = max
Tn

hn = 0}.

Let us prove that H0
0 equipped with the sup norm

‖h‖∞ := max
i=0,...,n

(max
Ti

|hi|)

is compact in C0(T0,R) × . . . × C0(Tn,R) (which will prove the existence result since
F is of course continuous with respect to that norm). The fact that H0

0 is closed in
C0(T0,R)× . . .× C0(Tn,R) equipped with the sup norm is obvious.

Let h ∈ H0
0. Since hi ≤ 0 for i ≥ 1 one has

h0(t0) ≥ min
T

f for all t0 ∈ T0.

Now taking ti ∈ Ti such that hi(ti) = 0 for i ≥ 1 and any t0 ∈ T0, we get

h0(t0) ≤ f(t0, t1, . . . , tn) ≤ max
T

f.
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Now let i ≥ 1 and ti ∈ Ti. Since hj ≤ 0 for j ≥ 1, we have

hi(ti) ≥ inf{f(t1, . . . , tn)− h0(t0) : t ∈ T, πi(t) = ti}
≥min

T
f −max

T
f.

Hence H0
0 is bounded.

Now let (t0, t
′
0) ∈ T 2

0 and let (t1, . . . , tn) and (t′1, . . . , t
′
n) be in T1 × . . .× Tn and such that

h0(t0) = f(t0, . . . , tn)−
n

∑

i=1

hi(ti), h0(t
′
0) = f(t′0, . . . , t

′
n)−

n
∑

i=1

hi(t
′
i).

We have:

h0(t0) ≤f(t0, t
′
1 . . . , t

′
n)−

n
∑

i=1

hi(t
′
i)

=h0(t
′
0) + f(t0, t

′
1, . . . , t

′
n)− f(t′0, t

′
1, . . . , t

′
n)

and similarly

h0(t
′
0) ≤ h0(t0) + f(t′0, t1, . . . , tn)− f(t0, t1, . . . , tn).

Consequently

|h0(t0)− h0(t
′
0)| ≤ sup

(t1,...,tn)∈T1×...×Tn

|f(t0, t1, . . . , tn)− f(t′0, t1, . . . , tn)|.

Similar arguments yield for all ε > 0 and all i ∈ {0, . . . , n}

sup{|hi(ti)− hi(t
′
i)| : (ti, t′i) ∈ T 2

i , |ti − t′i| ≤ ε} ≤ ω(ε),

where

ω(ε) := sup{|f(t)− f(t′)| : (t, t′) ∈ T 2, ‖t− t′‖ ≤ ε}.

Uniform continuity of f implies that ω(ε) goes to 0 as ε goes to 0. This proves that H0
0

is uniformly equicontinuous. Since H0
0 is bounded, Ascoli’s theorem implies that H0

0 is
compact.

3.2. Euler-Lagrange equation

Proposition 3.2. Let h ∈ H0 be a solution of (D) and let s := (s1, . . . , sn) be as in
Lemma 2.5. Then s ∈ Γ and s is a solution of (M).

Proof. Let h ∈ H0 be a solution of (D) and s := (s1, . . . , sn) and N be as in Lemma 2.5,
that is, for all t0 ∈ T0

h0(t0) +
n

∑

i=1

hi(si(t0)) = f(t0, s1(t0), . . . , sn(t0)) (12)
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and N ⊂ T0 is at most countable and such that for all t0 ∈ T0 \ N and all (t1, . . . , tn) ∈
T1 × . . .× Tn

n
∑

i=0

hi(ti) = f(t0, t1, . . . , tn) ⇐⇒ ti = si(t0), for i = 1, . . . , n.

Since µ0 does not charge points, by (2) we have

µ0(N) = 0. (13)

Let i ∈ {1, . . . , n}, let ϕi ∈ C0(Ti,R) and define for ε > 0

hε
i := hi + εϕi, hε

j := hj for all j ∈ {1, . . . , n} with i 6= j

and for all t0 ∈ T0

hε
0(t0) := inf

(t1,...,tn)∈T1×...×Tn

f(t0, t1, . . . tn)−
n

∑

j=1

hj(tj)− εϕi(ti).

It is immediate to check that hε := (hε
0, h

ε
1, . . . , h

ε
n) ∈ H. Since h solves (D), we have for

all ε > 0
1

ε
[F (hε)− F (h)] ≤ 0,

equivalently
∫

Ti

ϕi(ti)dµi(ti) +

∫

T0

1

ε
[hε

0(t0)− h0(t0)]dµ0(t0) ≤ 0.

Lemma 2.6 and (13) yield then

lim
ε→0+

1

ε
[hε

0(t0)− h0(t0)] = −ϕi(si(t0)) µ0 - a.e. t0 ∈ T0

this, in turn, with Lebesgue’s dominated convergence theorem and the fact that ‖hε
0 −

h0‖∞ ≤ ε‖ϕi‖∞ yields

∫

Ti

ϕi(ti)dµi(ti) ≤
∫

T0

ϕi(si(t0))dµ0(t0).

Changing ϕi into −ϕi we indeed obtain equality in the previous inequality. This proves
that for all i ∈ {1, . . . , n}

∫

Ti

ϕi(ti)dµi(ti) =

∫

T0

ϕi(si(t0))dµ0(t0), for all ϕi ∈ C0(Ti,R).

Hence si]µ0 = µi for all i ∈ {1, . . . , n}, i.e., s = (s1, . . . , sn) ∈ Γ.
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To prove that s solves (M), note that by (12), (4) and the fact that s ∈ Γ we have

C(s) =

∫

T0

f(t0, s(t0))dµ0(t0)

=

∫

T0

(

h0(t0) +
n

∑

i=1

hi(si(t0))

)

dµ0(t0)

=
n

∑

i=0

∫

Ti

hidµi = F (h)

= sup(D) ≤ inf(M).

This proves that s is a solution of (M) and that the duality relation inf(M) = sup(D)
holds.

4. Existence and uniqueness of optimal measure preserving maps

Finally, our main results can be summarized as

Theorem 4.1. If f is strictly monotone of order 2 on T and if (1), (2), (3) hold, then
we have:

1) problems (M) and (D) admit at least one solution;

2) (D) is dual to (M) in the sense:

sup(D) = inf(M);

3) the minimum in (D) is attained by some h = (h0, . . . , hn) ∈ H0;

4) there exists a Borel map s = (s1, . . . , sn) from T0 to T1 × . . .× Tn which satisfies:

h0(t) +
n

∑

i=1

hi(si(t)) = f(t, s(t)), for all t ∈ T0,

s ∈ Γ, each si is nondecreasing and s is a solution of (M);

5) uniqueness also holds: if s is a solution of (M) then s = s µ0 - a.e..

Proof. The statements 1), 2), 3) and 4) have already been proved. The last thing to
prove is uniqueness. Assume that s = (s1, . . . , sn) ∈ Γ also solves (M). We then have

inf(M) = C(s) =

∫

T0

f(t0, s(t0))dµ0(t0)

= sup(D) = F (h) =
n

∑

i=0

∫

Ti

hidµi

=

∫

T0

(

h0(t0) +
n

∑

i=1

hi(si(t0))

)

dµ0(t0).

But since h ∈ H for all t0 ∈ T0 we have

f(t0, s(t0)) ≥ h0(t0) +
n

∑

i=1

hi(si(t0))
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hence

f(t0, s(t0)) = h0(t0) +
n

∑

i=1

hi(si(t0)) µ0 - a.e. t0 ∈ T0.

Using Lemma 2.5 this finally implies s = s µ0 - a.e..

5. Concluding remarks

We end this paper with two remarks. The first one is related to the Monge-Kantorovich
problem associated with (M). The second one gives the explicit form of the solution via
rearrangement formulas.

The Monge-Kantorovich problem which is naturally associated with (M) is

(MK) inf
µ∈∆

∫

T0

∫

T1

. . .

∫

Tn

f(t0, . . . , tn)dµ(t0, . . . , tn)

where ∆ is the set of all Borel probability measures, µ, on T such that

πi]µ = µi for i = 0, . . . , n.

(MK) is a natural linear relaxation of (M). Theorem 4.1 actually implies that the
infimum of (MK) equals the supremum of (D). More interesting is the fact that the
infimum of (MK) is achieved at a measure µ whose support essentially is one dimensional.
More precisely the graph of the map t0 ∈ T0 7→ (t0, s1(t0), . . . , sn(t0)) (where we recall
that each si is nondecreasing) has full measure for µ. Otherwise stated, one has

∑

i=0

hi(ti) = f(t) µ - a.e. t,

where h is a solution of (D).

Theorem 4.1 states that each component of the solution s of (M) is nondecreasing. To-
gether with the requirement that s belongs to the constrained set Γ, this actually allows
us to compute s in terms of rearrangements. Indeed, the condition si]µ0 = µi and the
fact that si is nondecreasing on Ti yield the rearrangement-like explicit formulas

si(t0) = inf{ti ∈ Ti : ui(ti) > t0} µ0 - a.e. t0 (14)

where
ui(ti) := inf{t0 ∈ T0 : µ0([t0,+∞)) ≤ µi([ti,+∞))}. (15)

The fact that ui is well-defined comes from assumption (2). Now note that the fact that
s given by formulas (14), (15) is a solution of (M) can be intrepreted as a form of Hardy-
Littlewood’s inequality. Indeed, assume that we are given n bounded Borel real-valued
functions on T0, (x1, . . . , xn), and set µi := xi]µ0 for i = 1, . . . , n. If we define si by
formulas (14), (15) for i = 1, . . . , n, we can see that each si is a monotone rearrangement
of xi and the optimality of s tells us that

∫

f(t0, x1(t0), . . . , xn(t0))dµ0(t0) ≥
∫

f(t0, s1(t0), . . . , sn(t0))dµ0(t0),

which is nothing but a slight refinement of Hardy-Littlewood’s inequality. Finally, we
notice that the uniqueness part in Theorem 4.1 implies that the previous inequality is
strict unless each xi is nondecreasing.
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[15] S. T. Rachev, L. Rüschendorf: Mass Transportation Problems. Vol. I: Theory; Vol. II:
Applications, Springer-Verlag (1998).

[16] R. T. Rockafellar: Convex Analysis, Princeton University Press (1970).


