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Let coX (·) denote the convexification operator on bounded real functions on a convex compact set X.
Several necessary and sufficient conditions for the operator coX (·) to preserve continuity and uniformly
Lipschitz continuity are established.

In the special case of a finite dimensional topological vector space, it is shown that (1) the preservation
of continuity is equivalent to the closeness of the set of faces of X and (2) the uniform preservation of
Lipschitz continuity is equivalent to X being a polytope.

Introduction

Let E denote a real vector space and X be a convex subset of E. Denote by B(X) the
set of bounded real valued functions on X. The convexification operator on X, coX (·) ,
is from B(X) to itself. It associates to a function f the greatest convex function smaller
than f . Explicitly, for f in B(X) and x in X,

coX (f) (x) := sup {g(x) : g ∈ S(X), g (·) ≤ f (·)} .

where S(X) denotes the set of bounded real valued convex functions onX and g (·) ≤ f (·)
means that g(y) ≤ f(y) for any y in X.

The main goal of this paper is to establish topological conditions on the geometry of X
for the operator coX (·) to preserve continuity or uniformly Lipschitz continuity.

Two results in the literature are related to the preservation of continuity. In both cases
E is assumed to be a finite dimensional topological real vector space:

• Theorem 10.2 and Theorem 20.5 in Rockafellar, 1970, imply that if X is a polytope1,
any bounded and convex function on X is uppersemicontinuous. Since for any com-
pact set X, the function coX (f) is always lowersemicontinuous when f is continuous
(Choquet, 1969, Proposition 26.13, see Proposition 1.3 below), we deduce that the
preservation of continuity by coX (·) holds in the case when X is a polytope. This
result could be deduced from our tools (see Example 3 below).

• Kruskal, 1969, gives an example of a 3-dimensional compact set X and a continuous
function f on X for which coX (f) is discontinuous (Example 1 below). This is due
to the fact that the set of extreme points2 of X is not closed.

∗Part of this work was done when the author was affiliated with Modal’X (Université Paris-10 Nanterre),
then with Ceremade (Université Paris-9 Dauphine).
1X is a polytope if it is the convex hull of finitely many points.
2An extreme point of X is a point that cannot be the middle of a non trivial segment in X.
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Throughout this paper, (E, τ) will be assumed to be a Hausdorff topological vector space3.
Also, (X, τ) will be supposed to be compact, locally convex and metrizable. Let dτ denote
some distance on X compatible with τ . Sometimes, (E, τ) will be supposed to be normed.
In such a case, ‖·‖τ will denote some norm on E compatible with τ . Finally, let d be some
distance on X not necessarily related to τ (hence X is not supposed to be d-compact).

For a topology τ on E and a distance d on X, the operator coX (·) preserves τ -continuity at
x if the image of any τ -continuous function onX is τ -continuous at x. The convexification
operator uniformly preserves d-Lipschitz continuity if there exists a constant ρ > 0 such
that the image of any d-Lipschitz function with constant 1 is d-Lipschitz with constant
ρ. Finally, this operator exactly preserves d-Lipschitz continuity if the image of any d-
Lipschitz function with constant 1 is d-Lipschitz with constant 1.

The main results are:

• A necessary and sufficient τ -topological condition on X for the preservation of τ -
continuity by coX (·). It is called τ -Splitting-Continuous (Definition 1.12).
For the special case when E is a finite dimensional vector space, our characterization
is simpler and is more close to the intuition behind Example 1 of Kruskal; it is shown
that the preservation of τ -continuity by coX (·) is equivalent to the τ -Faces-Closed
condition on X4 (Definition 1.10) which is proved to be strictly stronger than the
Kruskal necessary condition (the τ -closeness of the set of extreme points of X, see
Example 2 below).

• A sufficient d-condition for the uniform preservation of d-Lipschitz continuity by
coX (·), called d-Splitting-Lipschitz (Definition 1.13).
In particular, it is proved that when X is a polytope and if ‖·‖ is some norm on
Vect(X)5 then X satisfies the ‖·‖-Splitting-Lipschitz condition. More precisely, re-
stricted to a finite dimensional normed space E, being a polytope is proved to be a
necessary and sufficient condition on X for the uniform preservation of ‖·‖τ -Lipschitz
continuity by coX (·). This Lipschitzian characterization of finite dimensional poly-
topes is related to one given in Walkup & Wets, 1969, (Section 9.1 below).

• If (X, τ) is a countable product of simplices of Choquet (Definition 1.14), a norm
‖·‖X,τ on Vect(X) is constructed and is proved that coX (·) exactly preserves ‖·‖X,τ -
Lipschitz continuity.

The structure of the paper is as follows. In Section 1 the convexification operator is
defined and its equivalence, in our framework, with the τ -closed convexification operator
is established. Next, the new concepts (τ -Splitting-Continuous, τ -Faces-Closed and d-
Splitting-Lipschitz) are defined and the main results are stated. Sections 2 to 4 are
devoted to the preservation of continuity. Section 5 provides several examples showing
that our results are tight. Sections 6 to 10 deal with the uniform preservation of Lipschitz
continuity. Finally, Section 11 concerns extensions and open questions.

3Note that when E is finite dimensional, such topology τ is unique.
4Condition τ -Faces-Closed requires that the τ -Kuratowski-limit set of any convergent sequence of faces
of X is also a face of X.
5The smallest real vector space containing X.
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1. Preliminaries

1.1. A geometric formula for the convexification operator

Here is recalled a well known geometric representation formula for the convexification
operator. No topological assumption is needed. Let denote the set of finite-support
probability-measures on X by ∆∗

X . This is the set of all probability-measures σ of the
form

∑m
i=1 αiδxi

where αi ≥ 0,
∑m

i=1 αi = 1, xi ∈ X and δxi
denotes the Dirac mass at xi.

For f in B(X) and σ =
∑m

i=1 αiδxi
∈ ∆∗

X , define

〈σ, f〉 :=
m
∑

i=1

αif(xi)

The barycenter (or the resultant) r(σ) ∈ X of σ =
∑m

i=1 αiδxi
∈ ∆∗

X is

r(σ) :=
m
∑

i=1

αixi,

hence, r (·) defines a function from ∆∗
X to X. Finally, the set of finite-support probability-

measures that are centered at x is

∆∗
X(x) := r−1(x) = {σ ∈ ∆∗

X : r(σ) = x}

Proposition 1.1. For any function f in B(X) and x in X, coX(f)(x) satisfies the fol-
lowing formula,

coX(f)(x) = inf
σ∈∆∗

X(x)
〈σ, f〉 .

Proof. Let us recall the proof of this standard result. Note that for any function g convex
and smaller than f, x in X and σ ∈ ∆∗

X(x),

• 〈σ, g〉 ≤ 〈σ, f〉 and
• g(x) ≤ 〈σ, g〉 (Jensen’s inequality).

Thus any g convex and smaller than f satisfies

g(x) ≤ inf
σ∈∆∗

X(x)
〈σ, f〉 .

It suffices now to check that the bounded function h(x) := infσ∈∆∗
X(x) 〈σ, f〉 on X is also

convex and smaller than f . This is an easy consequence of the fact that δx ∈ ∆∗
X(x) and

that for any α in [0, 1] and (x1, x2) in X ×X,

α∆∗
X(x1) + (1− α)∆∗

X(x2) ⊂ ∆∗
X(αx1 + (1− α)x2).

1.2. The τ-closed convexification operator

Here is recalled the well known topological result according to which coX(f) is τ -lowersemi-
continuous for every τ -continuous function f on X (Choquet, 1969, Proposition 26.13).
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Define a regular positive τ -measure on X as to be a bounded σ-additive positive measure
µ on the τ -Borel sets of X that satisfies µ(A) = sup{µ(B) : B ⊂ A, where B is τ -
compact}. The cone of regular positive τ -measures on X is denoted by M+(X, τ) and
the real vector space of regular τ -measures on X is M(X,τ) := M+(X, τ) −M+(X,τ).
Finally, denote the set of regular τ -probability-measures on X by ∆X,τ and the set of
τ -continuous functions on X by C(X, τ). Note that M(X, τ) is in duality with C(X, τ),
where for σ ∈ M(X,τ) and f ∈ C(X, τ), the duality crochet is

〈σ, f〉 :=
∫

X

f(x)σ(dx).

Hence, let w(τ)∗ denote the associated weak* topology; this is the coarsest topology on
M(X, τ) for which σ → 〈σ, f〉 is continuous for every function f in C(X, τ). For x in X,
let ∆X,τ (x) denote the closure of ∆∗

X(x) with respect to the topology w(τ)∗ :

∆X,τ (x) := clw(τ)∗ [∆
∗
X(x)] .

Corollary 1.2. For any function f in C(X,τ) and any x in X, coX(f)(x) satisfies the
following formula,

coX(f)(x) = inf
σ∈∆X,τ (x)

〈σ, f〉 .

Proof. A direct consequence of Proposition 1.1 and the definition of w(τ)∗ and ∆X,τ (x).

Let the subset of τ -uppersemicontinuous6 (or τ -usc) functions in B(X) be denoted by
C(X, τ) and let the set of τ -lowersemicontinuous (or τ -lsc) functions be denoted by
C(X, τ) = −C(X, τ). The τ -closed convexification operator coX,τ (·) is an operator from
B(X) to C(X, τ); it associates to a function f ∈ B(X), the greatest function in C(X, τ)∩
S(X) smaller than f.

A correspondence y → G(y) from X to ∆X,τ is said to be w∗(τ)-Kuratowski-limit-
uppersemicontinuous (or w∗(τ)-KUSC) at x in X if for any sequence {xn}n. in X τ -
converging to x and any sequence {σn}n in G(xn) w (τ)∗-converging to σ, σ ∈ G(x).

The correspondence y → ∆X,τ (y) from X to ∆X,τ is called the splitting correspondence.

Define the τ -barycenter7 of a regular τ -probability-measure σ ∈ ∆X,τ as to be the unique
element rτ (σ) ∈ X such that for any τ -continuous linear form l (·) on E, l (x) = 〈l, σ〉.
Note that rτ (·) defines a w (τ)∗-continuous function from ∆X,τ to X (Choquet, 1969,
Proposition 26.3).

Proposition 1.3 (Choquet, 1969, Proposition 26.13). For any x in X, ∆X,τ (x) =
r−1
τ (x). This implies that the splitting correspondence y → ∆X,τ (y) is w∗(τ)-KUSC.
Consequently, the operators coX,τ (·) and coX (·) coincide on C(X, τ).

Proof. The Theorem of approximation in Choquet, 1969, Lemma 26.14, implies that
r−1
τ (x) coincides with the closure of ∆∗

X(x) under the topology w (τ)∗ (a consequence of the

6A function f ∈ B(X) is τ -lowersemicontinuous if for any sequence {xn}n in X τ -converging to x,
lim inf f(xn) ≥ f(x).
7Choquet, 1969, Section 26.
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assumptions on τ). Since the function σ → rτ (σ) is w (τ)∗-continuous and (∆X,τ , w(τ)
∗) is

metrizable (Choquet, 1969, Section 12)8, the correspondence y → r−1
τ (y) is w∗(τ)-KUSC.

Now, let {xn}n be a sequence in X τ -converging to x. Since f is bounded, switch to
a subsequence (of the same name) for which limn→∞ coX(f)(xn) exists. Let ε > 0 and
σn ∈ ∆∗

X(xn) be such that

coX(f)(xn) ≥ 〈σn, f〉 − ε

Since (X, τ) is compact and metrizable, (∆X,τ , w(τ)
∗) is also compact and metrizable

(Choquet, 1969). Hence, switching to a subsequence of the same name if necessary and
using the τ -KUSC of y → ∆X,τ (y), it may be assumed that the sequence {σn}n. is w (τ)∗-
converging to some σ ∈ ∆X,τ (x). Consequently,

lim
n

coX(f)(xn) ≥ lim
n

〈σn, f〉 − ε

= 〈σ, f〉 − ε

≥ inf
σ∈∆X,τ (x)

〈σ, f〉 − ε

= coX(f)(x)− ε.

Meaning that coX(f) (·) is τ -lsc at x. Thus, coX,τ (·) and coX (·) coincide on C(X, τ).

Remark 1.4.

• The KUSC property is in fact a necessary and sufficient condition for many other
optimal reward operators to preserve lsc (Laraki & Sudderth 2002).

• In finite dimension, coX,τ (f) = coX(f) for every f ∈ C(X, τ). This holds even if X
is not supposed to be τ -compact (Hiriart-Urruty & Lemarechal, 1993, Chapter X).

• In an infinite dimension, it may be that coX,τ (·) 6= coX (·) on C(X, τ). For example9,
take X = ∆([0, 1]) to be the set of regular Lebesgue-probability-measures on the
interval [0, 1] and consider the following τ -lsc function on X; f(x) = −1 if x is a
Dirac measure on [0, 1] and f(x) = 0 otherwise. Then coX,τ (f)(x) = −1 for any
x ∈ X, and coX(f)(x) = 0 for any non-atomic measure x on [0, 1].

1.3. Kuratowski-limits and topology

In the previous Section, it was shown that the w∗(τ)-KUSC property of the splitting
correspondence y → ∆X,τ (y) implies that the image of a τ -continuous function by coX (·)
is τ -lsc. A main result of this paper is that the w∗(τ)-KLSC of the splitting correspondence
y → ∆X,τ (y) at x is a necessary and sufficient condition for the image of a τ -continuous
function by coX (·) to be τ -usc at x. To prove this result, the following background from
Kuratowski (1968) is necessary.

Let (Y, T ) denote some metrizable topological space (think to (X, τ) or (∆X,τ , w
∗(τ))).

Let N be the set of strictly increasing sequence from the set of integers into itself. The
sequence {y′n}n is a subsequence of {yn}n if there exists ϕ ∈ N such that {y′n}n =
{

yϕ(n)
}

n
.

8Note however that (M(X, τ), w(τ)∗) is not metrizable if X is an infinite set (Choquet, 1969, Theorem
16.9).
9Thanks to a referee.
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Definition 1.5 (Attouch, 1984, Proposition 1.34). Let {Yn}n be a sequence10 of
subsets of Y.

The T -Kuratowski-upper-limit of {Yn}n is

T −K lim sup
n

Yn :=
{

y ∈ Y : ∃ϕ ∈ N : yϕ(n) ∈ Yϕ(n), T − lim
n→∞

yϕ(n) = y
}

The T -Kuratowski-lower-limit of {Yn}n is

T −K lim inf
n
Yn :=

{

y ∈ Y : ∃ (yn)n∈N , yn ∈ Yn, T − lim
n→∞

yn = y
}

.

The sequence {Yn}n T -Kuratowski-limit-converges if

T −K lim sup
n

Yn = T −K lim inf
n
Yn,

and in such a case, the T -Kuratowski-limit is denoted T −K limn Yn.

The main properties of Kuratowski convergence used here are:

(P1) The Kuratowski upper and lower limits are T -closed. The Kuratowski-lower-limit
of a sequence of convex sets is a convex set.

(P2) Suppose in addition that Y is T -compact and that the topology T is Hausdorff.
Hence, there exists a topology11, denoted 2T , on F(Y, T ) (the space of T -closed and
nonempty subsets of Y ), such that a sequence of T -closed sets {Yn}n in F(Y, T )
T -Kuratowski-limit-converges to Y0 if and only if {Yn}n 2T -converges to Y0. The
topology 2T corresponds in the literature to the Kuratowski (the exponential or the
Vietoris) topology. Moreover, the space (F(Y, T ), 2T ) is also compact, Hausdorff and
metrizable12.

(P3) Let dT denote some distance on Y compatible with T . Recall that given two T -
closed and non-empty sets A and B in Y , their dT -Hausdorff distance is defined
by

DT (A,B) := max{max
a∈A

dT (a,B);max
b∈B

dT (b, A)}.

If Y is not supposed to be T -compact, the dT -Hausdorff distance may induce a
topology on F(Y, T ) strictly stronger13 than the Kuratowski topology 2T . However,
the two topologies turn out to be equivalent since Y is supposed to be T -compact
here14.

10This sequential definition of the Kuratowski limits is due to the metrizability of (Y, T ).
11Attouch, 1984, Theorem 2.76 or Klein & Thompson, 1984, Theorem 3.3.11.
12Kuratowski, 1968, Section 42; Attouch, 1984, Theorem 2.76; or Klein and Thompson, 1984, Theorem
2.3.5
13Kuratowski, 1968, Section 29.
14Kuratowski, 1968, Section 42, or Klein & Thompson, 1984, Corollary 4.4.2. An equivalence between
the two topologies when Y is not T -compact but belongs to a finite dimensional space may be founded
in Salinetti & Wets, 1979. A comparison with some other set topologies may be founded in Klein &
Thompson, 1984, Section 4.2.
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1.4. Geometrical definitions

The closed and open segments between x and y are respectively

[x, y] := {λx+ (1− λ) y, λ ∈ [0, 1]} ,

and

]x, y[:= [x, y] \{x, y}.

Let us recall some standard geometric definitions where no topological assumption on X
is needed.

Definition 1.6. A point x in X is an extreme point of X (or belongs to E(X)) if there
are no points x1 and x2 in X such that x ∈]x1, x2[.

Definition 1.7. A subset F of X is a union-of-faces of X if for any σ in ∆∗
X such that

r(σ) ∈ F, the (finite) support S(σ) of σ is included in F.

Definition 1.8. A subset of X is a geometric-face of X if it is convex and is a union-of-
faces of X.

Remark 1.9.

(1) In Corollary 3.4 below, it is shown that F is a union-of-faces of X if and only there
exists a family of geometric-faces {Ft}t∈T such that F = ∪t∈TFt. This justifies our
terminology.

(2) Our definition of a geometric-face is equivalent to the Rockafellar’s definition of a
face. Recall that F is a face of X, in the sense of Rockafellar, 1970, Section 18, if it
is a convex subset of X and satisfies the property that for any [a, b] in X such that
]a, b[∩F 6= ∅, both endpoints a and b are in F .

(3) Note that a geometric-face F of a finite dimensional τ -compact set X is always τ -
closed. That is, there is no conflict between the geometry and the topology in finite
dimension. Actually, from Rockafellar, 1970, Theorem 6.2, in finite dimension,
a face F 6= ∅ admits always a nonempty τ -relative interior riτ (F )15. If the τ -
closure of the face F is denoted by clτ [F ] and the τ -relative boundary of F is
∂τ [F ] := clτ [F ] − riτ [F ], then for any x ∈ riτ [F ] and any y ∈ ∂τ [F ] one has
1
2
x+ 1

2
y ∈ riτ [F ] (Rockafellar, 1970, Theorem 6.1). Consequently, ∂τ [F ] ⊂ F .

(4) In an infinite dimensional space E, our definition of a union-of-faces is similar but not
equivalent to the Choquet’s definition of a face. Actually, Choquet, 1969, Problem
26.6, defines a face of X as to be a τ -closed subset of X such that if σ ∈ ∆X,τ

and rτ (σ) ∈ F then the τ -support of σ is included in F . Recall that the τ -support
of µ ∈ ∆X,τ , denoted Sτ (µ), is the smallest τ -closed subset of X with µ-negligible
complement.

(5) Note that if a Choquet’s face is always τ -closed, a geometric-face may not be.
For example, let X be the set of probability-measures over the discrete set of in-
tegers N = {0, 1, 2, ..., n, ...} and let E denote the space of σ-additive bounded
measures over the set of integers. Denote by C1 (N) the set of bounded functions
g : {0, 1, 2, ..., n, ...} → R that satisfies limn→∞ g(n) = g(0). Hence, E and C1 (N)

15This is the τ -interior of F relatively to Aff(F ) (the affine hull of F ).
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are in duality; for x =
∑∞

n=0 xnδn ∈ E and g ∈ C1 (N) , the duality crochet is

〈g, x〉 =
∞
∑

n=0

g(n)xn

Endow E with the associated weak* topology16 and denote this topology by τ 1. One
can easily prove that τ1 has all the desired properties required in the introduction
for the topology τ . Define now the following geometric-face of X

F = Conv{δ3, δ4, δ5, ...},

where Conv (Z) denotes the convex hull of Z (the smallest convex in E containing
Z). Since the sequence {δn}n τ 1-converges to δ0 ,

δ0 ∈ clτ1 [F ] .

From δ0 /∈ F , we deduce that F is not τ 1-closed. Note however that clτ1 [F ] =
Conv{δ0, δ3, δ4, δ5, ...} is a geometric-face of X. Is the τ 1-closure of a geometric-face
always a geometric-face? The answer is in Remark 1.11 below.

(6) In the rest of the paper, only geometric-faces in the sense of Definition 1.8 are con-
sidered. Hence, to simplify notations, this will be called a face instead of geometric-
face.

1.5. Example 1 of Kruskal

It is well known17 that the set of extreme points of X may not be τ -closed. Take X =
Conv {A;B;C} ⊂ R3 where

C =
{

x = (a, b, c) : c = 0; (a− 1)2 + b2 ≤ 1
}

,

A = (0, 0, 1) and B = (0, 0,−1). Hence E(X) = {A;B;C − {(0, 0, 0)}} is not τ -

closed. Actually, the sequence xn =

(

1
n
,
√

1−
(

1− 1
n

)2
, 0

)

in E(X) τ -converges to

x0 = (0, 0, 0) = A+B
2

/∈ E(X). Kruskal (1969) considered the following τ -continuous
function on X,

f(a, b, c) = −c2.

It satisfies coX(f)(xn) = f(xn) = 0 (since xn ∈ E(X)) and coX(f)(x0) = −1 (x0 = A+B
2

and f(A) = f(B) = −1 = minx∈X f(x)). Thus, coX(f) is τ -discontinuous
18.

1.6. Topological conditions on the geometry

Definition 1.10. The set X is τ -Faces-Closed (or τ -FC) if for any τ -Kuratowski-limit-
converging sequence of faces of X, the τ -Kuratowski-limit is also a face of X.

16The smallest topology for which x → 〈g, x〉 is continuous for every g ∈ C1 (N) .
17Choquet, 1969, Section 25 or Rockafellar, 1970, Section 18.
18I discovered this example in Benoist and Hiriart-Urruty (1996).
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Remark 1.11. A necessary (but not sufficient) condition for X to be τ -FC is that the
τ -closure of a face of X is also a face of X. From Remark 1.9-(4), a face of a convex
τ -compact finite dimensional set is always τ -closed and From Remark 1.9-(5), in infinite
dimension, some faces may not be τ -closed. Surprisingly, the τ -closure of a face may
not be a face. The following example is close to the one given in Remark 1.9-(5). X
still denotes the set of probability-measures over the set integers N and E is the space
of σ-additive bounded measures over N . Let C2 (N) denote the set of bounded functions
g : N → R satisfying limn→∞ g(n) = g(0) = 1

2
g(1) + 1

2
g(2). Since E and C2 (N) are in

duality, E may be endowed with the associated weak* topology (denoted τ 2). One can
easily prove that τ 2 has all the desired properties required in the introduction for the
topology τ . Consider the same face as in Remark 1.9-(5):

F = Conv{δ3, δ4, δ5, ...}.

Hence, by construction of the topology τ 2, δ0 =
1
2
δ1 +

1
2
δ2 ∈ clτ2 [F ] . Since δ1 and δ2 are

not in clτ2 [F ], it follows that clτ2 [F ] is not a face of X.

A correspondence y → G(y) from X to ∆X,τ is w (τ)∗-Kuratowski-limit-continuous (or
w (τ)∗-KC) at x if for any sequence {xn}n in X that is τ -converging to x, the sequence
of sets {G(xn)}n w (τ)∗-Kuratowski–limit-converges to G(x).

Definition 1.12. Let x be in X. The set X is τ -Splitting-Continuous (or τ -SC ) at x if
the splitting correspondence y → ∆X,τ (y) is w (τ)∗-KC at x.

From Proposition 1.3, the splitting correspondence x → ∆X,τ (x) is always w
∗(τ)-KUSC.

Hence, using Property P2 in Section 1.3, we deduce that (X, τ) is τ -SC at x if and only if
the splitting correspondence y → ∆X,τ (y) is w

∗(τ)-Kuratowski-limit-lowersemicontinuous
(denoted w∗(τ)-KLSC) at x; meaning that for any sequence {xn}n τ -converging to x,
∆X,τ (x) ⊂ w∗(τ)−K lim infn∆X,τ (xn).

Definition 1.13. Let ρ > 0. The set X is d-Splitting-Lipschitz with constant ρ (or d-
SL(ρ)) if for any (x, y) in X ×X and for any

∑m
i=1 αiδxi

in ∆∗
X(x) there exist m points

y1, ..., ym in X such that
∑m

i=1 αiδyi belongs to ∆∗
X(y) and

∑m
i=1 αid(xi, yi) ≤ ρd(x, y).

Note that if d(y, z) = ‖y − z‖ where ‖·‖ is some norm on E, ρ should be greater than 1.

Definition 1.14 (Choquet, 1969, Corollary 28.5). The τ -metrizable set X is a τ -
simplex of Choquet if for any x in X, there exists a unique regular τ -probability-measure
σ on X such that its barycenter is x and its τ -support belongs to the set of extreme points
of X.

Remark 1.15. Hence, X is a finite dimensional simplex if and only if the set of its
extreme points is finite and the extreme points are affinely independent.

1.7. The main results

Theorem 1.16. Preservation of continuity

(a) The operator coX (·) preserves τ -continuity at x if and only if the set X is τ -SC at
x.

(b) If the operator coX preserves τ -continuity, the set X is τ -FC.



218 R. Laraki / On the Regularity of the Convexification Operator on a Compact Set

(c) If the space E is finite dimensional, conditions τ -SC and τ -FC on X are equivalent.

Theorem 1.17. Preservation of Lipschitz continuity

(d) If the set X is d-SL, the operator coX (·) uniformly preserves d-Lipschitz continuity.

(e) The property SL(ρ) is stable under countable product. More precisely, if X = ×nXn

is a countable product of dn-SL(ρ)-compact sets Xn then there exist many distances
for which X is compact and SL(ρ).

(f) Suppose that X is a τ -simplex of Choquet. Then a norm on Vect(X), denoted
‖·‖X,τ , is constructed and is proved that the operator coX (·) exactly preserves ‖·‖X,τ -
Lipschitz continuity.

(g) If the set X is a polytope and (E, τ) is normed then X is ‖·‖τ -SL(ρ) for some ρ ≥ 1.

(h) If (E, τ) is a finite dimensional normed space, the operator coX (·) uniformly pre-
serves ‖·‖τ -Lipschitz continuity if and only if the set X is a polytope.

Sections 2 to 4 are devoted to the proof of (a) to (c), Sections 6 to 10 the proof of (d) to
(h). Examples in Section 5 and Remark 9.4 show that these results are tight.

2. Proof of part (a) in Theorem 1.16

The following Proposition is to compare with Proposition 1.3.

Proposition 2.1. Let x be in X and f in C(X, τ). If the Splitting correspondence y →
∆X,τ (y) is w

∗(τ)-KLSC at x, then coX (f) is τ -usc at x.

Proof. Let {xn}n be τ -converging to x and ε > 0. Suppose that coX(f)(xn) converges to
some real α (if not switch to a subsequence since f is bounded). Let σ be such that

coX(f)(x) ≥ 〈σ, f〉 − ε

By the w∗(τ)-KLSC at x of the Splitting correspondence y → ∆X,τ (y), there exists a
sequence σn ∈ ∆X(xn) that w

∗(τ)-converges to σ. Consequently,

α = coX(f)(xn)

≤ lim
n

〈σn, f〉

= 〈σ, f〉
≤ coX(f)(x) + ε

Hence, coX(f) is τ -usc at x.

Corollary 2.2. If the set X is τ -SC at x then the operator coX (·) preserves τ -continuity
at x.

Proof. Since the splitting correspondence y → ∆X,τ (y) is both w∗(τ)-KLSC and w∗(τ)-
KUSC at x, the last Proposition and Proposition 1.3 implies that the image of any τ -
continuous function by the convexification operator is both τ -usc and τ -lsc at x.

Proposition 2.3. Let x be in X and f in C(X, τ). If the splitting correspondence y →
∆X,τ (y) is not w∗(τ)-KLSC at x then there exists f in C(X, τ) such that coX (f) is τ -
discontinuous at x.
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Proof. Since the splitting correspondence y → ∆X,τ (y) is not w∗(τ)-KLSC at x, there
exists a sequence {x′

n}n τ -converging to x and there exists σ ∈ ∆X,τ (x) such that

σ /∈ w∗(τ)−K lim inf
n
[∆X,τ (x

′
n)] .

Considering a subsequence of {x′
n}n and using Property P2 in Section 1.3, we deduce that

there exists a sequence {xn}n τ -converging to x such that (1)D := w∗(τ)−K lim∆X,τ (xn)
exists and satisfies σ /∈ D, (2) lim coXf(xn) exists, (3) coXf(xn) = 〈f, σn〉 for some
σn ∈ ∆X(xn) and (4) the sequence {σn}n w(τ)∗-converges to some σ0 ∈ D. Prop-
erty P1 in Section 1.3 implies that D ⊂ M(X, τ) is convex and w(τ)∗-closed. Since
(M(X, τ), w(τ)∗) is a locally convex and Hausdorff real vector space, the Hahn Banach
Theorem (Kelley & Namioka, 1963) may be used to deduce the existence of a continu-
ous linear form l(·) on (M(X, τ), w(τ)∗) which separates strictly the singleton {σ} and
D. Since (M(X, τ), w(τ)∗) is the dual of C(X, τ) (Cohn 1980, Theorem 7.3.1) the dual
of (M(X, τ), w(τ)∗) is C(X, τ) (Kelley & Namioka, 1963, Section 17). That is, l(·) has
the form l(·) = 〈f, ·〉 for some f ∈ C(X, τ). Finally, from coX(f)(x) ≤ 〈f, σ〉 , it may
be deduced that coX(f)(x) < minτ∈D 〈f, τ〉 . Since σ0 ∈ D, lim coXf(xn) = 〈f, σ0〉 ≥
minτ∈D 〈f, τ〉 > coX(f)(x). Consequently, coX(f) is not τ -usc at x.

Corollary 2.4. If the set X is not τ -SC at x then the operator coX (·) does not preserve
τ -continuity at x.

Remark 2.5. Since (X, τ) is compact and metrizable the Stone-Weierstrass Theorem
(Kelley, 1955, Section 7) implies that the space of dτ -Lipschitz functions (where dτ is
some distance compatible with τ) is dense in C(X, τ). Hence, for a strict separation
between {σ} and D in the proof of Proposition 2.3, one can choose f to be dτ -Lipschitz
instead of only τ -continuous. Consequently,

Corollary 2.6. If the set X is not τ -SC then the operator coX (·) does not preserve dτ -
Lipschitz continuity (meaning that there exists a dτ -Lipschitz function such that its image
is not dτ -Lipschitz).

3. Proof of part (b) in Theorem 1.16

Before proving the main result (b), we start by developing an alternative characterization
for the condition τ -FC.

Definition 3.1. For any x in X, let FX(x) be the face of X generated by x (i.e. the
minimal face of X containing x) and call the correspondence x → FX(x) from X to X
the Minimal-Face correspondence.

Remark 3.2. FX(x) is well defined since (1) X is a face containing x; (2) the intersec-
tion of all faces containing x is a nonempty convex set (since convexity is preserved by
intersection and x is always in the intersection); and (3) if y is in the intersection of all
faces containing x and σ is a finite-support probability-measure centered at y, then the
support of σ is in the intersection of all faces containing x.

Lemma 3.3. If ΛX(x) denotes the set of points in X which are in the support of σ in
∆∗

X(x) then ΛX(x) = FX(x).
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Proof. It suffices to prove that ΛX(x) is a face containing x. Actually, this implies that
FX(x) ⊂ ΛX(x) (FX(x) is the minimal face containing x). Now, since (1) ΛX(x) ⊂ FX(x)
holds by the definition of FX(x) and (2) ΛX(x) is clearly convex, the equality between
the two sets follows.

To prove that ΛX(x) is a face let y ∈ ΛX(x) be in the support of some σ ∈ ∆∗
X(x) and

let z be in the support of some τ ∈ ∆∗
X(y). Define the finite-support probability-measure

µ by

µ({ỹ}) = σ({ỹ}) + σ({y})× τ({ỹ}) if ỹ 6= y

µ({y}) = σ({y})× τ({y})

Clearly, µ ∈ ∆∗
X(x) and z is in the support of µ. Hence z ∈ ΛX(x), so that ΛX(x) is a

face.

Corollary 3.4. A set F is a union-of-faces of X if and only if ∪x∈FFX(x) ⊂ F (or
equivalently if ∪x∈FFX(x) = F ).

Thus, F is a union-of-faces of X if and only if it is the union of some family of faces of X.

Corollary 3.5. For any function f in B(X) and any x in X, coX(f)(x) = coFX(x)(f)(x).

Proof. Since coX(f)(x) = infσ∈∆∗
X(x) 〈σ, f〉, to compute coX(f)(x) only the points in X

which are in the support of some σ in ∆∗
X(x) are needed. Lemma 3.3 says that this set is

FX(x).

Introduce now some equivalent definitions for the τ -FC condition.

Definition 3.6.

• The set X is τ -Minimal-Face-Lowersemicontinuous at x if the Minimal-Face corre-
spondence x → FX(x) is τ -KLSC at x, meaning that for any sequence {xn}n that
τ -converges to x, FX(x) ⊂ τ −K lim infn FX(xn).

• The set X is τ -Union-of-Faces-Closed if for any sequence {Fn}n of union-of-faces of
X which τ -Kuratowski-limit–converges, its limit set, τ−K limFn, is also a union-
of-faces of X.

Proposition 3.7. For the set X, the following conditions are equivalent:

(a) X is τ -Faces-Closed;

(b) X is everywhere τ -Minimal-Face-Lowersemicontinuous;

(c) X is τ -Union-of-Faces-Closed.

Proof. (b) ⇒ (c). Let {Fn}nbe a sequence of union-of-faces of X that τ -Kuratowski–
limit-converges to F and let x ∈ F. Since, there exists a sequence xn ∈ Fn such that
xn → x, and X is τ -Minimal-Face-Lowersemicontinuous,

FX(x) ⊂ τ−K lim infFn = F. Hence, ∪x∈FFX(x) ⊂ F. Consequently, F is a union-of-faces
of X.

(c) ⇒ (a). Let {Fn}nbe a τ -Kuratowski-converging sequence of faces of X and let F :=
τ − K limFn. Since Fn is convex, by P1 in Section 1.3, F is also convex. Since X is
τ -Union-of-Faces-Closed, F is a union-of-faces of X. Consequently, F is a face of X.
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(a) ⇒ (b). Let {xn}n be τ -converging to x. Let F := τ − K lim infn FX(xn). By P2 in
Section 1.3, there exists a subsequence {x′

n}n of {xn}n such that

τ −K limFX(x
′
n) = τ −K lim inf

n
FX(xn) = F.

Since {FX(x
′
n)}n is a sequence of faces and X is τ -Faces-Closed, F is a face and from

x ∈ F , it follows that FX(x) ⊂ F.

Proposition 3.8. If the operator coX (·) preserves τ -continuity at x then X is τ -Minimal-
Face-Lowersemicontinuous at x.

Proof. Suppose that X is not τ -Minimal-Face-Lowersemicontinuous at x. Hence, there
exists a sequence {xn}n τ -converging to x such that FX(x) is not included in F :=τ
−K limFX(xn). Choose y ∈ FX(x) such that y /∈ F. From (1) F is τ -closed, (2) τ
−K lim clτ [FX(xn)] = τ − K limFX(xn) = F and (3) (X, τ) is metrizable, we deduce
that there exists a closed convex neighborhood V (y) of y such that for n large enough
V (y)∩clτ [FX(xn)] = ∅. Urysohn’s Lemma (Kelley, 1955) shows the existence of a negative
function f ∈ C(X, τ) satisfying f(y) = −1 and f(z) = 0 for z ∈ clτ [FX(xn)] , for n large
enough. Thus, lim coX(f)(xn) = lim coFX(xn)(f)(xn) = 0 (from Corollary 3.5). Since
y ∈ FX(x), f ≤ 0 and f(y) < 0, we deduce that coX(f)(x) < 0. That is, f is τ -
discontinuous at x.

4. Proof of part (c) in Theorem 1.16

Here is established part (c) of our main results.

Proposition 4.1. If the space E is finite dimensional, the two conditions τ -SC and τ -FC
on X are equivalent.

From the last Sections, it needs only be shown that the τ -KLSC of the Minimal-Face
correspondence x → FX(x) implies the w∗(τ)-KLSC of the splitting correspondence y →
∆X,τ (y). The proof is given in three steps. The closed and open half-lines starting at
a and containing b are respectively denoted by [a → b) := {a+ µ(b− a), µ ≥ 0} , and
]a → b) := [a → b)\{a}.
Step 1. Is shown here that if the Minimal-Face correspondence x → FX(x) is τ -KLSC
then for any x ∈ X, αδa + (1− α)δb ∈ ∆∗

X(x) and {xn}n → x, there exists αnδan + (1−
αn)δbn ∈ ∆∗

X(xn) such that αnδan + (1− αn)δbn → αδa + (1− α)δb.

Lemma 4.2. If the space E is finite dimensional and the set X is τ -Minimal-Face-
Lowersemicontinuous then X satisfies the following property, denoted [P ] :

[P ] : for any x, a and b in X such that x ∈]a, b[ and any sequence {xn}n → x, there exist
y, {an}n and {yn}n such that y ∈]x → b), xn ∈ [an, yn], an → a and yn → y.

Proof. Suppose that X is τ -Minimal-Face-Lowersemicontinuous and let a and b in X
be such x ∈]a, b[ and {xn}n → x. For each integer k ≤ dim(E) for which Hk = {n :
dim(FX(xn)) = k} is infinite, define the sequence

{

xk
n

}

n
= {xn}n∈Hk

. This is a subse-
quence of {xn}n , hence converges to x. For simplicity, denote such a sequence {xn}n
also.
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[P ] is now proved by induction on k.

k = 1. Since X is τ -Minimal–Face-Lowersemicontinuous at x, there exists a sequence
{an}n in FX(xn) such that an → a. Also, there exists a sequence {bn}n in FX(xn) such
bn → b. Since dim(FX(xn)) = k = 1, necessarily xn ∈ [an, bn].

Suppose now that [P ] is true for all l ≤ k−1. Since X is τ -Minimal–Face-Lowersemiconti-
nuous at x and xn → x, there exists a sequence {a′n}n in FX(xn) such that {a′n} → a.
Define

{zn} := arg max
q∈X:xn∈]a′n,q[

‖xn − q‖ .

Where ‖·‖ is the euclidean norm. zn is the farthest point in X from xn when one follows

the direction
−−→
a′nxn. zn is clearly well defined; It exists because X is compact and is unique

since the norm function ‖·‖ is positively homogeneous. Hence, zn ∈ ∂τFX(xn)
19. Since

{a′n} → a and {xn} → x, we deduce that {zn} → z and that x ∈]a, z]. If z 6= x, taking
an = a′n and yn = zn, [P ] is proved. Now, suppose that z = x. Since zn ∈ ∂τF (xn),
{zn} → x and dim [∂τFX(xn)] < dim [FX(xn)] = k, the induction hypothesis implies that
there exist two sequences {a∗n}n and {yn}n in FX(zn) ⊂ FX(xn) such that zn ∈]a∗n, yn[,
{a∗n} → a and {yn} → y ∈]x → b]. Since, xn ∈]a′n, zn[ and zn ∈]a∗n, yn[, there exists a
sequence {an}n such that an ∈ [a′n, a

∗
n] and xn ∈]an, yn[. From a′n → a and a∗n → a it

follows that {an} → a. Hence y, {an}n and {yn}n satisfies [P ].

Now is proved the main result of Step 1.

Lemma 4.3. Suppose that the space E is finite dimensional and that the set X is τ -
Minimal-Face-Lowersemicontinuous. Let x, a and b be in X with x ∈]a, b[ and let {xn}n →
x. Then, there exist two sequences {an}n and {bn}n in X such that xn ∈ [an, bn], an → a
and bn → b.

Proof. Suppose that X is τ -Minimal-Face-Lowersemicontinuous and let x, a and b be in
X such that x ∈]a, b[ and let {xn}n → x. By the property [P ] , there exists y satisfying
the following property

[

Px,a,b,{xn}
]

.
[

Px,a,b,{xn}
]

: y ∈]x → b) and there exist two sequences {an} and {yn} in X such that
xn ∈ [an, yn], an → a and yn → y.

The following two stability properties hold:

(i) If y satisfies
[

Px,a,b,{xn}
]

and if z ∈]a, y[ then z satisfies
[

Px,a,b,{xn}
]

.
Actually, if z = βa+(1−β)y and if {an}n and {yn}n are some sequences associated
with y then the sequences {an}n and zn := βan + (1− β)yn are associated with z.

(ii) If for all m ∈ {1, 2, ..}, ym satisfies
[

Px,a,b,{xn}
]

and if limm→∞ ym = y 6= x then y
satisfies

[

Px,a,b,{xn}
]

.
Actually, let {ymn }n and {amn }n be two sequences associated with ym, meaning that
limn y

m
n =ym, limn a

m
n =a and xn ∈ [amn , y

m
n ]. Hence, a diagonal extraction implies

that there exists ϕ(·) ∈ N such that the sequences
{

y
ϕ(n)
n

}

n
and

{

a
ϕ(n)
n

}

n
satisfies

the desired property for y.

19Recall that ∂τF denotes the relative τ -boundary of the face F.
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Denote by Dx,a,b,{xn} the set of points y in X satisfying
[

Px,a,b,{xn}
]

. By [P ], (i) and
(ii) above, there exists y0 ∈]x → b) such that Dx,a,b,{xn} =]x, y0]. We claim that b ∈
Dx,a,b,{xn} (which will end the proof of Lemma 4.3). Indeed, assume that y0 ∈]x, b[. Since
y0 ∈ Dx,a,b,{xn}, there exist two sequences {an}n and {yn}n in X such that xn ∈ [an, yn],
an → a and yn → y0. Since y0 ∈]a, b[ and yn → y0, property [P ] implies the existence of
z0 ∈]y0 → b) and the existence of sequences {a∗n}n and {zn}n in X such that yn ∈ [a∗n, zn],
a∗n → a and zn → z0. Hence z0 ∈]x → b), xn ∈ co{an, a∗n, zn}, lim an = lim a∗n = a and
lim an = z0. Consequently z0 ∈ Dx,a,b,{xn}. A contradiction with (i), Dx,a,b,{xn} =]x, y0]
and z0 ∈]y0 → b).

Step 2. Suppose that X is τ -Minimal-Face-Lowersemicontinuous. Let m ≥ 2 and con-
sider the following property [Pm]

[Pm] For any x in X, any sequence {xn}n → x and any
∑m

i=1 αiδxi
in ∆∗

X(x), there exists
a sequence

∑m
i=1 αi(n)δxi(n) in ∆∗

X(xn) that converges to
∑m

i=1 αiδxi
.

From Step 1, [P2] holds. Suppose now [Pm] holds for m ≥ 2 and prove that [Pm+1] holds.

Let
∑m

i=1 αiδxi
be in ∆∗

X(x). If α1 = 1 then we are done. Suppose then that α1 < 1
and define x

′
2 = 1

1−α1

∑m
i=1 αi+1xi+1. Hence, α1δx1 + [1− α1] δx′

2
∈ ∆∗

X(xn). Using Step

1, we deduce that there exists a sequence α1(n)δx1(n) + [1− α1(n)] δx′
2(n)

in ∆∗
X(xn) that

converges to α1δx1 + [1− α1] δx′
2
. Also, using the induction hypothesis, we obtain that

there exists a sequence
∑m

i=1 αi+1(n)δxi+1(n) in ∆∗
X(x

′
2(n)) that converges to

∑m
i=1 αi+1δxi+1 . Hence, the sequence

α1(n)δx1(n) + [1− α1(n)]
∑m

i=1 αi+1(n)δxi+1(n) is in ∆∗
X(xn) and converges to

∑m
i=1 αiδxi

.

Step 3. From Step 2, for any {xn} → x and σ in ∆∗
X(x), there exists a sequence {σn}n

in {∆∗
X (xn)}n converging to σ. Since, for any y in X, clw(τ)∗ [∆

∗
X(y)] = ∆X,τ (y) = r−1

τ (y)
and since the barycenter application σ → rτ (σ) from ∆X,τ to X is w (τ)∗-continuous,
we conclude that any σ in ∆X,τ (x) may be w (τ)∗-approximated by some sequence in
{∆∗

X (xn)}n. Hence, the splitting correspondence is w (τ)∗-KLSC.

5. Examples

5.1. Example 2

Proposition 5.1. Condition τ -Faces-Closed for X is strictly stronger than the τ -close-
ness of the set of extreme point of X.

Proof. A small modification of Kruskal’s example (Example 1) leads us to the following
example in R4:

X = co

{

A = (0, 0,−1, 0);B = (0, 0, 1, 0)

D =
{

(a, b, 0, d) : (a− 1)2 + b2 = 1; |d| ≤ 1− |b|
}

}

.

Hence the set of extreme points of X

E(X) =

{

A = (0, 0,−1, 0);B = (0, 0, 1, 0)
{

(a, b, 0, d) : (a− 1)2 + b2 = 1; |d| = 1− |b|
}

}

,
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is clearly τ -closed. For xn =

(

1
n
,
√

1−
(

1− 1
n

)2
, 0, 0

)

, xn → x = (0, 0, 0, 0). A simple

computation shows that

FX(xn) =











1

n
,

√

1−
(

1− 1

n

)2

, 0, d



 : |d| ≤ 1−

√

1−
(

1− 1

n

)2







.

But
τ −K limFX(xn) = co

{

A1 = (0, 0, 0,−1) , B1 = (0, 0, 0, 1)
}

and
FX(x) = co

{

A,B,A1, B1
}

.

Hence, X is not τ -Minimal–Face-Lowersemicontinuous at x.

5.2. Example 3

Proposition 5.2. If X is a polytope then it is τ -SC.

Proof. Since X is the convex hull of finitely many points, it is included in a finite di-
mensional space and contains finitely many faces. Let {Fn}nbe a τ -Kuratowski-limit
converging sequence of faces of X. Since the sequence contains a finite number of distinct
sets, its limit, τ−K limFn, is necessarily the τ -closure of some face of X. By Remark
1.9-(4) above, the τ -closure of a face of X it is also a face of X. Hence, X is τ -FC. Finally,
by part (c) of Theorem 1.16, X is τ -SC.

5.3. Example 4

Here is a class of τ -SC sets that does not contain polytopes.

Definition 5.3. The set X is strongly convex if any face of it that differs from X is
reduced to a point (which is necessarily an extreme point).

Proposition 5.4. A strongly convex set X is τ -FC if and only if the set of its extreme
points E(X) is τ -closed.

Proof. Let X be a strongly convex set and suppose that the set of its extreme points is a
τ -closed set. Let {Fn}n be a sequence of faces of X that is τ -Kuratowski–limit-converging
to some F ⊂ X. If F = X then we are done. If not, then for n large we have necessarily
Fn 6= X. Since X is strongly convex, for n large, Fn = {xn} where xn is some extreme
points of X. Since Fn τ -Kuratowski-limit-converges, xn τ -converges to some x in X,
which is necessarily an extreme point.

Remark 5.5.

• If X is the unit ball of an Hilbert space then X is strongly convex. In such a case,
the set of extreme points of X is the unit sphere. Hence if τ is a topology for which
the unit sphere is τ -closed, then the unit ball would be τ -FC.

• Suppose that X is included in a finite dimensional space. Then X is strongly convex
if and only if E(X) = ∂τX. Since ∂τX is always τ -closed, we deduce that a finite
dimensional strongly convex set is always τ -FC (hence τ -SC by part (c) of Theorem
1.16).
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5.4. Example 5

Corollary 2.6 shows that condition τ -SC on X is necessary for the operator coX (·) to
preserve dτ -Lipschitz continuity. Is this condition also sufficient? The answer is no.

LetX = {(a, b) ∈ R2 : a2 + b2 ≤ 1} be the unit ball in R2. Remark 5.5 above shows thatX
is τ -SC. Let x0 = (0, 1) and define the 1-Lipschitz function f on X by: f(x) = −‖x− x0‖
where ‖·‖ denotes the euclidean norm. The idea is to construct a sequence (xn

0 ) converging
to the extreme point x0 such that there exists a convex decomposition of xn

0 supported

by two extreme points xn
1 and xn

2 that satisfies
‖xn

i −x0‖
‖xn

0−x0‖ → ∞ for i ∈ {1, 2}. That is, let

xn
0 =

(

0, cos( 1
n
)
)

, xn
1 =

(

sin( 1
n
), cos

(

1
n

))

and xn
2 =

(

− sin( 1
n
), cos

(

1
n

))

. Since points xn
1

and xn
2 are extreme points of X and xn

0 = 1
2
xn
1 +

1
2
xn
2

coX(f)(x
n
0 ) ≤

1

2
f(xn

1 ) +
1

2
f(xn

2 ) = −2 sin

(

1

2n

)

.

Since x0 is an extreme point of X,

coX(f)(x0) = f(x0) = 0.

Thus

coX(f)(x0)− coX(f)(x
n
0 ) = −coX(f)(x

n
0 ) ≥ 2 sin

(

1

2n

)

,

so

coX(f)(x0)− coX(f)(x
n
0 )

‖x0 − xn
0‖

≥ 2
sin

(

1
2n

)

1− cos
(

1
n

) → +∞,

coX(f) is not ‖·‖-Lipschitz.

6. Proof of part (d) in Theorem 1.17

Proposition 6.1. If the set X is d-SL(ρ) and if the function f on X is d-Lipschitz with
constant L then coX(f) is d-Lipschitz with constant ρL.

Proof. Let x, y be in X and suppose that coX(f)(x) = limn→∞
∑mn

i=1 α
n
i f(x

n
i ) with

∑mn

i=1 α
n
i δxn

i
∈ ∆∗

Z(x). Since X is d-SL with constant ρ, there exists a sequence of vectors
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(yni )
mn

i=1 such that
∑mn

i=1 α
n
i δyni ∈ ∆∗

Z(y) and
∑mn

i=1 α
n
i d(x

n
i , y

n
i ) ≤ ρd(x, y). Thus,

coX(f)(y)− coX(f)(x) = coX(f)(y)− lim
n→∞

mn
∑

i=1

αn
i f(x

n
i )

= lim
n→∞

[

coX(f)(y)−
mn
∑

i=1

αn
i f(x

n
i )

]

≤ lim sup
n→∞

[

mn
∑

i=1

αn
i f(y

n
i )−

mn
∑

i=1

αn
i f(x

n
i )

]

≤ lim sup
n→∞

[

mn
∑

i=1

αn
i |f(xn

i )− f(yni )|

]

≤ L lim sup
n→∞

[

mn
∑

i=1

αn
i d(x

n
i , y

n
i )

]

≤ ρ× L× d(x, y)

7. Proof of part (e) in Theorem 1.17

Here is shown that the class of ‖·‖-SL(ρ) sets is stable under countable product. Using
parts (f) and (g) of Theorem 1.17, one may construct an infinite dimensional compact set
(for example the Hilbert cube) for which the convexification operator preserves uniformly
(or exactly) Lipschitz continuity.

Proposition 7.1. Let {Xn}n be a sequence of dn-compact convex sets that are sup-
posed to be dn-SL(ρ). Assume also that there exists a constant M > 0 such that,
supn supxn∈Xn,yn∈Xn

dn (xn, yn) ≤ M. Let θ = {θn}n be a sequence of positive real numbers
such that

∑∞
n=1 θn < +∞. Define X := ×nXn and let dθ denote the following distance on

X,

dθ(x, y) :=
∞
∑

n=1

θndn(xn, yn).

Then X is dθ-compact and dθ-SL(ρ).

Proof. Clearly, dθ is well defined and X is dθ-compact. Let show that X is also dθ-
SL(ρ). Let x =

∑K
k=1 αkx

k and y be in X. Since Xn is a dn-SL(ρ), there exists a vector
(

ykn
)

k=1,...K
in XK

n such that yn =
∑

k αky
k
n and

∑

k αkdn(x
k
n, y

k
n) ≤ ρdn(xn, yn). Define
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now yk :=
{

ykn
}

n
in X. Thus

∑

k

αkdθ
(

xk, yk
)

=
∑

k

αk

∑

n

θndn
(

xk
n, y

k
n

)

=
∑

n

θn
∑

k

αkdn
(

xk
n, y

k
n

)

≤
∑

n

θnρdn (xn, yn)

= ρdθ(x, y)

8. Proof of part (f) in Theorem 1.17

8.1. Simplices

Let Y be a measurable space. Denote by M(Y ) the set of σ-additive bounded measures
on Y and by M+(Y ) the set of σ-additive bounded positive measures on Y . Then any
η ∈ M(Y ) can be decomposed uniquely as the difference of two measures with disjoint
supports η+ and η− in M+(Y ) (the Hahn-Jordan decomposition Theorems, Cohn, 1980,
Theorem 4.1.4 and Corollary 4.1.5). The total variation norm of η ∈ M(Y ) is defined by

‖η‖M(Y ) := η+(Y ) + η−(Y ).

Note that if X is a τ -simplex of Choquet, the barycenter linear transformation rτ (·) that
associates to each σ ∈ ∆E(X),τ , rτ (σ) ∈ X defines an affine bijection between X and
∆E(X),τ (the set of regular τ -probability-measures over E(X)). This may be extended
into an affine bijection between Vect(X) and M(E(X), τ) (the set of σ-additive regular
τ -measure on E(X)). Denoting this extension also by rτ (·), one may define a norm ‖·‖X,τ

on Vect(X) as follows:
‖x‖X,τ :=

∥

∥r−1
τ (x)

∥

∥

M(E(X),τ)

Proposition 8.1. Suppose that the set X is a τ -simplex of Choquet. Hence, X is ‖·‖X,τ -
SL(1). In addition, if E(X) is infinite, the topology induced by ‖·‖X,τ is strictly stronger
than the topology τ .

Before proving Proposition 8.1, a useful Lemma is established.

8.2. A new splitting of probabilities

Lemma 8.2. 20Let µ be some probability-measure on some measurable space Y and let
(αk, µk)

m
k=1 be such that, ∀k = 1, ...,m :

(i) µk is a probability-measure on Y ;

(ii) αk ≥ 0,
∑m

k=1 αk = 1 and
∑m

k=1 αkµk = µ.

Then, for each probability-measure ν on Y, there exists ν1, ..., νm such that ∀k = 1, ...,m

20In a previous version, this lemma was proved only when Y is countable. Jean-Francois Mertens (whom
I thank) remarked that my previous proof was generalizable.
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(i′) νk is a probability-measure on Y ;

(ii′) ν =
∑m

k=1 αkνk; and

(iii′) ‖µ− ν‖M(Y ) =
∑m

k=1 αk ‖µk − νk‖M(Y ).

Proof. Let η := ν−µ and let η+and η−be its Hahn-Jordan decomposition. Since η(Y ) =
ν(Y )− µ(Y ) = 0, it follows that

‖η‖M(Y ) = 2η+(Y ) = 2η−(Y ).

If η+(Y ) = 0 then µ = ν and the Lemma holds (take νk = µk). Suppose now that
η+(Y ) > 0.

Since (1) ν = η+ + µ− η− is in M+(Y ), (2) η+and η−have disjoint supports and (3) µ is
in M+(Y ), we deduce that ξ := µ− η−is also an element of M+(Y ).

∑m
k=1 αkµk = µ implies that for any k = 1, ...m, the measure µk is absolutely continuous

with respect to µ. By Cohn, 1980, Theorem 4.2.2, it admits a Radon-Nikodym derivative
with respect to µ

fk(y) :=
µk(dy)

µ(dy)
≥ 0, y ∈ Y.

fk(·) is unique up to µ-almost everywhere equality. Now, if the positive measure νk is
defined by

νk(dy) :=

[
∫

Y
fk(y)η

−(dy)

η+(Y )

]

η+ (dy) + fk(y)ξ(dy),

then a simple computation shows

∫

Y

νk(dy) =

∫

Y

fk(y)η
−(dy) +

∫

Y

µk(dy)− fk(y)η
−(dy) = 1

Hence, νk is a probability-measure. The uniqueness of Radon-Nikodym derivative implies
that

∑m
k=1 αkfk(y) = 1, µ−almost everywhere. Replacing each function fk by some other

positive function (of the same name) equals to fk µ−almost everywhere, it may be assumed
that

∑m
k=1 αkfk(y) = 1 everywhere in Y . Since η+(Y ) = η−(Y ),

m
∑

k=1

αkνk = ν.

A simple calculation yields

νk (dy)− µk(dy) =

[
∫

Y
fk(y)η

−(dy)

η+(Y )

]

η+ (dy)− fk(y)η
−(dy),

which is the Hahn-Jordan decomposition of νk − µk. This implies

‖νk − µk‖M(Y ) = 2

∫

Y

fk(y)η
−(dy)
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from which we obtain that

m
∑

k=1

αk ‖νk − µk‖M(Y ) = 2

∫

Y

η−(dy)

= ‖ν − µ‖M(Y )

Remark 8.3. The νk constructed in the last proof depends, for a fixed k, only on µ,ν
and µk. In particular, it is not depending on αk nor on µk′ ,k

′ 6= k. More precisely, νk is
such that [νk − µk]

+is proportional to [ν − µ]+ .

8.3. Proof of Proposition 8.1.

Let X be a τ -simplex, and x, y be two points in X. Suppose that
∑m

k=1 αkδxk
∈ ∆∗

X(x).
Lemma 8.2 implies that there exist m points yk ∈ X, k = 1, ...,m, such that

∑m
k=1 αkδyk ∈

∆∗
X(y) and

∑

k∈K αk ‖r−1(xk)− r−1(yk)‖M(E(X),τ) = ‖r−1(x)− r−1(y)‖M(E(X),τ) . Since by

definition, ‖·‖X,τ = ‖r−1(·)‖M(E(X),τ), it follows that X is ‖·‖X,τ -SL with constant 1.

When X and E(X) are endowed with the topology τ and ∆E(X),τ is endowed with the
weak* topology w∗ (τ), the affine bijection rτ (·) from ∆E(X),τ toX is continuous (Choquet,
1969, Proposition 26.3). Also, it is well known that the topology induced by the total
variation norm on M(E(X), τ) is stronger than the weak* topology w∗ (τ). Hence, the
topology induced by ‖·‖X,τ (the image, by rτ (·), of ‖·‖M(E(X),τ)) is stronger than the
topology τ on X. Since X is τ -compact, ‖·‖X,τ and τ are equivalent if and only if X is
‖·‖X,τ -compact. This is true only if E(X) is finite. Actually, if E(X) is infinite and if
{xn}n is a sequence of different extreme points that τ -converges to some point x0 then
one has ‖xn − x0‖X,τ = ‖δxn − δx0‖M(E(X),τ) = 2. If E(X) is finite, then X is included in
a finite dimensional space and in this case all the vectorial topologies are equivalent.

9. Proof of part (g) in Theorem 1.17

Let X be a polytope. Then there exist m points ei, i = 1, ...,m such that

X = Conv {e1, ..., em} .

Suppose in addition that {e1, ..., em} = E(X) and define the (quotient) norm21 on Vect(X),
denoted ‖·‖X , as follows

‖z‖X = inf
{α∈Rm:

∑m
i=1 αiei=z}

m
∑

i=1

|αi| .

Note that when the polytope X is a finite dimensional simplex (i.e. e1, ..., em are affinely
independent) the norm defined above for a simplex of Choquet coincides with the one
defined here.

21It is the quotient norm on X, considered as the quotient of l1n by the kernel of the mapping α →
∑n

i=1 αiei.
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Proposition 9.1. If X is a polytope then there exists a constant ρ, depending only on
X, such that X is ‖·‖X-SL(ρ).

Consequently, by the equivalence of norms property in finite dimension, we deduce that
a similar result holds for any norm on Span(X). To prove Proposition 9.1, we use the
following Lipschitzian characterization of polyhedra, due to Walkup & Wets (1969).

9.1. The Walkup & Wets result

Let l (·) be an affine transformation between two finite dimensional normed vector spaces
A and B. For a subset K of A, define the set valued function κ (·) which associates to
each b ∈ l(K), the following subset of K

κ(b) := l−1(b) ∩K.

The Hausdorff distance D(κ(b), κ(b′)) is a metric on the collection of all nonempty sections
κ(b) :

D(κ(b), κ(b′)) = max [r(b, b′), r(b′, b)]

with,

r(b, b′) = max
a∈κ(b)

min
a′∈κ(b′)

‖a− a′‖A ,

where ‖·‖A denotes the norm of the vector space A.

The set valued function κ (·) is Lipschitz if there exists a constant ρ such that for any b
and b′ in l(K)

D(κ(b), κ(b′)) ≤ ρ ‖b− b′‖B .

where ‖·‖B denotes the norm of B and the constant ρ depends only on l (·), K, ‖·‖A and
‖·‖B.
Theorem 9.2 (Walkup & Wets (1969)). Suppose that K is convex and compact.
Then K is a polytope if and only if for any affine transformation l (·) , κ (·) is Lipschitz.

9.2. A consequence of Walkup & Wets

Here is a very useful consequence of the characterization of Walkup & Wets (1969).

Lemma 9.3. Let X = Conv {e1, ..., em} be a polytope where {e1, ..., em} = E(X). For x
and y in X, define the following distance on X

dX(x, y) = max[c(x, y), c(y, x)]

with

c(x, y) = max
α∈BX(x)

min
β∈BX(y)

m
∑

i=1

|αi − βi|

where, for z ∈ X

BX(z) =

{

α ∈ K :
m
∑

i=1

αiδei ∈ ∆∗
X(z)

}
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and

K = {(αi)
m
i=1 ∈ Rm : αi ≥ 0,∀i = 1, ...,m,

m
∑

i=1

αi = 1}.

Then there exists a constant ρ depending only on X such that for any x and y in X

‖x− y‖X ≤ dX(x, y) ≤ ρ ‖x− y‖X .

Proof. Endow Vect(X) with the norm ‖·‖X defined above and endow Rm with the stan-
dard L1 norm ‖·‖1:

‖α‖1 =
m
∑

i=1

|αi| .

Let l (·) be the affine transformation from Rm to Vect(X) which associates to each α ∈ K,
l(α) =

∑m
i=1 αiei ∈ X. Since X = Conv {e1, ..., em} , X = l(K). Define as above the set

valued function κ(·) from X into subset of K,

κ(x) := l−1(x) ∩K.

This may be interpreted as the set of all possible convex decompositions of x over the set
of extreme points E(X). By Theorem 9.2 (Walkup & Wets) there exists a constant ρ > 0
such that for any x and y in X

D(κ(x), κ(y)) ≤ ρ ‖x− y‖X

where

D(κ(x), κ(y)) = max [r(x, y), r(y, x)]

and

r(x, y) = max
α∈K:l(α)=x

min
β∈K:l(β)=y

m
∑

i=1

|αi − βi| .

Thus for any x and y in X, r(x, y) = c(x, y) and D(κ(x), κ(y)) = dX(x, y). The fact that
‖x− y‖X ≤ dX(x, y) is trivial. Since l (·), K and ‖·‖X are functions of X, the constant ρ
depends only on X. Finally, dX(·, ·) is a distance since D(κ(·), κ(·)) is a distance.

9.3. Proof of Proposition 9.1.

Now we are ready to prove Proposition 9.1. LetX = Conv {e1, ..., em} be a polytope where
{e1, ..., em} = E(X) . Let x and y be inX and let (αi)

m
i=1 be such that

∑m
i=1 αiδei ∈ ∆∗

X(x).
By Lemma 9.3 there exists

∑m
i=1 βiδei ∈ ∆∗

X(y) such that

m
∑

i=1

|αi − βi| ≤ ρ ‖x− y‖X .

Let
∑l

k=1 λ
kδxk ∈ ∆∗

X(x) and
∑m

i=1 α
k
i δei ∈ ∆∗

X(x
k). Identifying them-dimensional vectors

α = (αi)
m
i=1 , β = (βi)i=1,...,m and αk =

(

αk
i

)m

i=1
with the corresponding probability-

measures over the finite set E(X) = {e1, ..., em} and applying Lemma 8.2, we deduce that
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there exist l vectors of probability-measures over E(X), βk =
(

βk
i

)m

i=1
, k = 1..., l, such

that
l

∑

k=1

λkβk = β,

and
m
∑

i=1

|αi − βi| =
l

∑

k=1

λk

m
∑

i=1

∣

∣αk
i − βk

i

∣

∣ .

Defining yk :=
∑m

i=1 β
k
i ei in X, it follows that

m
∑

i=1

|αi − βi| ≥
l

∑

k=1

λk
∥

∥xk − yk
∥

∥

X
.

Since
∑m

i=1 |αi − βi| ≤ ρ ‖x− y‖X , we deduce that X is ‖·‖X-SL(ρ).
Remark 9.4. One may ask if it is possible to construct for any polytope X (as for
simplices) a norm NX (·) such that X is NX (·)-SL(1). The answer is no22. Indeed, let
{Xn}n be the sequence of the n-symmetric polygon of R2 with diameter 1 with respect
to the euclidean norm. Suppose that for each n = 1, ..., there exists a norm NXn (·)
such that X is NXn (·)-SL(1). Without loss of generality, suppose that NXn (·) has the
same symmetric points with respect to the center than the n-symmetric polygon Xn.
Consequently, as n → ∞, {NXn (·)}n uniformly converges to the euclidean norm, ‖·‖.
Since Xn uniformly converges to the euclidean ball in R2 and since Xn is NXn (·)-SL(1),
we deduce that the euclidean ball in R2 is also ‖·‖-SL(1). This is in contradiction with
Example 5.

10. Proof of part (h) in Theorem 1.17

Proposition 10.1. If (E, ‖·‖τ ) is a finite dimensional real vector normed space, the op-
erator coX (·) uniformly preserves ‖·‖-Lipschitz continuity if and only if X is a polytope.

Proof. Using the fact that all the norms are equivalent in finite dimension, and using re-
sults (d) and (f) in Theorem 1.17, we deduce that when X is a polytope, coX (·) uniformly
preserves ‖·‖τ -Lipschitz continuity. To show the other implication, suppose, without loss
of generality, that ‖·‖τ is the euclidean norm and suppose that the convexification opera-
tor coX (·) uniformly preserves ‖·‖τ -Lipschitz continuity. Clearly, if E(X) is not τ -closed,
X will not be τ -SC and hence one could construct a ‖·‖τ -Lipschitz function for which
coX(f) is not ‖·‖τ -Lipschitz (Corollary 2.6). Now suppose that E(X) is τ -closed but not
finite. Then there exists an accumulation extreme point (because E(X) is τ -compact since
it is supposed to be τ -closed and included in the τ -compact X). That is, there exists a
sequence {en}n of different extreme points of X converging to an extreme point e. The
idea of the proof is now very similar to the one in Example 5. It may be supposed that
(a) en−e

‖en−e‖τ
converges to some direction v (here is used explicitly the hypothesis of finite

dimension) and (b)
‖en+1−e‖τ
‖en−e‖τ

→ 0. Define αn and βn in ]0, π[ such that

cos (αn) =
〈e− en, e− en+1〉E

an × an+1
22Thanks to Jean-Francois Mertens for this remark.
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and

cos (βn) =
〈e− en, en+1 − en〉

an × bn

where
an = ‖e− en‖τ , bn = ‖en − en+1‖τ .

Of course we use the fact that the norm is the euclidean norm; 〈a, b〉E denotes the standard
scalar product in E. A simple calculation shows that (a) implies that αn goes to 0 and (b)
implies that βn goes to 0. Since the extreme points are different, αn and βn are different
from 0. Now, let xn be the orthogonal projection of en+1 on [e, en] . Then, a simple triangle
calculation shows that

(i) ‖xn − en+1‖τ = an+1 × sin(αn) = bn × sin(βn) ;

(ii) xn = cos(αn)×an+1

cos(αn)×an+1+cos(βn)×bn
e+ cos(βn)×bn

cos(αn)×an+1+cos(βn)×bn
en.

Define the sequence of ‖·‖τ -Lipschitz functions with constant 1, fn (·) , by fn(z) = −‖z
−en+1‖ . By the above convex decomposition, we deduce that

coX(fn)(xn) ≤ −
cos(αn)× a2n+1 + cos(βn)× b2n
cos(αn)× an+1 + cos(βn)× bn

implying
coX(fn)(en+1)− coX(fn)(xn)

‖xn − en+1‖τ
≥ min (an+1, bn)

2 ‖xn − en+1‖τ
since ‖xn − en+1‖τ = an+1 × sin(αn) = bn × sin(βn), it follows that

coX(fn)(en+1)− coX(fn)(xn)

‖xn − en+1‖τ
≥ 1

2
min

(

1

sin(αn)
,

1

sin(βn)

)

→+∞.

11. Extensions and open questions

In Laraki 2001 (which was in the origin of this paper) the convexification operator is
extended to a zero-sum-game operator called the splitting operator; the regularity of
this operator is used to prove the existence of the asymptotic value of a stochastic game
where each player controls a discrete-time martingale. In a work in progress, the author
is studying the relation between the modulus of continuity of a continuous function and
its image by the convexification operator. It is shown in particular that the modulus of
continuity is preserved by coX when X is Splitting-Lipschitz with constant 1. Finally,
in Laraki & Sudderth, 2002, some result of this paper are extended to a large class of
optimal reward operators. In addition, a general necessary and sufficient condition for
the preservation of Holder-continuity is given.

Two open questions arise in infinite dimension: is τ -FC equivalent to τ -SC ? and is ‖·‖τ -SL
always equivalent to the uniform preservation of ‖·‖τ -Lipschitz continuity?
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