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In this paper we realize a study of various constraint qualification conditions for the existence of Lagrange
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for the normal cone to the constraint set, on local metric regularity and a metric regularity property on
bounded subsets. As a by-product we obtain a characterization of the metric regularity of a finite family
of closed convex sets.

Keywords: Convex function, constraint qualification, Lagrange multiplier, metric regularity, normal cone

2000 Mathematics Subject Classification: 49K27, 90C25

1. Introduction

Consider the classical convex programming problem

minimize g(x) s.t. hi(x) ≤ 0, i ∈ I := {1, . . . ,m}, (P)

where g and hi (i ∈ I) are convex functions defined on the normed vector spaceX. We are
interested by the weakest hypotheses that ensure the characterization of a solution x of (P)
by Karush-Kuhn-Tucker conditions, i.e., the existence of λ1, . . . , λm ≥ 0, called Lagrange
multipliers, such that x is a solution of the (unconstrained) minimization problem

minimize g(x) +
∑m

i=1
λihi(x) s.t. x ∈ X (UP)

and λihi(x) = 0 for every i ∈ I.

There are several known assumptions of this type in the literature, called constraint
qualification (CQ) conditions. The mostly used seems to be Slater’s CQ:

∃ x̃, ∀ i ∈ I : hi(x̃) < 0. (SCQ)

Denoting by C the set {x ∈ X | hi(x) ≤ 0 ∀ i ∈ I} of admissible solutions of (P) and by
I(x) the set {i ∈ I | hi(x) = 0} of active constraints at x ∈ C, and assuming the functions
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96 D. Tiba, C. Zălinescu / On the Necessity of some Constraint Qualification ...

hi to be finite-valued and differentiable, other conditions are:

{∇hi(x) | i ∈ I(x)} is linearly independent, (LICQ)

the Mangasarian-Fromovitz’ CQ

∃ ũ, ∀ i ∈ I(x) : ∇hi(x)(ũ) < 0, (MFCQ)

or Abadie’s CQ
cone(C − x) = {u | ∇hi(x)(u) ≤ 0 ∀ i ∈ I(x)}. (ACQ)

As noted by Li [19], (ACQ) is equivalent to the condition

N(C, x) =

{

∑

i∈I(x)
λi∇hi(x)

∣

∣

∣

∣

λi ≥ 0 ∀ i ∈ I(x)

}

, (ACQ′)

where N(C, x) is the normal cone of C at x. Abadie’s CQ is, consequently, a particular
case of the “basicÔ constraint qualification introduced by Hiriart-Urruty and Lemaréchal
[15] in the case of nondifferentiable convex minimization problems:

N(C, x) =

{

∑

i∈I(x)
λix

∗
i

∣

∣

∣

∣

λi ≥ 0, x∗
i ∈ ∂hi(x) ∀ i ∈ I(x)

}

. (BCQ)

It is known that in finite dimensional spaces (see [15, 19, 8]) (LICQ) ⇒ (SCQ) ⇔
(MFCQ) ⇒ (ACQ) ⇔ (BCQ) when the functions hi are convex and differentiable and
(SCQ) ⇒ (BCQ) when the functions hi are finite-valued continuous and convex. As
proved by Hiriart-Urruty and Lemaréchal [15] in finite dimensional spaces and for finite-
valued convex functions, (BCQ) is also necessary for the existence of Lagrange multipliers
in the sense that (BCQ) holds for h1, . . . , hm if for every continuous convex objective
function g and any solution x of (P) there exist Lagrange multipliers λ1, . . . , λm ≥ 0. In
this sense, (BCQ) is the weakest possible CQ, but it is difficult to be checked due to its
implicit character.

The aim of this article is to introduce another CQ, which is formulated directly in terms
of the data:

∀B bounded, ∃ γB > 0, ∀x ∈ B \ C : max{hi(x) | i ∈ I} ≥ γB · dC(x). (MRB)

We show that (MRB) is strictly weaker than Slater’s CQ, and is also necessary for the
existence of Lagrange multipliers in the sense mentioned above, at least in finite dimen-
sional spaces. This condition, which is a metric regularity condition on bounded sets, was
used in another context by Robinson [24] and by Lemaire [18]. Meantime this condition
was used independently by Li [19] in finite dimensions for finite-valued differentiable con-
vex functions. Moreover, in all the situations considered in the paper, the existence of
Lagrange multipliers is obtained when, in addition, a certain overlapping of the domain
of the objective function and of the admissible set holds.

The next section is devoted to the study of formulae for the normal cone and of related
questions, under the weakest possible assumptions. As mentioned above, this plays an
essential role in the existence of Lagrange multipliers. In the last section, we discuss the
necessity of our hypotheses: metric regularity conditions, interiority conditions and the
Slater’s constraint qualification.
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In fact, we realize a study of various constraint qualification conditions: conditions of
type (BCQ), local metric regularity and the above metric regularity on bounded subsets
(MRB), in general normed spaces and for extended-valued convex functions. Certain
results along these lines have been established by the first author in the preprints [26, 27].

2. Constraint qualification conditions and formulae for the normal cone

Throughout this paper (X, ‖ · ‖) is a real normed space whose topological dual X∗ is
endowed with the dual norm denoted also by ‖ · ‖; the closed unit balls of X and X∗ are
denoted by UX and UX∗ , respectively. We denote by Λ(X) the class of convex functions
h : X → R ∪ {∞} with nonempty domain domh := {x ∈ X | h(x) < ∞}, and by Γ(X)
the class of those functions h ∈ Λ(X) which are also lower semicontinuous. Consider
h ∈ Λ(X) and assume that the (not necessarily closed) admissible set

C := [h ≤ 0] := {x ∈ X | h(x) ≤ 0} (1)

is nonempty. Consider the minimization problem

minimize g(x) s.t. h(x) ≤ 0, (2)

where g ∈ Λ(X), too. Note that the problem (P) is equivalent with problem (2) by taking
h := maxi∈I hi. In order that the problem (2) be non trivial we assume that C∩dom g 6= ∅.
As mentioned in the Introduction, for deriving optimality criteria for the problem (2), a
usual hypothesis is the Slater condition, i.e.,

∃ x̃ ∈ X : h(x̃) < 0 (3)

(which is equivalent to (SCQ) when h := maxi∈I hi). In fact, because we also envisage
the case when g is not necessarily finite-valued, we slightly modify condition (3):

∃ x̃ ∈ dom g : h(x̃) < 0. (4)

The next result is known for a long time when h is finite-valued (see [2, Th. 3.1.2], [3, Th.
3.1.2]). In the sequel we use the convention 0 · ∞ := ∞.

Proposition 2.1. Let g, h ∈ Λ(X). Assume that condition (4) holds. Then x ∈ C∩dom g
is a solution of problem (2) if and only if there exists λ ≥ 0 such that λh(x) = 0 and x is
a minimizer of g + λh.

Proof. Let x ∈ X be a minimizer of g+λh for some λ ≥ 0 with λh(x) = 0. It is clear that
x ∈ dom g∩domh. If x ∈ C then g(x) = (g+λh)(x) ≤ (g+λh)(x) = g(x)+λh(x) ≤ g(x),
which proves that x is a solution of problem (2).

Conversely, assume that x is a solution of problem (2). Hence x ∈ C ∩ dom g. Consider
F : X × R → R defined by F (x, t) := g(x) for h(x) ≤ t, F (x, t) := ∞ otherwise. By
hypothesis (x̃, 0) ∈ domF and F (x̃, ·) is continuous at 0. Using the stability theorem in
Ekeland–Temam [13, Props. 2.2, 2.3 (ch. III)] or [31, Th. 2.7.1(iii)], there exists λ ∈ R
such that

g(x) = infx∈XF (x, 0) = maxµ∈R
(

− F ∗(0, µ)
)

= −F ∗(0,−λ)

= inf{g(x) + λ (h(x) + s) | x ∈ domh, s ∈ R+},
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where the conjugate f ∗ : X∗ → R of the function f : X → R is defined by f ∗(x∗) :=
supx∈X

(

〈x, x∗〉 − f(x)
)

. It follows that λ ≥ 0. Hence

g(x) = inf{g(x) + λh(x) | x ∈ domh} ≤ g(x) + λh(x) ≤ g(x),

and so λh(x) = 0 and x is a minimizer of g + λh.

Note that if condition (3) holds but (4) does not, the conclusion of the preceding propo-
sition may fail.

Example 2.2. Let x∗ ∈ X∗ \ {0} and consider the functions g, h : X → R be defined by

h(x) := 〈x, x∗〉, g(x) := −
√

〈x, x∗〉 for 〈x, x∗〉 ≥ 0, g(x) := ∞ otherwise. It is obvious that
condition (3) holds but (4) does not. Of course, 0 is a solution of problem (2). Assuming
that 0 is a minimizer of g+ λh for some λ ≥ 0 we obtain that 0 ≤ −

√
t+ λt for all t ≥ 0,

whence the contradiction 1 ≤ λ
√
t for all t > 0.

Using the previous result one obtains the formula (5) below for the normal cone to C at
x ∈ C defined by

N(C, x) := {x∗ ∈ X∗ | 〈y − x, x∗〉 ≤ 0, ∀ y ∈ C} = ∂ιC(x),

where ιC is the indicator function of C given by ιC(x) = 0 for x ∈ C and ιC(x) = ∞ for
x ∈ X \ C; for the function f ∈ Λ(X) the (Fenchel) subdifferential of f at x ∈ dom f is
defined by

∂f(x) := {x∗ ∈ X∗ | 〈y − x, x∗〉 ≤ f(y)− f(x), ∀ y ∈ X}.

Proposition 2.3. Let h ∈ Λ(X) satisfy condition (3). Consider x ∈ C, where C is
defined by (1). Then

N(C, x) =
⋃

{∂(λh)(x) | λ ≥ 0, λ · h(x) = 0} , (5)

where 0h means ιdomh.

Proof. The inclusion “⊃Ô in (5) holds without any condition on h. Indeed, let x∗ ∈
∂(λh)(x) for some λ ≥ 0 with λh(x) = 0. Then for y ∈ C we have that 〈y − x, x∗〉 ≤
λh(y)− λh(x) = λh(y) ≤ 0, and so x∗ ∈ N(C, x).

Let x∗ ∈ N(C, x). Then 〈y − x, x∗〉 ≤ 0 for h(y) ≤ 0, i.e., x is a solution of problem (2),
where g(y) := −〈y, x∗〉. Since dom g = X, condition (4) holds. Applying Proposition 2.1
we get λ ≥ 0 such that λh(x) = 0 and x is a minimizer of g+λh, i.e., −〈x, x∗〉+λh(x) ≤
−〈y, x∗〉+ λh(y) for every y ∈ X. Of course, this means that x∗ ∈ ∂(λh)(x).

When h is continuous at x ∈ domh we have that x ∈ int(domh), and so ∂(0h)(x) =
N(domh, x) = {0}. Moreover, if h(x) = 0 then relation (5) becomes the well-known
formula for the normal cone: N(C, x) = R+∂h(x) (see Rockafellar [25, Cor. 23.7.1],
Laurent [17, p. 388], Giles [14, p. 185]).

Proposition 2.3 was obtained by Penot and Zălinescu [22, Prop. 5.4] for x ∈ [h = 0] :=
{y ∈ X | h(y) = 0}. Also without assuming h to be continuous at x ∈ [h = 0] (but
still infh < 0), in finite dimensions Rockafellar [25, Th. 23.7] obtains that N(C, x) =
cl
(

R+∂h(x)
)

under the additional hypothesis that ∂h(x) 6= ∅, while Pshenichnyi [23, Th.
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3.17] obtains thatN(C, x) = R+∂h(x) under the additional hypothesis that the directional
derivative h′(x, ·) is lower semicontinuous, where

h′(x, u) := lim
t→0+

h(x+ tu)− h(x)

t
. (6)

Notice that one cannot replace the formula (5) by N(C, x) = R+∂h(x) when h(x) = 0
and x /∈ core(domh). Take for example h(t) = −

√
t for t ≥ 0, h(t) = ∞ for t < 0 and

x = 0 in which case ∂h(0) = ∅. Note that Slater’s condition (3) is not necessary for
having formula (5). Indeed, consider A ⊂ X a nonempty convex set and x ∈ A. Then
clA = {y ∈ X | dA(y) ≤ 0} and

N(A, x) = R+∂dA(x), (7)

where dA(y) := inf{‖y − a‖ | a ∈ A} is the distance from y ∈ X to A. Indeed, dA =
‖·‖£ιA and the convolution is exact at x ∈ A : dA(x) = ‖0‖ + ιA(x). Hence, by a
well-known formula (see Laurent [17, Prop. 6.6.4]), ∂dA(x) = ∂ ‖·‖ (0) ∩ ∂ιA(x) = UX∗ ∩
N(A, x). The relation (7) is now immediate.

When g is finite-valued and continuous, or more generally,

∃x0 ∈ C ∩ dom g : g is continuous at x0, (8)

an alternate proof of Proposition 2.1 is the following: x is a solution of (2) if and only if
x is a minimizer of g + ιC if and only if 0 ∈ ∂(g + ιC)(x) = ∂g(x) + ∂ιC(x), the equality
being true because g is continuous at some point of C ∩ dom g. So, using Proposition
2.3, x is a solution of (2) if and only if there exists λ ≥ 0 such that λ · h(x) = 0 and
0 ∈ ∂g(x) + ∂(λh)(x) = ∂(g + λh)(x).

In the above argument we may replace condition (8) by

intC ∩ dom g 6= ∅. (9)

The argument above shows that what is really needed for having the conclusion of Propo-
sition 2.1 is formula (5) for the normal cone to C at x ∈ C. Hence we have proved the
following result.

Proposition 2.4. Let g, h ∈ Λ(X) be such that condition (8) or (9) is verified. Assume
that formula (5) holds for x ∈ C ∩ dom g. Then x is a solution of problem (2) if and only
if there exists λ ≥ 0 such that λh(x) = 0 and x is a minimizer of g + λh.

In fact, without having formula (5) for the normal cone, there is no hope for the conclusion
of the preceding proposition to hold as the next result shows.

Proposition 2.5. Assume that for any function g ∈ Λ(X) satisfying (8) and any solution
xg of problem (2) there exists λg ≥ 0 such that λgh(xg) = 0 and xg is a minimizer of
g + λgh. Then formula (5) holds for any x ∈ C.

Proof. Let x ∈ C and take x∗ ∈ N(C, x). Then x is a solution of problem (2) with
g := −x∗. Then, by hypothesis, there exists λ ≥ 0 such that λh(x) = 0 and x is a
minimizer of −x∗ + λh, which means that x∗ ∈ ∂(λh)(x). Hence the inclusion “⊂Ô holds
in (5). As the converse inclusion holds always (see the proof of Proposition 2.3), the
conclusion follows.
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The proof above shows that in the preceding proposition one can replace Λ(X) by X∗.
Also note that combining Propositions 2.1 and 2.5 one obtains that the conclusion of
Proposition 2.1 holds for any finite-valued convex function g if and only if formula (5)
holds for every x ∈ C. So one generalizes Proposition VII.2.1.2 in [15] by taking into
consideration the formula

∂h(x) =

{

∑

i∈I(x)
λix

∗
i

∣

∣

∣

∣

λi ≥ 0, x∗
i ∈ ∂hi(x) ∀i ∈ I(x),

∑

i∈I(x)
λi = 1

}

, (10)

where h = maxi∈I hi with hi : X → R proper convex functions, continuous at x ∈
⋂

i∈I domhi and I(x) := {i ∈ I | hi(x) = h(x)} (see Tikhomirov [29, Th. 7]). In fact a
similar formula holds even if hi are not continuous at some point, as can be seen in [31,
Cor. 2.8.11]. In particular such a formula applies to the function h+ := max{h, 0}. In
this case, for h ∈ Λ(X), we get (see [31, Example 2.8.1])

∂h+(x) =







∂h(x) if h(x) > 0,
⋃

{∂(λh)(x) | λ ∈ [0, 1]} if h(x) = 0,
∂(0h)(x) = ∂ιdomh(x) if h(x) < 0.

(11)

In the case h = maxi∈I hi with hi : Rn → R differentiable convex functions and x satisfies
h(x) = 0 formula (5) becomes (ACQ’) mentioned in the Introduction.

Another sufficient condition for the validity of formula (5) is given in the next result.

Proposition 2.6. Let h ∈ Λ(X) and x ∈ [h = 0]. Then (5) holds provided that

∃ r, γ > 0, ∀ y ∈ x+ rUX : h+(y) ≥ γ · dC(y). (12)

Proof. Consider x∗ ∈ N(C, x). From formula (7) we have that x∗ = µu∗ for some
µ ≥ 0 and u∗ ∈ ∂dC(x). It follows that γu∗ ∈ ∂(γdC)(x). Since, by hypothesis, γdC ≤
h+ + ιx+rUX

and both functions coincide at x, we obtain that γu∗ ∈ ∂(h+ + ιx+rUX
)(x) =

∂h+(x) + ∂ιx+rUX
(x) = ∂h+(x), the first equality being true since ιx+rUX

is finite and
continuous at x. Hence x∗ ∈ R+∂h+(x) which together with (11) shows that the inclusion
⊂ holds in (5). The converse inclusion being always true, the conclusion follows.

When h ∈ Γ(Rn) and x ∈ int(domh) the preceding result can be deduced from Lewis and
Pang [20, Prop. 2]. When (12) holds at x ∈ C, Li [19] says that the system h(y) ≤ 0,
y ∈ X, is metrically regular at x, and the preceding system is metrically regular when
(12) holds at any x ∈ C (see also Deng [11]).

If C1, . . . , Cn ⊂ X are closed convex sets and x ∈ C := C1 ∩ . . . ∩ Cn, one says (see Pang
[21]) that {C1, . . . , Cn} is metrically regular at x if there exists γ, r > 0 such that

max{dCi
(y) | 1 ≤ i ≤ n} ≥ γ · dC(y) ∀ y ∈ x+ rUX .

Taking h := max{dCi
| 1 ≤ i ≤ n}, we have that C = [h ≤ 0], and the above relation

means that the system h(y) ≤ 0 is metrically regular at x. Hence, by the preceding
proposition and formulae (7) and (10) we get

N(C, x) = N(C1, x) + . . .+N(Cn, x) (13)
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when C is metrically regular at x ∈ C. So we recover Proposition 6 of Pang [21]. Note
that Bauschke, Borwein and Li [6] say that {C1, . . . , Cn} satisfies the “strong CHIPÔ
condition when (13) holds for every x ∈ C.

Taking into account that, by Proposition 2.3, formula (5) holds when h(x) < 0 (because
condition (3) holds in this case), the next result follows immediately.

Corollary 2.7. Let h ∈ Λ(X). If

∀x ∈ [h = 0], ∃ rx, γx > 0, ∀ y ∈ x+ rxUX : h+(y) ≥ γx · dC(y), (14)

then formula (5) holds for every x ∈ C.

In the next result we show that Slater’s constraint qualification (3) is strictly stronger
than the condition

∀ r > 0, ∃ γr > 0, ∀x ∈ rUX : h+(x) ≥ γr · dC(x); (15)

when h = maxi∈I hi, condition (15) is nothing else but condition (MRB) from the In-
troduction. When h = max{dC1 , . . . , dCn} condition (15) means that {C1, . . . , Cn} is
“boundedly linearly regularÔ in the sense of Bauschke and Borwein [5] (see also [4]).

Proposition 2.8. Let h ∈ Λ(X). Assume that h(x̂) < 0. Then

∀ r > 0, ∀x ∈ x̂+ rUX : h+(x) ≥ −r−1h(x̂) · dC(x). (16)

Proof. With our hypothesis, Robinson in [24] proved that

dC(x) ≤
(

− h(x̂)
)−1 ‖x− x̂‖ · h+(x) ∀x ∈ X, (17)

whence (16) follows immediately.

A simple direct proof of (16) can be found in [10, Example 4.2] (see also [18], [26], [27]
and [19]).

An alternative proof for the fact that formula (5) holds for every x ∈ C when condition
(15) does is obtained using the next result, result which is also interesting for itself. Here
the multi-valued operator FX : X ⇒ X∗ is the duality mapping of X.

Proposition 2.9. Let X be a reflexive Banach space and h ∈ Γ(X). If condition (15)
holds then for all λ > 0 and y ∈ X there exists xλ,y ∈ X such that

0 ∈ FX(xλ,y − y) + λ∂h(xλ,y). (18)

Moreover, for every y ∈ X there exists λy > 0 such that xλ,y ∈ C for λ > λy.

Proof. The function ϕλ,y : X → R, ϕλ,y(x) :=
1
2
‖x− y‖2+λh(x) is lower semicontinuous,

convex and coercive. Because X is reflexive, there exists xλ,y ∈ X such that ϕλ,y(xλ,y) ≤
ϕλ,y(x) for every x ∈ X, and so 0 ∈ ∂ϕλ,y(xλ,y), which is equivalent to (18).

For the second part we consider first the case when the infimum of h is attained. Hence
there exists x ∈ domh such that 0 ∈ ∂h(x). We have that

‖xλ,y − y‖2 + 2λh(xλ,y) ≤ ‖x− y‖2 + 2λh(x) ≤ ‖x− y‖2 + 2λh(xλ,y),
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whence ‖xλ,y − y‖ ≤ ‖x− y‖ . It follows that ‖xλ,y‖ ≤ ‖y‖+‖x− y‖. Let y ∈ Y be fixed.
Consider r > ‖y‖ + ‖x− y‖; take γ := γr with γr > 0 given by (15) and denote xλ,y by
xλ. Assume that xλ /∈ C. Then there exists x′

λ ∈ PC(xλ). Taking into account (15), we
have that

2λγdC(xλ) + ‖xλ − y‖2 ≤ 2λh(xλ) + ‖xλ − y‖2 ≤ 2λh(x′
λ) + ‖x′

λ − y‖2 ≤ ‖x′
λ − y‖2 ,

and so

2λγ ‖xλ − x′
λ‖ ≤ ‖x′

λ − y‖2 − ‖xλ − y‖2 ≤ ‖xλ − x′
λ‖ (‖x′

λ − y‖+ ‖xλ − y‖) .

Hence

2λγ ≤ ‖x′
λ − y‖+ ‖xλ − y‖ ≤ 2 ‖xλ − y‖+ ‖xλ − x′

λ‖ ≤ 2 ‖xλ − y‖+ ‖xλ − x‖
≤ 3 ‖xλ − y‖+ ‖y − x‖ ≤ 4 ‖x− y‖ .

Thus the conclusion holds for λy := 2γ−1 ‖x− y‖. Assume now that h does not attain
its infimum. Of course, condition (15) is satisfied by h+ and h+ attains its infimum. For
y ∈ X and λ > 0 denote by x+

λ,y the element x ∈ X satisfying 0 ∈ FX(x− y) + λ∂h+(x).

It is obvious that 1
2
‖x− y‖2 + λh(x) ≤ 1

2
‖x− y‖2 + λh+(x) for every x ∈ X. Let λy > 0

be such that x+
λ,y ∈ C for λ > λy. Take λ > λy and assume that xλ,y /∈ C. Then

‖xλ,y − y‖2 + 2λh(xλ,y) ≤ ‖x+
λ,y − y‖2 + 2λh+(x

+
λ,y) ≤ ‖xλ,y − y‖2 + 2λh+(xλ,y)

= ‖xλ,y − y‖2 + 2λh(xλ,y).

It follows that xλ,y minimizes 1
2
‖· − y‖2 + λh+(·), and so, by our choice of λy, xλ,y ∈ C.

This contradiction proves our assertion.

Proposition 2.10. Let X be a reflexive Banach space and h : X → R be convex and
continuous, satisfying condition (15). Then the multi-valued operator N : X ⇒ X∗

defined by

N(x) =







{0} if h(x) < 0,
R+∂h(x) if h(x) = 0,
∅ if h(x) > 0,

(19)

is maximal monotone and N(x) = ∂ιC(x) = N(C, x) for every x ∈ C.

Note that the relation N(x) = N(C, x) for every x ∈ C (and so N(x) = ∂ιC(x) for
every x ∈ X) follows from Corollary 2.7 because (15) ⇒ (14) and C ⊂ int(domh) = X.
Moreover, because ιC is lower semicontinuous and X is a Banach space the maximality of
N follows from Rockafellar’s theorem. However we give a direct proof using the preceding
result for the reader who is more familiar with monotone operators.

Proof. Note first that N = N+, where N+ denotes the operator defined by (19) which
corresponds to h+; just use formula (11) and take into account that 0h = 0 in our
conditions. So, we assume that h ≥ 0.

The space X being reflexive, by a classic renorming theorem (see Diestel [12, Cor. 2, p.
148]) we may assume that X is strictly convex and smooth, and so FX is single-valued.
By the definition of the subdifferential, it is clear that grN ⊂ gr ∂ιC and, therefore, that
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N is monotone. We show that N is maximal monotone in X ×X∗ and this will give the
desired equality. In order to apply the converse part in Minty’s theorem (see [1]), it is
sufficient to show that the equation

FX(x− y) +N(x) 3 0

has solutions for every fixed y ∈ X. Let y ∈ X be fixed and consider λ > λy, where λy is
given by the preceding proposition. Then the solution xλ,y of equation (18) is in C, and
so xλ,y is a solution of the equation displayed above. Therefore N is maximal monotone,
and so N = ∂ιC .

At the end of this section we give an application to abstract control problems:

min L(y, u), (20)

subject to

Ay = Bu+ ϕ, (21)

h(y, u) ≤ 0, (22)

where U, Y are Hilbert spaces with Y ⊂ X ⊂ Y ∗, L, h : Y ×U → R are convex continuous
mappings, ϕ ∈ Y ∗ and A : Y → Y ∗, B : U → Y ∗ are linear bounded operators with

〈Ay, y〉Y ∗×Y ≥ ω|y|2Y ∀ y ∈ Y, (23)

for some ω > 0.

The set C = {(y, u) ∈ Y × U | h(y, u) ≤ 0} is a closed convex set and we assume that
there is an admissible pair (ỹ, ũ) such that (ỹ, ũ) ∈ intC (w.r.t. the norm topology of
Y × U). Typical situations of problem (20)–(22) are obtained when Y, Y ∗ are Sobolev
spaces, X,U are Lebesgue spaces and A is an (elliptic) partial differential operator, while
B is some distributed or boundary control action.

Since condition (23) holds, the equation (21) has a unique solution for any u ∈ U . By
shifting the domains of L, h and redenoting the obtained mappings again by L, h, we may
assume ϕ = 0. We also notice the generality of the mixed constraint (22) which includes
both state and control constraints.

We shall apply the previous results. We consider the closed subspace K = {(y, u) ∈
Y ×U | Ay = Bu} and we replace L by L+ ιK in (20). If h satisfies (15) and (y, u) is an
optimal pair for (20)–(22), then Propositions 2.6 and 2.4 show that there is λ ≥ 0 such
that

0 ∈ ∂L(y, u) + ∂ιK(y, u) + λ∂h(y, u) (24)

and λh(y, u) = 0. Here, we also use that K ∩ intC 6= ∅ in order to apply the additivity
rule for the subdifferential. It is known that ∂ιK(y, u) = K⊥ and a simple calculus (taking
into account that A∗ is an isomorphism under condition (23)) shows that

K⊥ = {(A∗p,−B∗p) | p ∈ Y } ⊂ Y ∗ × U∗. (25)
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By (24), (25) we infer the optimality conditions for the problem (20)–(22):

−A∗p ∈ ∂1L(y, u) + λ∂1h(y, u),

B∗p ∈ ∂2L(y, u) + λ∂2h(y, u),

λh(y, u) = 0, λ ≥ 0,

where ∂iL, ∂ih, i = 1, 2, denote the i-th component of the ordered pairs ∂L, ∂h and not a
partial subdifferential.

In the work of Tiba and Bergounioux [28], a weaker form of the optimality system is
obtained, without imposing interiority assumptions on C.

3. Necessary conditions

One can ask what constraint qualification conditions are necessary for the existence of
Lagrange multipliers. This problem is discussed in this section.

3.1. Necessity of metric regularity conditions for the existence of Lagrange
multipliers

Taking into account Propositions 2.4 and 2.5, the question raised above can be rephrased
as follows: is the metric regularity condition (12) necessary for having formula (5)? A
partial answer is given in the next result, where h′(x, u) is defined by (6).

Proposition 3.1. Let X be finite dimensional and h ∈ Γ(X) be continuous at x ∈ [h =
0]. Assume that h′(xn, un) → h′(x, u) for all sequences (xn) ⊂ C converging to x and all
sequences (un) converging to u with un ∈ F−1

X (N(C, xn)) for every n ∈ N. If formula (5)
holds then condition (12) holds, too.

Proof. Assume that formula (5) holds but condition (12) doesn’t. Then there exist
(xn) ⊂ X converging to x and (γn) ⊂ ]0,∞[ converging to 0 such that 0 < h(xn) <
γndC(xn) ≤ γn ‖xn − x‖ for every n ∈ N. The set C being a nonempty closed and
convex subset of a finite dimensional normed space, there exists xn ∈ PC(xn), where
PA(y) := {a ∈ A | dA(y) = ‖y − a‖}. It follows that (xn) converges to x. Moreover,
because h|[xn,xn] is continuous, we have that h(xn) = 0, and so

h′(xn, xn − xn) ≤ h(xn)− h(xn) < γn ‖xn − xn‖ ∀n ∈ N. (26)

Let un := ‖xn − xn‖−1 (xn − xn). By a known characterization of best approximations
(see for example Th. 3.8.4(iv) in [31]), we have that FX(xn − xn) ∩N(C, xn) 6= ∅, and so
un ∈ F−1

X (N(C, xn)) for every n ∈ N. Consider u∗
n ∈ FX(un)∩N(C, xn). Since X is finite

dimensional we may assume that (un) converges to some u ∈ X and (u∗
n) converges to

u∗ ∈ X∗. It follows that u∗ ∈ FX(u)∩N(C, x). Since formula (5) holds, there exists µ ≥ 0
such that u∗ ∈ ∂(µh)(x). Because x ∈ int(domh), h being continuous at x, and u∗ 6= 0 we
have that µ > 0. Hence u∗ = µx∗ for some x∗ ∈ ∂h(x). Then, by our hypothesis and (26),
we obtain that h′(x, u) ≤ 0, and so we get the contradiction µ = 〈u, x∗〉 ≤ h′(x, u) ≤ 0.
The proof is complete.

Note that when h is continuous and GÝateaux differentiable at x ∈ domh then h′(xn, un) →
h′(x, u) for all sequences (xn) ⊂ domh converging to x and all sequences (un) ⊂ X
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converging to u (see [9, Fact 2.3], [31, Th. 3.3.2]). Also note that the condition on h in
the hypothesis of the preceding result is verified when h is finite and continuous on X
and

(

h′(xn, un)
)

→ h′(x, u) whenever (xn) → x, (un) → u and xn + λun ∈ cl(X \ C) for
all λ ≥ 0.

Related to the hypothesis of Proposition 3.1, note that Bauschke, Borwein and Tseng
[7, Cor. 3.2] gave an example of a closed convex cone K ⊂ R4 such that {K,Y }, with
Y := R3 ×{0}, satisfies the strong CHIP condition but is not boundedly linearly regular.

When h is continuous at every point of [h < 0] := {y ∈ X | h(y) < 0} it is obvious that
(14) is equivalent with

∀x ∈ C, ∃ rx, γx > 0, ∀ y ∈ x+ rxUX : h+(y) ≥ γx · dC(y), (27)

but we do not know if this is true for general h (excepting the case X = R). A condition
stronger than condition (27) is condition (15). Condition (15) is intermediate between
condition (27) and the existence of a global error bound for the (convex) inequality system
h(y) ≤ 0 :

∃ γ > 0, ∀x ∈ X : h+(x) ≥ γ · dC(x). (28)

It is obvious that (28) ⇒ (15) ⇒ (27) ⇒ (14). It is known that Slater’s condition (3)
does not imply condition (28); see [16] for an example.

In the next result we point out a situation when conditions (15) and (27) are equivalent.

Proposition 3.2. Let X be finite dimensional and h ∈ Γ(X). Then the conditions (15)
and (27) are equivalent.

Proof. Assume that (27) holds but (15) does not. Then for some r > 0 and every n ∈ N
there exists xn ∈ rUX such that 0 < h(xn) < γn ·dC(xn), where (γn) ⊂ ]0,∞[ is a sequence
converging to 0. Since (xn) is bounded we may assume that (xn) converges to some x ∈ X.
It follows that h(x) ≤ lim infh(xn) ≤ 0 · dC(x) = 0. Hence x ∈ C. By hypothesis there
exist r, γ > 0 such that h+(x) ≥ γ · dC(x) for x ∈ x+ rUX . Taking n sufficiently large in
order that ‖xn − x‖ < r and γn < γ, we get a contradiction.

Note that Li [19], as recalled above, considered the case when h = maxi∈I hi with hi :
Rn → R differentiable convex functions. In this case he proved Proposition 3.2 as well as
the equivalence of metric regularity and the validity of Abadie’s CQ (both on C).

Remark 3.3. Imposing the (norm) compactness of C in the preceding proposition one
gets (28) in any normed vector space X; for this use [10, Cor. 5.3] or [31, Cor. 3.4.2] and
a classic argument with open covers. In the absence of this condition, in general reflexive
Banach spaces the result is still open.

It is known (see Lewis and Pang [20]) that in the caseX = Rn endowed with the Euclidean
norm, condition (28) holds if and only if

∃ γ > 0, ∀x ∈ [h = 0], ∀u ∈ N(C, x) : h′(x, u) ≥ γ · ‖u‖ .

In the case of arbitrary normed spaces the preceding condition must be written as

∃ γ > 0, ∀x ∈ [h = 0], ∀u ∈ F−1
X (N(C, x)) : h′(x, u) ≥ γ · ‖u‖ . (29)
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In [30] it is shown that (28) and (29) are equivalent (with the same γ). One can ask if
there are similar characterizations for (15), (12) and (27). The answer is given in the next
proposition.

Proposition 3.4. Assume that X is a reflexive Banach space and h ∈ Γ(X). Then
condition (15) is equivalent to any one of the conditions

∀ r > 0, ∃ γr > 0, ∀x ∈ rUX ∩ [h = 0], ∀u ∈ F−1
X (N(C, x)) : h′(x, u) ≥ γr · ‖u‖ , (30)

∀ r > 0, ∃ γr > 0, ∀x ∈ rUX ∩ C, ∀u ∈ F−1
X (N(C, x)) : h′(x, u) ≥ γr · ‖u‖ , (31)

and condition (12), for a fixed x ∈ C, is equivalent to

∃ δ, γ > 0, ∀ y ∈ (x+ δUX) ∩ C, ∀u ∈ F−1
X (N(C, y)) : h′(y, u) ≥ γ · ‖u‖ . (32)

Proof. (31) ⇒ (30) is obvious.

(15) ⇒ (31) Let r > 0 and take r′ > r. Let γr := γr′ > 0. Consider x ∈ rUX ∩ C
and u ∈ F−1 (N(C, x)). If u = 0 there is nothing to prove, so let u 6= 0. It is well
known that x ∈ PC(x + tu) for every t > 0. In particular x + tu /∈ C for t > 0 because
d (x+ tu, C) = t ‖u‖ > 0. Take t′ = (r′ − r)/ ‖u‖; then x+ tu ∈ r′UX for every t ∈ [0, t′].
If x + tu /∈ domh for any t > 0 then h′(x, u) = ∞, and so h′(x, u) ≥ γr ‖u‖. Assume
that x + t′′u ∈ domh for some t′′ > 0; it follows that h(x) = 0. Otherwise, as h|[x,x+t′′u]

is continuous, there exists θ ∈ ]0, 1[ such that h(x + θt′′u) = 0, contradicting the fact
d (x+ tu, C) = t ‖u‖. As x + tu ∈ r′UX \ C for 0 < t ≤ t0 := min{t′, t′′}, from (15) we
obtain that

h(x+ tu)− h(x) ≥ γrd (x+ tu, C) = γrt ‖u‖ ∀ t ∈ ]0, t0],

and so h′(x, u) ≥ γr ‖u‖.
(30) ⇒ (15) Let c ∈ C be a fixed element, r > 0 and take r′ := 2r + ‖c‖. Take
γr := γr′ . Consider y ∈ rUX \ C. If y /∈ domh, the inequality h(y) ≥ γrd(y, C) is
obvious; assume that y ∈ domh. Since X is a reflexive Banach space and C is closed
and convex, there exists x ∈ PC(y). Assume that h(x) < 0. Because h|[y,x] is continuous,
there exists z ∈ ]x, y[ such that h(z) = 0. So we obtain the contradiction ‖x− y‖ =
d(y, C) ≤ ‖y − z‖ < ‖x− y‖. Therefore x ∈ [h = 0]. Moreover, ‖x‖ ≤ ‖x− y‖ + ‖y‖ ≤
‖y − c‖+ ‖y‖ ≤ 2r + ‖c‖ = r′. From the characterization of the best approximations we
have that FX(y − x) ∩N(C, x) 6= ∅, and so y − x ∈ F−1

X (N(C, x)). From our hypothesis
we obtain that

h(y) = h(y)− h(x) ≥ h′(x, y − x) ≥ γr′ ‖y − x‖ = γr · d(y, C),

and so (15) holds.

(12) ⇒ (32) Let x ∈ C and r, γ > 0 be given by (12). Consider δ := r/2. Let y ∈
(x + δUX) ∩ C and u ∈ F−1 (N(C, y)) \ {0}. We have either y + tu /∈ domh for every
t > 0 (and so h′(y, u) = ∞) or y + t′′u ∈ domh for some t′′ > 0. In the last case,
as in the proof of (15) ⇒ (31), h(y) = 0 and for t > 0 sufficiently small we have that
y + tu ∈ (x+ rUX) \ C. The conclusion follows similarly.

(32) ⇒ (12) Let x ∈ C be a fixed element and take δ, γ > 0 given by (32). Consider
r := δ/2. Let y ∈ (x + δUX) \ C. We may take y ∈ domh and consider y′ ∈ PC(y).
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As above we obtain that y′ ∈ [h = 0] ⊂ C. Moreover, ‖y′ − x‖ ≤ ‖y′ − y‖ + ‖y − x‖ ≤
2 ‖x− y‖ ≤ r. Hence, as in the proof of (30) ⇒ (15), y − y′ ∈ F−1

X (N(C, y′)). From our
hypothesis we obtain that

h(y) = h(y)− h(y′) ≥ h′(y′, y − y′) ≥ γ ‖y − y′‖ = γ · d(y, C),

and so (12) holds. The proof is complete.

The preceding result furnishes a characterization of the metric regularity of the intersec-
tion of a finite number of convex sets as an answer to the following remark of Pang [21, p.
314]: “there is no known characterization for the local metric regularity of these convex
sets Ci at a point in their intersectionÔ.

Corollary 3.5. Let X be a reflexive Banach space and Ci, 1 ≤ i ≤ n, be closed convex
subsets of X. Then C :=

⋂

1≤i≤nCi is metrically regular at x ∈ C if and only if

∃γ, r > 0, ∀ y ∈ C ∩ (x+ rUX), ∀u ∈ F−1
X (N(C, y)) : max

1≤i≤n
dC(Ci,x)(u) ≥ γ · ‖u‖ ,

where C(Ci, x) := cl
(

cone(Ci − x)
)

.

Proof. It is sufficient to observe that for h = maxi∈I hi with hi ∈ Λ(X), and x ∈
core(domh) we have that

h′(x, u) = maxi∈I(x) h
′
i(x, u) ∀u ∈ X,

where I(x) := {i ∈ I | hi(x) = h(x)}, and that for a nonempty closed convex set A ⊂ X
and x ∈ A, d′A(x, u) = d (u, C(A, x)) (see Lewis and Pang [20] for the case of Euclidean
spaces and Zălinescu [30, 31] for the general case). Applying the preceding proposition
the conclusion follows.

Summarizing the preceding results we have the following implications, where MRB means
condition (15) (i.e., metric regularity on bounded sets), MR means condition (27) (i.e.,
metric regularity), MRx means condition (12) (i.e., metric regularity at x) and C(X)
means the class of all continuous convex functions from X to R.

∀g ∈ C(X), ∃ Lagrange multiplier λ
Props. 2.4, 2.5⇐⇒ (5) holds ∀x ∈ C;

Slater’s CQ (3)
Prop. 2.8

=⇒ MRB
obvious
=⇒ MR

obvious⇐⇒ MRx holds ∀x ∈ C;

MRx
Cor. 2.7
=⇒ (5), ∀x ∈ C.

If dimX < ∞ and h ∈ Γ(X) :

MRB
Prop. 3.2⇐= MR; MRx

Prop. 3.1 (+ suppl. conditions)
⇐= (5).

The results above show that Slater’s condition is too strong for convex optimization. What
is really needed is formula (5) for the normal cone to C, and this formula is guaranteed
by a metric regularity condition.
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3.2. Necessity of other assumptions

As mentioned in the preceding section, Slater’s condition (4) is too strong for convex
optimization. On the other hand, Example 1 shows that Slater’s CQ (3) does not ensure
the existence of Lagrange multipliers when neither condition (8) nor condition (9) is
satisfied. The next result shows that for every lower semicontinuous function h (convex
or not) satisfying very weak differentiability hypotheses, there exists a function g ∈ Γ(X)
such that no Lagrange multipliers exist.

Proposition 3.6. Assume that the proper and lower semicontinuous function h : X → R
is such that ∅ 6= C := [h ≤ 0] 6= X and Dh(x, u) < ∞ for all x ∈ C and any u ∈ X with
x+ tu /∈ C for t ∈ ]0, tu] (for some tu > 0), where

Dh(x, u) := lim sup
t→0+

h(x+ tu)− h(x)

t
.

Then there exists g ∈ Γ(X) and a (local) minimizer x ∈ C of g on C such that x is not
a local minimizer of g + ηh on X for any η ≥ 0 with ηh(x) = 0.

Proof. There exist x ∈ C and x̂ ∈ X \C such that [x̂, x[⊂ X \C. Indeed, taking x̃ ∈ C
and λ := inf{λ ∈ [0, 1] | (1− λ)x̂ + λx̃ ∈ C} we have that λ > 0 and x := (1− λ)x̂ + λx̃
has the desired property because C is closed. Consider

g : X → R, g(x) :=

{

−
√
t if x = (1− t)x+ tx̂ with t ∈ [0, 1],

∞ otherwise.

It is obvious that g ∈ Γ(X) and C ∩ dom g = {x}. Therefore x is a (local) minimizer of
g on C. Assume that η ≥ 0 is such that ηh(x) = 0 and x is a local minimizer of g + ηh.
Because Dh(x, x̂ − x) < ∞ we have that (1 − t)x + tx̂ ∈ domh for t ∈ ]0, t0], for some
t0 ∈ ]0, 1]. Then there exists t1 ∈ ]0, t0] such that

0 = g(x) + ηh(x) ≤ −
√
t+ ηh(x+ t(x̂− x))

for all t ∈ [0, t1]. It follows that η > 0 and

η
h(x+ t(x̂− x))− h(x)

t
≥ 1√

t

for t ∈ ]0, t1]. Taking the lim sup for t → 0+, we get the contradiction ηDh(x, x̂ − x) =
∞.

Note that we may ask only that C be closed instead of assuming h to be lower semi-
continuous in the preceding result.

Another situation when Lagrange multipliers do not exist is furnished in the next result.

Proposition 3.7. Assume that the proper function h : X → R is such that ∅ 6= C :=
[h ≤ 0] ⊂ core(domh) and Dh(x, u) ≤ 0 for all x ∈ C and any u ∈ X, where core(domh)
is the algebraic interior of domh and

Dh(x, u) := lim inf
t→0+

h(x+ tu)− h(x)

t
.

If g ∈ Λ(X) and x ∈ C ∩ dom g are such that g(x) > inf g then there are no Lagrange
multipliers for (P) at x.
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Proof. Assume that x ∈ C ∩ dom g is a local minimizer for g + λh for some λ ≥ 0. Let
x ∈ X be such that g(x) < g(x). Then there is some ε ∈ (0, 1] such that for all t ∈ (0, ε]
one has x+ t(x− x) ∈ domh and

g(x) + λh(x) ≤ g
(

x+ t(x− x)
)

+ λh
(

x+ t(x− x)
)

,

whence

0 ≤
g
(

x+ t(x− x)
)

− g(x)

t
+ λ

h
(

x+ t(x− x)
)

− h(x)

t

≤ g(x)− g(x) + λ
h
(

x+ t(x− x)
)

− h(x)

t
.

Passing to the limit inferior for t → 0+, we get the contradiction g(x) ≤ g(x).

Note that the hypothesis on h is satisfied if we assume that Slater’s condition (3) does
not hold and h is finite-valued and GÝateaux differentiable or, even weaker, h has bilateral
derivatives at any x ∈ C and in any direction u ∈ X.
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