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We extend to smooth Banach spaces the proximal formula for Clarke subdifferential of lower semicon-
tinuous function. In the process we also extend the representation of G-subdifferential and the singular
G-subdifferential in terms of sequential limits of smooth subdifferentials of controlled rank.

1. Introduction

Clarke subdifferential (see [6]) and the smaller G-subdifferential of Lipschitz functions have
proved themselves to be useful tools in many problems of non smooth analysis because of
their nice topological properties and developed calculus. Another advantage of these two
subdifferentials is that they are well behaved in any Banach space. They can be extended
to lower semicontinuous functions via the distance to the epigraph. Nevertheless, such
construction is implicit and it is therefore useful to have an analytical representation of
the Clarke subdifferential as well as G-subdifferential. Rockafellar [21], Ioffe [12], Loewen
[17, 18], and Borwein and loffe [2] are some works in this direction. The aim of this paper
is to prove the full scope of the representation formulae, to be found in the mentioned
works, in the setting of smooth Banach spaces.

We now list the main results and provide references for the known parts. This would be
cumbersome to do if we are to give all the definitions and therefore we postpone recalling
some of them.

We refer to Section 2 for definition of Dy, - the S-smooth subdifferential of rank k and
N3, - the cone of 3-smooth normals of rank k; see Definition 2.1 and (12). Note also the
different but equivalent definition in Fréchet case: (11). Using these one may construct
the following limiting objects:

aﬂ,kf(z) = {w* - nhjgopnv Pn € Dﬁ_’kf(mn%mn —f ZL‘}, (1)
and B
Ng (S, x) = {w" — lim pn; py € Ngx(S, ), 20 — z} (2)

As standard throughout the paper, 0s f(2)= ;> 9% f () and Ny(S, )= Uk=0 Nii(S, ).
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Limiting subdifferentials of this kind were considered by many authors; see the comments
in [5]. In [19] (Theorem 9.5) it is shown that if the space has Fréchet smooth norm and

0 = F, the Fréchet bornology, then N r coincides with the normal cone N, defined by
Kruger and Mordukhovich - Definition 2.7. This was further refined in [3].

Actually, in view of the mentioned equivalence between the two definitions of F-normals
(see Section 2, the comments after (11), or [5]) and the fact that each w* convergent
sequence is norm bounded (Banach-Steinhaus Theorem, see [22]) Theorem 9.5 of [19]
follows from Theorem 2.9 of [19]. It should be mentioned however that the construction
used in [8] for establishing the equivalence (and which originates from [16]) is far from
being trivial. Note also that most of the results of the present paper, concerning Asplund
space, are essentially covered in Theorem 2.9 of [19].

For the sake of completeness we present a proof of

Proposition 1.1. ([19]) Let X be an Asplund space and S be a closed subset of X. Then
for each = € S we have that N(S,z) = Np(S, z).

The following proposition is an easy corollary of the corresponding result for smooth
subdifferentials of Borwein, Mordukhovich and Shao: [3], Proposition 2.3. We present a
proof of their result for the sake of completeness, see Lemma 2.2.

Proposition 1.2. Let X be a Banach space with some bornology § and f : X — RU
{400} be lower semicontinuous, x € domf. Then for each | > k > 1 we have that

() P €0uf() = (1) € Nan(epis, (@, f(@));
() (p~1) € Naalepif. (v, £(2)) = p € 05uf (@),

Of course, Propositions 1.1 and 1.2 show that the subdifferential corresponding to Kruger-
Mordukhovich cone coincides with dr when the space is Asplund, see [19, 3] for more
details.

In many situations one needs to consider not only the subdifferential of a given function,
but also its so called singular subdifferential. A prime example of this is when Clarke
subdifferential is represented via G-subdifferential, see Proposition 1.7 (for more examples
we refer to [5, 19]).

The singular limiting subdifferential 95° is defined by

p € 95 f(x) <= (p,0) € Nslepif, (z, f(z))); (3)

55"]‘(@") = Uk>0 3?kf(x)

The following proposition is of crucial importance. It allows, in case the space possesses
suitable smoothness, computing the singular limiting subdifferential in much the same
way as the limiting subdifferential itself, instead of having to deal with the epigraph.

Proposition 1.3. Assume that X is 3-smooth, or X is Asplund space and 3 = F. Let
f: X — RU{+o0} be lower semicontinuous and x € domf. For anyl >k > 0 we have
that

(1) A{w* = limy, oo X\, pn; P € Dy o f(20), T =5 2, Ay — 00} C O5%f(2);



M. Ivanov / Sequential Representation Formulae for G-Subdifferential and ... 181
() 05%.f(x) C B*—cl{w*—lim, At pn€D5 [ (), oy, Ap—00}.
If the 5* topology is metrizable on bounded sets (as, for example, when X is separable
or 3 = F), then taking 5* closure in the right hand side of (1) is redundant.

Proposition 1.3 readily follows from the following key fact.

Proposition 1.4. Let X be B-smooth, or X be Asplund and 3 = F. Let f : X — R be
a proper lower semicontinuous function and (p,0) € Ngy(epif, (zo, f(z0))), where k > 0.
Then for any € > 0, | > k and * neighborhood U* of 0 in X* there exist y € X and

(4, A) € Ng(epif, (y, f(y))) such that A € (=¢,0), [ly = zol[ <&, [f(y) — f(xo)| < & and

qgep+ U

The partial case of Proposition 1.4 when the space has F-smooth norm is proved in
[2]. A similar but rougher (i.e. U* is w* neighborhood and the rank is not controlled)
approximation of the singular smooth normals to the epigraph is obtained in smooth

Banach spaces by Zhu in [24]. The case of X Asplund is covered in [19, 23].

We refer to Section 3, or to [2, 3, 12], for the definition of the cone of G-normals Ng =
Uk=0 Nak- The following representation of Ng is proved in [2, 3] in the case when the
norm is #-smooth. For the sake of completeness we present a proof in our slightly more
general setting.

Proposition 1.5. Assume that the space X is 3-smooth with respect to some bornology
B, or that X is Asplund and 8 = F. If S is a closed subset of X and x € S then

Ne(S, ) = el {w= lim pu; pn € Npi(S, ), 2 — x}. (4)

k>0

As far as functions are concerned, G-subdifferential is defined in the standard way:

p € 8G,k:f(x) <~ (pa _1) € NG7k(epif7 ($a f($)))7 (5)

Ocf(x) = Uj=0 Oaif(z). The singular G-subdifferential is

p € 0gf(x) <= (p,0) € Nox(epif, (z, f(x))), (6)
OF f(x) = Ups 02 f (). Using the representation (4) as well as Propositions 1.2 and 1.3,
we obtain

Theorem 1.6. Assume that the space X is 3-smooth, or X is Asplund space and = F'.
Let f: X — RU{+o00} be lower semicontinuous and x € domf. Then

daf(z) = cl'{w*= lim pn; pn € Dy f(wn), @n =y 2}, (7)

k>0

oz flx) = U cl*{w*— lim A 'p.; p, € Dy uf(@n), o —5 2, Ay — 00} (8)
k>0
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Part (7) of the above Theorem is known for spaces with 3-smooth norm, cf. [2, 3], while
part (8) was established so far only for spaces with F-smooth norm and 5 = F, cf. [2].

We refer to [6] for the standard definition of Clarke normals N¢ and Clarke subdifferential
Jc. As shown for example in [12], an equivalent definition for the Clarke normal cone N¢
is

Nc(S,ZE):E*Ng(S,I). (9>
Then p € Ocf(x) <= (p,—1) € Ne(epif, (z, f(x))). It is routine to verify the following

Proposition 1.7. Let X be a Banach space, f : X — RU{+o0} be lower semicontinuous
and x € domf. Then

I f(x) =0 (Oaf(x) + 05 f(x)).

Proposition 1.7 together with (7) and (8) provides a sequential representation of Clarke
subdifferential. Omitting taking closures twice, we have

Theorem 1.8. Assume that X is 3 smooth Banach space; or X is Asplund and 3 = F.
Let f: X — RU{+o00} be a lower semicontinuous function. Then

Oc f(x) = co" <5gf(x) + 5Z?f(x)) , where

ggf(QT) = U{w*— im pp; pn € Dy f(2n), 20 —f 2}, and
k>0

5%0]‘(36) = U{w*— lim A, 'pa; pn € Do (@n), 2 —5 2, Ay — 00}
k>0

The above formula goes back to Rockafellar [21] in finite dimensional space. Loewen [18]
had proved it in superreflexive space. IToffe [12] and Borwein and loffe [2] had established
this representation in spaces with Fréchet smooth norm.

As was already mentioned, in [2] the sequential representation of the singular G-subdiffe-
rential is checked only for Fréchet smooth space. Therefore, the principal import of the
present paper is the extension of the latter representation to smooth spaces, which are
not Fréchet smooth, as for example L'[0, 1].

Remark. Since author’s interest in this subject was motivated by a theoretical problem,
see [14], the choice was to establish Theorem 1.8 in general F-smooth spaces. In this
setting it appears to be no way to avoid technicalities related to controlling the rank and,
as mentioned in [2], the latter is necessary in order to obtain correct representation.

However, if one is interested only in spaces with -smooth norm - which are most likely
to appear in applications - then significant simplifications are available.

This is so because in that case for g(z) = ||z||* the mapping x — ||¢’(z)] is continuous.
By composition one obtains a bump b, which is #-smooth, Lipschitz continuous and such
that x — ||b/(z)]| is continuous. Therefore, the space Y of all f : X — R bounded,
Lipschitz continuous, F-smooth and such that = — || f/(x)]| is continuous, considered with
the norm || f|ly = sup{|f(z)l, | f'(z)||; * € X} is Banach and contains a bump. Also, it
obviously satisfies the other requirements of Lemma 1.2.5 of [8], meaning that the Smooth
Variational Principle (Theorem 2.4) is valid with perturbations from Y.
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Thus, if one would impose in Definition 2.1 the additional requirement 'z — ||¢'(z)|| is
continuous’, one would define a smaller subdifferential, say D7, having the same calculus
as Dj. The advantage of D7 is that, just like in the case 8 = F, if p € Dy and |[|p[| < k

then p € Dy,. This means that one is spared the tedious estimations of the Lipschitz
constants of the supporting functions.

We proceed as follows. Section 2 contains the necessary definitions and tools concerning
smooth subdifferentials; Propositions 1.1, 1.2, 1.3 and 1.4 are proved therein. In Section 3
we prove Propositions 1.5, 1.7 and Theorem 1.6.

2. Preliminaries. Smooth and limiting subdifferentials

Throughout this paper (X, ||-||) is a Banach space with its norm. The dual space is denoted
by X*, the dual norm of X* is denoted also by || - || as this does not cause confusion. The
w* topology on X* is the topology of the pointwise convergence of the linear functionals.
The closed unit ball of X is denoted by By, i.e. Bx = {x € X; ||z|| < 1}. Forz € X
and € > 0 we put B(z;e) = x +eBx. If p € X* and 2 € X then p(z) = (p,z) is the
value of the functional p at x. The product space X x R is always endowed with the
norm ||(z,t)|| = ||z|| + |t|, where € X and t € R. In this way the dual norm in X* x R
is ||(p, t)|| = max{||p]|, |t|}, where p € X* and t € R. We denote the convex hull of the
set S by coS, while the closed convex hull is €65 (resp. ¢o*S if the closure is taken with
respect to the w* topology). The norm closure is clS, whilst the w* closure is cl*S.

For convenience in the sequel all neighborhoods of 0 are assumed to be convex symmetric
and closed in the respective topology. The class of topologies that are of immediate
concern for us is defined as follows. A bornology [ on X is a collection of closed bounded
and symmetric subsets of X whose union is X and the union of any two elements of 3
lies in another element of §; and aU € 3 whenever U € 3 and a > 0. The §* topology
on X* is the topology of uniform convergence on the elements of 3. It can be described
as follows. Let for U € (8

Ur={pe X*: pU) <1} (10)

Then {U*}yep forms a base of neighborhoods of 0 for the 5* topology. It is clear from the
conditions imposed on [ that the 5* topology is stronger than the w* topology (coinciding
with it when, for example, all U € (3 are finite subsets) and weaker than the norm topology
(coinciding with it when some element of 3 contains a ball with nonzero radius).

The function g : X — R is said to be [(-differentiable at x € X if there exists p € X*
such that for every U € (8

ty) — —t
lim sup g(x + ty) — g(x) — tp(y)
t—0 yeU t

=0.

We denote gj(z) = p, writing simply ¢'(z) when there can be no confusion.
The function g : X — R is said to be (-smooth if it is (-differentiable on X and the
derivative ¢ is a continuous mapping from (X, | - ||) to (X*, 5%).

The most important bornologies from our perspective are the Fréchet bornology F' con-
sisting of all closed bounded sets and the Hadamard bornology H of all norm-compact
sets. It is easy to see, using for example finite e-nets, that the dual topology, generated
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by the Gateaux bornology of all finite sets, i.e. w*, coincides with H*. Consequently, the
Hadamard bornology produces the same collection of smooth functions as the Gateaux
bornology. Thus we have no use of Gateaux bornology here and may reserve the letter
for G-subdifferential. From the perspective of this paper all bornologies are somewhere
between H and F'

The Banach space X is said to be [-smooth if there is a Lipschitz continuous and (-
smooth function with nonempty and bounded support (bump function) from X to R. It
is easy to see that any space possessing an equivalent norm, which is (-differentiable on
its unit sphere, is G-smooth. The inverse is not true as shown by Haydon in [11]. Each
separable space admits Gateaux smooth renorm and is therefore H-smooth. If the dual
is also separable, then the space admits F-smooth renorm, see for example [8, 20].

All S-smooth spaces and all Asplund spaces are Gateaux differentiability spaces and there-
fore their dual balls are w* sequentially compact, see [15]. In other words, a w* convergent
subsequence can be extracted from each norm bounded sequence in the dual space. As
mentioned in [1], this is the property that allows obtaining sequential representations
instead of topological.

We consider lower semicontinuous functions from X to R U {4+00}. The function f :
X — R U {400} is said to be lower semicontinuous if f(z¢) < liminf,_,, f(z) for any
xo € X. The function f is proper if it is not everywhere equal to oo, that is domf # 0,
where domf = {z € X : f(z) < co}. It is often useful to consider the convergence in the
graph of f. The sequence {z,}5°, is said to converge to z in the graph of f, denoted by
T, — x, if ,, — x (in the norm topology) and f(z,) — f(x).

We say that x € X is a strong local minimum of the function f: X — RU {400} if there
is § > 0 such that for any sequence {x,}>?, C x + d By, for which

limsup f(z,) < f(x),

n—oo

it follows that x,, — =.

The notion of S-subdifferential we are about to recall goes back to Crandall and Lions [7].
It is known also as viscosity, variational or smooth subdifferential. Borwein and loffe in
[2] demonstrated that it is quite useful to split the g-subdifferential in the following way.

Definition 2.1. Let f: X — RU{+o00} be a proper and lower semicontinuous function,
ro € domf and k£ > 0. Then

Dy f(zo) = {p € X*; there is a [-smooth function g with local Lipschitz constant k
such that ¢'(zo) = p and f — g has a local minimum at x,} is the set of all S-smooth
subdifferentials of rank k. We put

Dy f(xo) = | Djpf (o).

k>0

If 2o & domf then Dy, f(w0) = Dj f(wo) = 0.

Recall that X is an Asplund space if each convex and continuous real valued function on
X is Fréchet differentiable on a set of second category. Topologically, a Banach space is
Asplund if and only if any separable subspace of it has separable dual, cf. [8, 20]. It is
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known, see for example [8, 20|, that if X has F-smooth bump, then X is Asplund. To
the best of author’s knowledge there is no proved example of Asplund space which is not
F-smooth, but it is "likely" that such examples should exist.

In order to proceed simultaneously the important case when X is Asplund space, we
define Dy, f(wo) for o € domF in the following manner: p € Dy, f(zo) if and only if
Ipll <k and
limn inf f(xo +h) — f(xo) — p(h)
#ll—0 17l

> 0. (11)

Proposition VIIL.1.2 in [8] shows that if the space is F-smooth and p € Dy, f(zo) then
there is a F-smooth function g with ¢'(x¢) = p, such that f — g attains a local minimum at
xg9. (In fact, Proposition VIII.1.2 is stated for spaces with Lipschitz and F-differentiable,
but not necessarily smooth, bump and correspondingly the function obtained may not be
F-smooth. But, if the bump is in addition F-smooth, then the construction in [8] will
provide F-smooth g.) It follows that g is locally ||p|| 4+ ¢ Lipschitz around z for any € > 0
and therefore p will be in Dy, for each k' > k if the definition is taken as for general
bornology with § = F. Obv1ously, the definition with F-smooth supporting function
implies the other one, and so, if the space is F-smooth, the discrepancy that occurs as a
result of having two definitions for Dy, is insignificant.

If S is a closed subset of X then the indicator function of S is

0, z€8
IS<x):{oo x & S.

If S C X is aclosed set and = € S then the S-smooth normal cone to S at x is Nz(S, z) =
U  Ng i (S, x), where
N57k(S, LL‘) = D/gykls(l') (12)

The following relation is established in [3].

Lemma 2.2. ([3], Proposition 2.3) Let X be a Banach space equipped with some bornology
B. Let f: X — RU{+o0} be a proper lower semicontinuous function. Then for any
r € X andl >k > 1 the following two assertions are fulfilled.

() Ifp € Dy, f(x) then (p, 1) € Ny(epif, (x, f(2)));
() If (p,—1) € Npx(epif, (z, f(x))) then p € Dy, f(x).

Proof. The case of Dy, as defined in (11), is straightforward, so we omit it.

(1) Let p € Dj, f(xo) which means by definition that there is a B-smooth and lo-
cally k-Lipschitz ¢ : X — R such that f — g attains a local minimum at x, and
g'(z9) = p. Then the function g(z,t) = g(x) — t is S-smooth and locally k-Lipschitz:
recall that ||¢'(z,t)]| = max{||¢'(z)||,1} < k. Also, I,y — ¢ attains a local mini-
mum at (xg, f(zo)). Indeed, if Lepif(z,t) — g(x,t) < oo then ¢ > f(z) and —g(z,t) >
—g(z) + f(x) = f(x0) — g(x0) = —g(xo, f(x0)). Obviously, g'(zo, f(z0)) = (p,—1) and
therefore (p, —1) € Dﬁ_’klepif(a:o, f(z0))-

(n) Let g : X x R — R be f-smooth, locally k-Lipschitz and such that ¢'(zo, f(z¢)) =
(p,—1) and Ie,p — g attains a local minimum at (zo, f(x)). We assume for simplicity
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that zp = 0, f(0) = 0 and ¢(0,0) = 0. Let 6 > 0 be such that g;(z,t) < —k/I for
(x,t) € 6Bx x [—0,0]. Such ¢ exists because g is #-smooth. Since g is strictly decreasing
ont € [—6,0] for each fixed x € §By, it is straightforward to find an open neighborhood
U of (0,0) in X x R such that there is ¢(x) solution to g(x,p(z)) = 0 in U and if
(x1,11) € U and g(x1,y1) = 0 then y; = ¢(x1). It is easy to see that ¢ is continuous. At
each point (x,¢(x)) € U we can apply Implicit Function Theorem to the restriction of g
to arbitrary finite dimensional subspace of X multiplied by R to obtain that ¢ is Gateaux
differentiable and

gl p(@)

P == o)

The function g is locally k-Lipschitz and therefore k > ||¢'(|(xxr)» = max{||g.|, |g:|}
around (0,0). Thus ||¢'(z)|| < k7'||gL(z, ¢(x)|| <1, i.e. ¢ is locally I-Lipschitz.

Since g’ (x,¢(x)) tends to p in f* topology as z — 0 and g,(z, ¢(x)) — —1 as x — 0, we
have that §*—lim, . ¢'(x) = p. It is standard to verify that p is the S-derivative of ¢ at
0. The same argument applied to (x,p(z)) € U shows that ¢ is -smooth.

If p(x) > f(x) for some = such that (z,p(x)) € U then leif(x, p(x) —t) = 0 for small
t > 0, whilst g(z, p(x)—t) > 0, since g is strictly decreasing on t. This contradiction shows
that f > ¢ around 0. From the above computations it follows that p € Dy, f(0). O

Transferring the above statement to the limiting cone and subdifferential is now easy. But
prior to this we put together few simple facts.

Lemma 2.3. If (p, \) € Ng(epif, (zo,t0)) then A < 0.
If moreover to > f(xg) then A =0 and (p,0) € Ng(epif, (zo, f(x0))).

Proof. By definition there is a 3-smooth and locally k-Lipschitz g : X x R — R, such
that g < Leyip around (o, t0); g(zo,t0) = 0 and ¢'(zo, to) = (p, ).

Obviously Lepif(zo,t) is a decreasing function with respect to ¢ and therefore A = g;(x, to)
< 0.

If moreover ty > f(xo) then Leif(xo,t) = 0 in a open neighborhood of ¢, and therefore
A = g)(zo,to) = 0. Also, around (zg,ty) we have that g(z,t) := g(z,t + to — f(xg)) <
Lepif(z,t+to — f(20)) < Lepis(x,t), since Loy is decreasing with respect to t. So, g < Lepiy,
g(wo, f(20)) = 0 = Iepig(wo, f(w0)) and ¢'(zo, f(20)) = ¢'(x0, o) = (p,0). L

Proof of Proposition 1.2. Let p € 03, f (). By definition, see (1), this means that p =
w*—1imy, .o pn, Where p, € Dy, f(z,) and (2, f(z,)) — (2, f(7)). From Lemma 2.2 it
)

follows that (p,, —1) € Ngp(epif, (€, f(x,))). Therefore, (p,—1) € Ngy(epif, (z, f(x)));
see (2).
Let now (p, —1) € Ng,k(epif, (z, f(x))). By definition this means that there are (z,,t,) €

epif, such that (z,,t,) — (z, f(z)) and (pn, —A\n) € Ng(epif, (z,,t,)), such that p, N P
and A\, — 1.

According to Lemma 2.3, (p,,, —An) € Ng(epif, (zn, f(xn))). Also, f(x,) < tn, t, — f(2)
and f is lower semicontinuous, thus f(z,) — f(x), that is, z, —f .
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So, we have that (A, 'pn, —1) € Ny -1, (epif, (zn, f(2n))), and since A\ 'k < I for n large

enough, Lemma 2.2 implies that A\ 'p, € Dy f(wn). As z, —y x and Ao, R p, by
definition p € 0g, f(x). O

The basic tool in dealing with #-smooth spaces is the Smooth Variational Principle of
Deville, Godefroy and Zizler: [8], Theorem 1.2.3.

Theorem 2.4. (Smooth Variational Principle, [8]) Let X be a [ smooth Banach space
and f : X — R U {+o0} be a proper lower semicontinuous and bounded from below
function. Then for any € > 0 there is a bounded (3-smooth and Lipschitz continuous
function g : X — R such that f + g attains its strong local minimum and

sup{[lg(@)[|, lg'(=)[;; = € X} <e.

It is often easier to use some sum rule for smooth subdifferentials. The one that best suits
our purposes is the Enhanced Fuzzy Sum Rule, established by Borwein, Mordukhovich
and Shao (cf. [3], Theorem 3.1) for spaces with S-smooth norm. In order to extend this
sum rule to S-smooth spaces we need to consider a Leduc function.

Lemma 2.5. Let X be B-smooth. There is a constant i > 1 and a [-smooth function
A: X — R, such that
Alw) = [,

and, moreover, if |A'(z)|| < k then A is locally pk-Lipschitz around x.

Proof. Literally repeating the construction in Proposition 11.5.1 of [8], we obtain a Leduc
function ¢, which is [-Lipschitz for some [, f-smooth away from the origin, and there is
some a > 0, so that

lz|| < ¥(z) < allz|| and ¢(tz) = ty(z), Ve € X, Vt > 0.

Let A = 9% Since |A'(z)]] < 2l(x) — 0 as  — 0, the function A is S-smooth. For
r # 0 we can compute the derivative of A in direction z/||z||, using A(tz) = t*A(z), and
obtain that

A ()] = 2A() /[l = 2[|]],

because A(x) > ||z||>. Hence, if for some zo € X we have that [|A'(zq)|| < k, then
necessarily ||zl < k/2 and ||AN(z)|| < 2lv(z) < lak around zy. So, we can take pu =
la. ]

Theorem 2.6. ([3], Theorem 3.1) Assume that X is $-smooth for some bornology 3, or
that X is Asplund and 3 = F. There is a constant p = p(X, 5) > 1, such that (X, 8) =1
if the norm of X is B-smooth or X is Asplund and 3 = F'; and the following sum rule is

fulfilled:

If f: X = RU{+o0} is lower semicontinuous, g : X — R is locally k-Lipschitz around
xo and f + g attains a local minimum at xq, then for any ¢ > 0 and | > uk there are
z,y € X such that ||x — x|l < ¢, ly —woll <&, [f(x) = f(zo)| < € and p € Dy, f(x),
q € Dg,9(y) such that

lp+qll <e.
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Proof. The case X Asplund and § = F is included here only for easier further reference,
because there is essentially nothing new in the above statement in comparison to the
standard sum rule: cf. [10], Theorem 3.

Let now X be (-smooth with respect to some bornology 3. The constant p is that of
Lemma 2.5, so it is clear that u = 1 if the norm is 3-smooth - simply take A = || - ||*.

We follow the proof of Deville and El Haddad, see [9], taking care of the Lipschitz constants
of the functions involved.

We can assume without loss of generality that 2o = 0 and f(0) = g(0) = 0. Considering
instead of g the function g+ dA for small enough §, we can also assume that 0 is a strong
local minimum of f + g.

Let » > 0 be such that f is bounded from below on rBx and g is k-Lipschitz on rBx.

Consider the functions

_J F@)+gly) +nl(z —y), =ycrBx
wn(2,y) = { 00, otherwise.

For each n € N the function w,, is lower semicontinuous and bounded from below on
X x X and the latter space is f-smooth, so according to the smooth variational principle
there exists a function ¢, : X x X — R that is Lipschitz continuous, S-smooth and such
that ||¢onlleoe <n7h [|¢h]lee < n7t, and w, + ¢, attains its strong minimum at (z,,, y,,).

We claim that ||z, — y,|| — 0 and {x,} is a minimizing sequence for f + g.
First, observe that
(Wi + ©0)(0,0) = (wn + 0 ) (0, Yn)

and using w,(0,0) = 0 we obtain ¢,(0,0) > f(z,) + g(yn) + nA(@s = yn) + @a(@n, Yn)-
Since |||l < n7t, we get

f(@n) + 9(yn) + nA(zn — yn) < 207 (13)

Let K < 0 be a lower bound of f and g on rBx. As A(z, — yn) > ||Tn — ynl|* we have
that 2n=! > 2K + nl||z, — ya||?, hence ||z, — y,|| < v/2(1 — K)n=! — 0.
From (13) we have that 2n™! > f(z,)+9(yn) > (f+9)(zn) —|g9(zn) —g(yn)], and therefore

207"+ kllzn — yall > (f + 9)(2n) > 0, (14)

hence (f + g)(z,) — 0 and z,, is a minimizing sequence for f + g. As 0 is a strong local
minimum of f + ¢, this implies that z,, — 0 and thus y, — 0 too. Hence, for n large
enough the points (z,,y,) are interior points for r(Bx x Bx). Moreover, (14) implies that

f(z,) — 0.

It is clear that for large enough n the function f(-) + ¢(-,y,) + nA(- — y,,) has a local
minimum at x,, and from the definition of Dj it follows that p, = —¢.(2n, yn) — A (2, —
Yn) € Dy f(zy). Similarly, the function g(-) + ¢(2n, ) + nA(z, — -) has a local minimum

at Yn and qn = _Soé(xmyn) + nA/(xn - yn) € Dﬂ_g(yn) Hence, Pn+ Qn = —90;(5%7 yn) -
90;;($n>yn) and Hpn + QnH < 2n~ 1t
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Moreover, since g is k-Lipschitz we have that n||A’'(x, —y,)|| < k+n~! and according to
Lemma 2.5, nA has local Lipschitz constant (uk + 2un~!) around z,, — y,. For n large
enough this means that p, € Dy, f(v,) and ¢, € D ,9(yn)-

Take some large enough n to complete the proof. O]
We can now prove what is perhaps the main result of this paper.

Proof of Proposition 1.4. We assume without loss of generality that o = 0 and

Let X be B-smooth. Let g : X xR — R be k-Lipschitz, S-smooth and such that Iy — g
has a local minimum at (0,0), ¢(0,0) = 0 and ¢'(0,0) = (p,0). As in the proof of
Theorem 2.6 we may also assume that (0,0) is a strong local minimum of Iepir — g.

Fix a * neighborhood U* of 0 in X* of form (10) and ¢ > 0 such that ¢ < min{1, k}. Let
81 € (0,¢) be such that 6, Bx~ C 27'U* and if the sequence
{(Tn, tn)}50, C 01Bx X [—d1, 1] satisfies

lim sup(Iepif(Tn, tn) — g(@n, t,)) < 0 then (z,,t,) — (0,0). (15)

n—oo

Since ¢ is [f-smooth and the $* topology is stronger than the w* topology we can find
§ € (0,0,) such that for arbitrary (z,t) € 6 Bx x [—4, §] it follows that ¢/ (z,t) € p+2~1U*
and g;(z,t) > —e/2. Then for x € §Bx and ¢t € (0,0] according to the Mean Value
Theorem there is € € (0, 1) such that g(x,t) = g(z,0) + g;(x, 0)t, but g;(x,0) > —e/2 and
therefore

V(z,t) € 6Bx x (0,6] = g(x,t) > g(x,0) — 27 'et. (16)

Consider the function

go(x, ) = { g(x,0), t<0.

We claim that Iepis — go has a strong local minimum at (0, 0). To this end let {(z,,%,)}5>;
be such that

lim sup(Lepif (T, tn) — go(Tn, tn)) < 0. (17)

For arbitrary subsequence {(zy,,t,,)}7>, such that all ¢,, > 0, (16) implies that Leyi(zy,,
tng) — 90(Tngs o) > lepif(Tngs o) — 9(Tn,, tn, ). Therefore (17) and (15) imply that
(s tn,) — (0,0). Thus there is no loss of generality if we assume that all ¢, < 0.
Of course, Lepif(xn, t,) = 0 for n large enough. Thus Ieif(2,,0) = 0 and consequently

lim sup(Lepif (75, 0) — g(zn,0)) < 0.

n—oo

From (15) it follows that x,, — 0. If £, / 0 then we can find a subsequence t,, such that
tn, — a < 0. But Lpif(0,a) = oo and we get a contradiction with the lower semicontinuity
of Lepif. So, (@, t,) — (0,0) and therefore (0,0) is a strong local minimum of I, — go.

Let now for n € N

£.(0) _{ —271et, t>0,
T a1, <.
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It is clear that &, is C'-smooth, & (t) € [-27'¢,0) and &,(¢) tends to 0 uniformly with
respect to t € (—o0,0] as n — oco. Put

a, = —max{&, (t); t € [-1,1]} = =€ (~1) = 272" 1, (18)

Let
gn(xv t) = g(:v, 0) + fn(t)

It is clear that g,(z,t) = go(x,t) for £ > 0 and g, tends to gy as n — oo uniformly on
dBx x [0, d]. Moreover, as a sum of two (3-smooth functions g, is S-smooth. Obviously,
197, (2 )l sy = max{|lg(x,0)],1§,(#)[} < k for n large enough. That is, g, is k-
Lipschitz. Let
| Lepig(x,t), (z,t) € dBx x [—=0,6]
Fla,t) = { o0, (2,1) ¢ 0Bx x [~4.4].

Obviously F' — g, is lower semicontinuous and bounded from below, so by Theorem 2.4
there exists a Lipschitz continuous and -smooth function ¢, : X — R such that

max{|[¢nlloo, [[¢hll} < (2n)" min{a,, o}

and F — g, + ¢, attains its minimum at (z,,t,). Indeed, (z,,t,) € dBx x [=6,4].
Since {gn, — @n}52, converges to go uniformly on By x [—d, 0], it is easy to verify that
{(@n, t,)}22, is a minimizing sequence of Io,ir — go on the latter set. By the first part of
the proof it follows that (z,,t,) — (0,0). Choose ng € N such that ||z,,|| < d, |tn,] < ¢
and [|¢;, [lc <1 —k. Then the function Leyif — gny + @n, has a local minimum at (zy,, tn,)
and since gn, — ¥n, is I-Lipschitz on 0 Bx x [—d, d] we obtain by definition that

(q’ >‘) S Dﬁ_,llepif (xnov tm))v

) € §i(Tn,,0) +Bx- Cp+U*

< & (tng) + 27 an, < —ap, +27'ay, < 0 by (18). Thus,
Lemma 2.3 implies that t,, f(a:no) meaning that |f(z,,) — f(0)| = |tn,| < 6. In the
same way we see that A > &/ (t,,,) —27'0 > —27'¢ —27'§ > —¢ and the proof of the case
when X is f-smooth, is completed

where ¢ = (Gny — ©no ) (Tngs tng
and )\ = (gno SOTLO) (xn07 no)
(tn

If X is Asplund and = F we may consider instead of above g the function g(x,t) =
p(z) — v||z|| — v|t| for small enough v > 0 and go through the same steps, using Ekeland’s
Variational Principle (cf. for example [20]) and Theorem 2.6 where needed. O

The proof of the sequential representation for the singular limiting subdifferential is now
straightforward.

Proof of Proposition 1.3. If p = w*—lim A\, 'p,, where p, € Dy nf (@), oy —f
and A\, — o0o; then by Lemma 2.2 we have that (p,,—1) € Ng.,k(epif, (zn, f(z))).

Therefore, (A, 'pn, —A\,1) € Ngi(epif, (zn, f(x4))). As (A pny, = A1) “ (p,0), the latter
means that (p,0) € Ng(epif, (z, f(z))), or p € 955 f (). The proof of (1) is completed.
Let now A = {w*—1lim,, oo A, 'pp; pneD[;)\nlf(xn), Tp— T, \y—00}.

Let U* be an arbitrary 3* neighborhood of 0 in X* of form (10). Let p € 955 f(), that is,
(p,0) = w*—1im(gn, —pin), where (gn, —in) € Ngr(epif, (Yn, tn)) With (yn, tn) — (2, f(2)).
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Note that p, > 0 according to Lemma 2.3. As in the proof of Proposition 1.2 we use
Lemma 2.3 to show that y,, —¢ x and we may assume that t,, = f(y,).

Fix I' € (k,1).

If u, > 0 for some n € N then we put x, = yp, \p, = u;l

and p, = \,qn-
If, on the other hand, j, = 0 then by Proposition 1.4 there exist (p,, =\ ') € Ng(epif,

n ﬁ’
(T, f(2,))), such that B, € ¢, + U*, A\, > n and ||y, — z.| <07 | f(yn) — f(z,)] < n7L.
Let p, = \.D,,-

Having constructed the sequences {p, }, {\,} and {z,,}, we see that [ > ||(A1p,, =\ 1| >
A 'pnll. As Bx+ is w* sequentially compact, we can extract from the bounded {\ 'p,}
a convergent subsequence. Let for simplicity this subsequences be denoted again by

{\1p,}. Since A\ 'p, € ¢ + U, qn N p and U* is w* closed, we have that
w*—lim A\, 'p, € p+ U*. (19)

As (A pn, =AY € Ngp(epif, (zn, f(2,))), we have that (p,,—1) € Ng,r(epif, (@,
f(xn))), that is p, € Dgy,if(z,) by Lemma 2.2. But z,, —¢ = and A, — oo, so (19)
implies that AN{p+ U*} # (). Since U* was arbitrary from the local base of 5* topology,
we get that p € 3*—clA. O

We finish this section by demonstrating Proposition 1.1. Recall the following
Definition 2.7. ([19]) The Kruger-Mordukhovich normal cone N (S, x) to the set S C X
at v € Sis

N(S,z) = {w*~ lim p,; p, € N.,(S,2,), 20 — @, £, — 0, £, > 0},

where for € > 0

NE(S, x)={p e X"; limsup ply =) <e}.

y—z, yes ||y - 33”

Proof of Proposition 1.1. Straight from the definition it follows that Np(S, z) = No(S,
), Yz € S. Therefore Np(S,z) C N(S, ).

Note that if ¢ > 0 and p € N.(S, ) then there is § > 0 such that p(y — z) < 2¢||y — |
for all y € SN dBx. In other words g(y) = Is(y) — p(y — x) + 2¢||ly — z|| attains a local
minimum at .

Therefore, p € N(S,z) <= dp, Y p, {z,} € S, z, — = and ¢, — 07, such that
9n(y) = Ls(y) — pu(y — ) + €nlly — || has a local minimum at x,,.

Fix now p € N(S,z) and a sequence p, v, p as above. Since any w* convergent sequence
is bounded, there is & > 0, such that ||p,|| + &, < k, ¥n € N.

Then the function y — p,(y — 7,) — €ally — @,|| has Lipschitz constant < k and, as
Dr(=pn(-+zn) +&nll - —2nl|) € —pn +€nBx~, Theorem 2.6 ensures that there are z,, € S
and ¢, € Dy, Is(2,) = Npg(S, zn) such that ||z, — 2, < e, and [|g, — pu|| < 2e,,. This

means that z, — z and ¢, N p; or N(S,z) C Np(S,z). O
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3. (G-subdifferential and Clarke subdifferential

In the beginning of this section we give a definition for G-normal normal cone to a closed
subset and prove a sequential representation of it in terms of [-smooth normals in (-
smooth space. This representation is well known - see [2, 3, 12], but the existing proofs
concern spaces with #-smooth norm.

We denote the distance function to a closed S C X by pg(x) = inf{||x — y||; y € S}.
The lower Dini-Hadamard directional derivative of f : X — R at x € X at direction

he X is /
& f(o h) = liminf LEF) = @)

t—0t h/—h t

Definition 3.1. ([2], Definition 2) Let S be a closed subset of the Banach space X and
r € S. Then p € X* is G-normal of rank k£ to S at z if for any € > 0 and any finite
dimensional subspace Y C X, there are y € B(x;¢) and ¢ € X* such that

(a—p,h) < cllhll, ¥h € Yand q(h) < kd"ps(y, h), ¥h € Y.

The set of all G-normals of rank k to S at z is denoted by Ng (S, x), whilst Ng(S,x) =
Uk=0NG .k (S, x).

Proof of Proposition 1.5. With px given by Theorem 2.6 we will show that for each
> ku _ B

cl*Ng (S, ) C Nei(S,x) C cl*Ng (S, z), (20)
which, of course, implies (4).
Assume that z = 0.

Let p = w*—lim,,_,o pn, where p, € N3i(S,z,) and z, — 0. Obviously, z,, € S, for
otherwise the normal cone would be empty. We check Definition 3.1 in order to show that
pE NG,k(S7 0)

Fix € > 0 and a finite dimensional subspace Y of X. Fix n large enough, so that ||z,| < &
and (p — pn, h) < ¢||h|, Vh € Y. This is possible due to w* convergence.

Since p, € N (S, z,), there is -smooth ¢, which is k-Lipschitz around z,,, such that
I¢ — ¢ attains a local minimum at z, and ¢'(x,) = p,. We can indeed assume that
©(x,) = 0, which in effect means that there is 6 > 0 such that p(y) < 0fory € SNB(x,; ).
Let also ¢ be k-Lipschitz on B(x,;0).

Ity € B(xn;2716) and yo € S\ B(xn; 0) then [lyo —yll > [[yo — x| — l|lzn —yll = 6/2. Since
xn, € S and ||y — x| < /2, we have that ps(y) = inf{|ly — w1||; 11 € SN B(x,;9)}. Fix
any y; € SN B(x,;0). Since p(y;) < 0, we have that ¢(y) < ¢o(y) — e(y1) < klly — vl
Taking infimum over y; € B(x,;0), we get ¢(y) < kps(y), Vy € B(x,;2710).

Fix h € Y and let t,, — 0% and h,, — h be such that d”pg(x,, h) =

lim,, oo £,  ps (20 + tmhy,). Since the set {h} U {h,,}5°_; is norm compact and ¢ is H-
smooth, sup,, | (¢'(v) — @' (zn), hm) | — 0asy — x,. Thus kt. ! ps(zn+tmhm) >t bo(x,+
tmhim) = 1, (0(Tn + tuhm) — 0(20)) = (@' (@0 + Enlim), hin) — (¢ (20), h) as m — oo.
Therefore, p,(h) < kd™ ps(x,, h).

We have shown that p € Ng(95,0). It is not difficult to see that Ng (S, 0) is w* closed.
Therefore, the left hand side inclusion of (20) is verified. Although we have computed only
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the case of G-smooth space, the case of X Asplund and g = F' can be tackled similarly,
using instead of ¢ the function ¥ (y) = p,(y — ,) — €|ly — 2, ||, or by direct computation;
see [19].

Let now p € Ng(S,0) and I > pk. We want to show that p € cl*Ng,(S,0). This will be
done once we manage to verify the following

Claim. For each w* neighborhood W* of 0 in X* and each € > 0 there is ¢ € Ng;(S,v),
such that p — g € W* and ||y|| < 2e.

Of course, we simply fix W* and apply the claim with e = n~! to obtain x,, — 0 and ¢,, €
Ng (S, xn){p+W*}. Since W* is w* closed, the limit ¢ of the w* convergent subsequence,
that we can extract from bounded {¢,}5°; due to the w* sequential compactness of Bx-,

will be in Ng,l(S, 0) N {p + W*}, showing that the latter intersection is nonempty. Since
W* is arbitrary, p is in the w* closure of NQ7Z(S, 0).

Proof of the Claim. Fix W* and . We can assume without loss of generality that
W= = {z* € X*; 2*(h) < 30||h||, Vh € Y} for some finite dimensional subspace Y of X.

According to Definition 3.1 there are zg € e Bx and py € X* such that (p — po, h) < d]|h||
and po(h) < kd~pg(xo, h) for all h € Y.

Consider the function

g(x) = inf {~po(h) + O] + Kllzo + b — ]}

Since pg is 1-Lipschitz, d~pg(zo,h) < ||h||. Therefore, po(h) < k||h||, VR € Y. Thus
9(xo) = 0 and also —po(h) + 8[|l + kllzo +h—z| = —E[|A] + S[|A]l + k(|| 2]l — llzo —2]) =
k||zo — z|| for ||h]| > 6 '2k||xo — z||. Since, taking h = 0, g(z) < k||zo — z||, this means
that the infimum in the definition of g is taken over c¢By, where ¢ = 6 '2k||zo — z||, and
is therefore minimum.

As a minimum of k-Lipschitz functions of x, the function g is k-Lipschitz. Let hy € Y and
note that g(x + ho) = minpey {—po(h) + 6[|h[| + kl|zo + h — = — ho|[} < minpey {—po(h —
ho) + d||h — hol| + k||lzo + (h — ho) — ||} — po(ho) + 0||hol|. Since Y is linear space, this
means that g(z + ho) < g(x) — po(ho) + d||ho||. That is, g(x + ) — g(z) + po(h) < S|All,
Vh € Y. In effect this means that for any ¢ € Dy g(z)=(q + po, h) < ||h[[, Vh €Y.

Finally, Is(x)+¢g(z) attains a local minimum at z,, or, equivalently, g(x) > 0 for x € S and
close enough to xq. If this was not the case, then we would find a sequence {z,}>°, C S,
converging to g, such that g(x,) < 0. The definition of g and the estimate of the norm
of the point of minimum in it, tell us that there are h,, € Y, h, — 0, such that

Clearly, h, # 0 and since the unit sphere of Y is norm compact, we may assume that
ol "thy — R €Y, ||h]] =1, as n — oo. Since pg(xy) = 0, we have by definition that
kd~ps(xo,h) < liminf, .o k||hal tps(zo + hy) < liminf, o k||hn|| 7 o + e — 24|,
since x, € S. Applying (21), we obtain that kd~ps(zg, h) < liminf, .o [|An]| "  (po(hy) —
d||hnll) = po(h) — §. This contradicts po(h) < kd~ ps(zo, h).

We are now able to apply Theorem 2.6 to Ig(x) and the k-Lipschitz g at zo and obtain
z,y € B(zo;e) C 26Bx, q1 € Dy,g9(z) and ¢ € Ng,(S,y), such that [|¢: +¢f| < J. But
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for each h € Y, as we have shown, (q; + po, —h) < J||h||, meaning that (¢ — p,h) =
(¢+ qi,h) — (q1 + po, h) + (po — p,h) < 36]|h||. Thus y and ¢ satisfy the claim, thereby
completing the proof. O

Lemma 3.2. Let A C X* be w* sequentially compact, v € X and X € R. Then
cFANz I (A) =c* {Ana (N},
where 7 (A\) = {p € X*; p(x) = \}.

Proof. Since z7'()) is w* closed, it is clear that cI*{A Nz~ (\)} C ANz 1(\).
Let p € cl*ANz~!(\) and U* be a w* neighborhood of 0 in X*. Since p € cI*ANz~1(N\)
there are p,, € A such that

pn—peU N ([-n"tn1)).

In other words, p, € p+ U* and |p,(z) — A\| < n~!, since p(z) = .

Because A is w* sequentially compact, {p,} has a w* convergent subsequence; let its w*
limit be g. Obviously, ¢ € A, q(z) = X and ¢ € p+U*. That is, {p+U*}n{Anxz~1(\)} # 0.
Since U* was arbitrary, this means that p € cI*{ANz~1(\)}. O

Proof of Theorem 1.6. Let i be the one given by Theorem 2.6. If we can prove that
for each k > 1 and [ > pk

Cl*angf(lL') C angf(iE) C Cl*ag,lf(l’); (22)

'O () € OB (@) C cl' O () (23)
we will be done because (22) implies (7), while (23) and Proposition 1.3 imply (8).
Denote e; = (0,1) € X x R.
Let ! € (uk,1). Since Ngg(epif, (z, f(z))) C cI*Ngu(epif, (z, f(z))), see (20), and

Nyy(epif, (z, f(x))) is w* sequentially compact as w* sequentially closed subset of the
w* sequentially compact I’ Bx«yr; Lemma 3.2 shows that

(Do f (), —1) C c*{ Ny (epif, (z, f(2))) Nez ' (~1)}.

But Proposition 1.2 may be reformulated as

Nap(epif, (2, f(@))) N €' (=1) € (9o (), - 1).
Taking w* closures we obtain the right hand side inclusion of (22). The other inclusion
of (22) is obtained similarly.
For (23) note that (6), (20), Lemma 3.2 and (3) imply:

(08, f(2),0) = Neglepif, (z, f(2))) N ey (0) C d"{Ngy(epif, (x, f(x))) N e;'(0)} =
oI (953, 0). O

The following elementary fact is included here only for the sake of completeness. It is
stated in the form used in the subsequent proof.
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Lemma 3.3. Let A and B be subsets of X*. Assume also that B is a cone. Then
c0A + coB C ¢6"(A+ B).

Proof. Assume the contrary: there are p € coA and g € coB such that p+q & co*(A+B).
By the Strong Separation Theorem there is x € X such that

(p+q,x) >sup(A+ B, ). (24)
If there was ¢; € B such that ¢;(z) > 0 then since Aqg; € B, VA > 0 and (p + Aqy, ) — o0
as A — 00, (24) would have been impossible. Thus, sup (B,z) =0
Note also that p(z) < sup (A, z) and ¢(x) < sup (B, z) = 0.
Since 0 € B we have that
sup (A, x) <sup (A+ B,x) < p(z) + q(x) < p(x) < sup (4, z), contradiction. O
Proof of Proposition 1.7. In order to shorten the annotation we fix = and omit f(x),
epif, etc.

By (5) and (6) we have that (0g, —1) + (0%,0) C Ng+ Ng C coNg. Therefore, €6* (0 +
0y,—1) C (€6*Ng, —1) = (0c, —1), that is €6*(dg + 0F) C Je.

For the opposite inclusion, let (p, —1) € coNg. There are (p;, —\;) € Ng and «; > 0 with
>, a; =1, such that

i%pi = p and iai)\i =1.
i=1 i=1

As in Lemma 2.3 it is easy to show that A\; > 0. Let A\; > 0 for i = 1..k and \; = 0 for
i=(k+1).n Let r=3", ap; if k <n and r = 0 otherwise. In any case r € codg,
since Og is a cone.

Also, Zle N = Y N =1, A\ 'pi € Og, since (\; 'p;, —1) € Ng, and therefore
g=3"F aipi =8 (i) (\'p) € codg. We have that

p=q-+7r € codg+ codg .

We apply Lemma 3.3 with A = 0 and B = 0% in order to obtain that p € ¢6*(dg + 0)
and complete the proof. O
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