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We extend to smooth Banach spaces the proximal formula for Clarke subdifferential of lower semicon-
tinuous function. In the process we also extend the representation of G-subdifferential and the singular
G-subdifferential in terms of sequential limits of smooth subdifferentials of controlled rank.

1. Introduction

Clarke subdifferential (see [6]) and the smallerG-subdifferential of Lipschitz functions have
proved themselves to be useful tools in many problems of non smooth analysis because of
their nice topological properties and developed calculus. Another advantage of these two
subdifferentials is that they are well behaved in any Banach space. They can be extended
to lower semicontinuous functions via the distance to the epigraph. Nevertheless, such
construction is implicit and it is therefore useful to have an analytical representation of
the Clarke subdifferential as well as G-subdifferential. Rockafellar [21], Ioffe [12], Loewen
[17, 18], and Borwein and Ioffe [2] are some works in this direction. The aim of this paper
is to prove the full scope of the representation formulae, to be found in the mentioned
works, in the setting of smooth Banach spaces.

We now list the main results and provide references for the known parts. This would be
cumbersome to do if we are to give all the definitions and therefore we postpone recalling
some of them.

We refer to Section 2 for definition of D−
β,k - the β-smooth subdifferential of rank k and

Nβ,k - the cone of β-smooth normals of rank k; see Definition 2.1 and (12). Note also the
different but equivalent definition in Fréchet case: (11). Using these one may construct
the following limiting objects:

∂β,kf(x) = {w∗ − lim
n→∞

pn; pn ∈ D−
β,kf(xn), xn →f x}, (1)

and
˜Nβ,k(S, x) = {w∗ − lim

n→∞
pn; pn ∈ Nβ,k(S, xn), xn → x}. (2)

As standard throughout the paper, ∂βf(x)=
⋃

k>0 ∂β,kf(x) and
˜Nβ(S, x)=

⋃

k>0
˜Nβ,k(S, x).
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Limiting subdifferentials of this kind were considered by many authors; see the comments
in [5]. In [19] (Theorem 9.5) it is shown that if the space has Fréchet smooth norm and

β = F , the Fréchet bornology, then ˜NF coincides with the normal cone N , defined by
Kruger and Mordukhovich - Definition 2.7. This was further refined in [3].

Actually, in view of the mentioned equivalence between the two definitions of F -normals
(see Section 2, the comments after (11), or [5]) and the fact that each w∗ convergent
sequence is norm bounded (Banach-Steinhaus Theorem, see [22]) Theorem 9.5 of [19]
follows from Theorem 2.9 of [19]. It should be mentioned however that the construction
used in [8] for establishing the equivalence (and which originates from [16]) is far from
being trivial. Note also that most of the results of the present paper, concerning Asplund
space, are essentially covered in Theorem 2.9 of [19].

For the sake of completeness we present a proof of

Proposition 1.1. ([19]) Let X be an Asplund space and S be a closed subset of X. Then

for each x ∈ S we have that N(S, x) = ˜NF (S, x).

The following proposition is an easy corollary of the corresponding result for smooth
subdifferentials of Borwein, Mordukhovich and Shao: [3], Proposition 2.3. We present a
proof of their result for the sake of completeness, see Lemma 2.2.

Proposition 1.2. Let X be a Banach space with some bornology β and f : X → R ∪
{+∞} be lower semicontinuous, x ∈ domf . Then for each l > k > 1 we have that

(ı) p ∈ ∂β,kf(x) ⇒ (p,−1) ∈ ˜Nβ,k(epif, (x, f(x)));

(ıı) (p,−1) ∈ ˜Nβ,k(epif, (x, f(x))) ⇒ p ∈ ∂β,lf(x).

Of course, Propositions 1.1 and 1.2 show that the subdifferential corresponding to Kruger-
Mordukhovich cone coincides with ∂F when the space is Asplund, see [19, 3] for more
details.

In many situations one needs to consider not only the subdifferential of a given function,
but also its so called singular subdifferential. A prime example of this is when Clarke
subdifferential is represented via G-subdifferential, see Proposition 1.7 (for more examples
we refer to [5, 19]).

The singular limiting subdifferential ∂∞
β is defined by

p ∈ ∂∞
β,kf(x) ⇐⇒ (p, 0) ∈ ˜Nβ,k(epif, (x, f(x))); (3)

∂∞
β f(x) =

⋃

k>0 ∂
∞
β,kf(x).

The following proposition is of crucial importance. It allows, in case the space possesses
suitable smoothness, computing the singular limiting subdifferential in much the same
way as the limiting subdifferential itself, instead of having to deal with the epigraph.

Proposition 1.3. Assume that X is β-smooth, or X is Asplund space and β = F . Let
f : X → R ∪ {+∞} be lower semicontinuous and x ∈ domf . For any l > k > 0 we have
that

(ı) {w∗ − limn→∞ λ−1
n pn; pn ∈ D−

β,λnk
f(xn), xn →f x, λn → ∞} ⊂ ∂∞

β,kf(x);
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(ıı) ∂∞
β,kf(x) ⊂ β∗−cl{w∗− limn→∞ λ−1

n pn; pn∈D−
β,λnl

f(xn), xn→fx, λn→∞}.

If the β∗ topology is metrizable on bounded sets (as, for example, when X is separable
or β = F ), then taking β∗ closure in the right hand side of (ıı) is redundant.

Proposition 1.3 readily follows from the following key fact.

Proposition 1.4. Let X be β-smooth, or X be Asplund and β = F . Let f : X → R be
a proper lower semicontinuous function and (p, 0) ∈ Nβ,k(epif, (x0, f(x0))), where k > 0.
Then for any ε > 0, l > k and β∗ neighborhood U∗ of 0 in X∗ there exist y ∈ X and
(q, λ) ∈ Nβ,l(epif, (y, f(y))) such that λ ∈ (−ε, 0), ‖y − x0‖ < ε, |f(y)− f(x0)| < ε and

q ∈ p+ U∗.

The partial case of Proposition 1.4 when the space has F -smooth norm is proved in
[2]. A similar but rougher (i.e. U∗ is w∗ neighborhood and the rank is not controlled)
approximation of the singular smooth normals to the epigraph is obtained in smooth
Banach spaces by Zhu in [24]. The case of X Asplund is covered in [19, 23].

We refer to Section 3, or to [2, 3, 12], for the definition of the cone of G-normals NG =
⋃

k>0NG,k. The following representation of NG is proved in [2, 3] in the case when the
norm is β-smooth. For the sake of completeness we present a proof in our slightly more
general setting.

Proposition 1.5. Assume that the space X is β-smooth with respect to some bornology
β, or that X is Asplund and β = F . If S is a closed subset of X and x ∈ S then

NG(S, x) =
⋃

k>0

cl∗{w∗− lim
n→∞

pn; pn ∈ Nβ,k(S, xn), xn → x}. (4)

As far as functions are concerned, G-subdifferential is defined in the standard way:

p ∈ ∂G,kf(x) ⇐⇒ (p,−1) ∈ NG,k(epif, (x, f(x))), (5)

∂Gf(x) =
⋃

k>0 ∂G,kf(x). The singular G-subdifferential is

p ∈ ∂∞
G,kf(x) ⇐⇒ (p, 0) ∈ NG,k(epif, (x, f(x))), (6)

∂∞
G f(x) =

⋃

k>0 ∂
∞
G,kf(x). Using the representation (4) as well as Propositions 1.2 and 1.3,

we obtain

Theorem 1.6. Assume that the space X is β-smooth, or X is Asplund space and β = F .
Let f : X → R ∪ {+∞} be lower semicontinuous and x ∈ domf . Then

∂Gf(x) =
⋃

k>0

cl∗{w∗− lim
n→∞

pn; pn ∈ D−
β,kf(xn), xn →f x}, (7)

∂∞
G f(x) =

⋃

k>0

cl∗{w∗− lim
n→∞

λ−1
n pn; pn ∈ D−

β,λnk
f(xn), xn →f x, λn → ∞}. (8)
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Part (7) of the above Theorem is known for spaces with β-smooth norm, cf. [2, 3], while
part (8) was established so far only for spaces with F -smooth norm and β = F , cf. [2].

We refer to [6] for the standard definition of Clarke normals NC and Clarke subdifferential
∂C . As shown for example in [12], an equivalent definition for the Clarke normal cone NC

is
NC(S, x) = co∗NG(S, x). (9)

Then p ∈ ∂Cf(x) ⇐⇒ (p,−1) ∈ NC(epif, (x, f(x))). It is routine to verify the following

Proposition 1.7. Let X be a Banach space, f : X → R∪{+∞} be lower semicontinuous
and x ∈ domf . Then

∂Cf(x) = co∗ (∂Gf(x) + ∂∞
G f(x)) .

Proposition 1.7 together with (7) and (8) provides a sequential representation of Clarke
subdifferential. Omitting taking closures twice, we have

Theorem 1.8. Assume that X is β smooth Banach space; or X is Asplund and β = F .
Let f : X → R ∪ {+∞} be a lower semicontinuous function. Then

∂Cf(x) = co∗
(

˜∂Gf(x) + ˜∂∞
G f(x)

)

, where

˜∂Gf(x) =
⋃

k>0

{w∗− lim
n→∞

pn; pn ∈ D−
β,kf(xn), xn →f x }, and

˜∂∞
G f(x) =

⋃

k>0

{w∗− lim
n→∞

λ−1
n pn; pn ∈ D−

β,λnk
f(xn), xn →f x, λn → ∞}.

The above formula goes back to Rockafellar [21] in finite dimensional space. Loewen [18]
had proved it in superreflexive space. Ioffe [12] and Borwein and Ioffe [2] had established
this representation in spaces with Fréchet smooth norm.

As was already mentioned, in [2] the sequential representation of the singular G-subdiffe-
rential is checked only for Fréchet smooth space. Therefore, the principal import of the
present paper is the extension of the latter representation to smooth spaces, which are
not Fréchet smooth, as for example L1[0, 1].

Remark. Since author’s interest in this subject was motivated by a theoretical problem,
see [14], the choice was to establish Theorem 1.8 in general β-smooth spaces. In this
setting it appears to be no way to avoid technicalities related to controlling the rank and,
as mentioned in [2], the latter is necessary in order to obtain correct representation.

However, if one is interested only in spaces with β-smooth norm - which are most likely
to appear in applications - then significant simplifications are available.

This is so because in that case for g(x) = ‖x‖2 the mapping x → ‖g′(x)‖ is continuous.
By composition one obtains a bump b, which is β-smooth, Lipschitz continuous and such
that x → ‖b′(x)‖ is continuous. Therefore, the space Y of all f : X → R bounded,
Lipschitz continuous, β-smooth and such that x → ‖f ′(x)‖ is continuous, considered with
the norm ‖f‖Y = sup{|f(x)|, ‖f ′(x)‖; x ∈ X} is Banach and contains a bump. Also, it
obviously satisfies the other requirements of Lemma I.2.5 of [8], meaning that the Smooth
Variational Principle (Theorem 2.4) is valid with perturbations from Y .
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Thus, if one would impose in Definition 2.1 the additional requirement ’x → ‖g′(x)‖ is
continuous’, one would define a smaller subdifferential, say D=

β , having the same calculus
as D−

β . The advantage of D=
β is that, just like in the case β = F , if p ∈ D=

β and ‖p‖ < k

then p ∈ D−
β,k. This means that one is spared the tedious estimations of the Lipschitz

constants of the supporting functions.

We proceed as follows. Section 2 contains the necessary definitions and tools concerning
smooth subdifferentials; Propositions 1.1, 1.2, 1.3 and 1.4 are proved therein. In Section 3
we prove Propositions 1.5, 1.7 and Theorem 1.6.

2. Preliminaries. Smooth and limiting subdifferentials

Throughout this paper (X, ‖·‖) is a Banach space with its norm. The dual space is denoted
by X∗, the dual norm of X∗ is denoted also by ‖ · ‖ as this does not cause confusion. The
w∗ topology on X∗ is the topology of the pointwise convergence of the linear functionals.
The closed unit ball of X is denoted by BX , i.e. BX = {x ∈ X; ‖x‖ ≤ 1}. For x ∈ X
and ε > 0 we put B(x; ε) = x + εBX . If p ∈ X∗ and x ∈ X then p(x) = 〈p, x〉 is the
value of the functional p at x. The product space X × R is always endowed with the
norm ‖(x, t)‖ = ‖x‖+ |t|, where x ∈ X and t ∈ R. In this way the dual norm in X∗ × R
is ‖(p, t)‖ = max{‖p‖, |t|}, where p ∈ X∗ and t ∈ R. We denote the convex hull of the
set S by coS, while the closed convex hull is coS (resp. co∗S if the closure is taken with
respect to the w∗ topology). The norm closure is clS, whilst the w∗ closure is cl∗S.

For convenience in the sequel all neighborhoods of 0 are assumed to be convex symmetric
and closed in the respective topology. The class of topologies that are of immediate
concern for us is defined as follows. A bornology β on X is a collection of closed bounded
and symmetric subsets of X whose union is X and the union of any two elements of β
lies in another element of β; and aU ∈ β whenever U ∈ β and a > 0. The β∗ topology
on X∗ is the topology of uniform convergence on the elements of β. It can be described
as follows. Let for U ∈ β

U∗ = {p ∈ X∗ : p(U) ≤ 1}. (10)

Then {U∗}U∈β forms a base of neighborhoods of 0 for the β∗ topology. It is clear from the
conditions imposed on β that the β∗ topology is stronger than the w∗ topology (coinciding
with it when, for example, all U ∈ β are finite subsets) and weaker than the norm topology
(coinciding with it when some element of β contains a ball with nonzero radius).

The function g : X → R is said to be β-differentiable at x ∈ X if there exists p ∈ X∗

such that for every U ∈ β

lim
t→0

sup
y∈U

∣

∣

∣

∣

g(x+ ty)− g(x)− tp(y)

t

∣

∣

∣

∣

= 0.

We denote g′β(x) = p, writing simply g′(x) when there can be no confusion.

The function g : X → R is said to be β-smooth if it is β-differentiable on X and the
derivative g′ is a continuous mapping from (X, ‖ · ‖) to (X∗, β∗).

The most important bornologies from our perspective are the Fréchet bornology F con-
sisting of all closed bounded sets and the Hadamard bornology H of all norm-compact
sets. It is easy to see, using for example finite ε-nets, that the dual topology, generated
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by the GÝateaux bornology of all finite sets, i.e. w∗, coincides with H∗. Consequently, the
Hadamard bornology produces the same collection of smooth functions as the GÝateaux
bornology. Thus we have no use of GÝateaux bornology here and may reserve the letter
for G-subdifferential. From the perspective of this paper all bornologies are somewhere
between H and F .

The Banach space X is said to be β-smooth if there is a Lipschitz continuous and β-
smooth function with nonempty and bounded support (bump function) from X to R. It
is easy to see that any space possessing an equivalent norm, which is β-differentiable on
its unit sphere, is β-smooth. The inverse is not true as shown by Haydon in [11]. Each
separable space admits GÝateaux smooth renorm and is therefore H-smooth. If the dual
is also separable, then the space admits F -smooth renorm, see for example [8, 20].

All β-smooth spaces and all Asplund spaces are GÝateaux differentiability spaces and there-
fore their dual balls are w∗ sequentially compact, see [15]. In other words, a w∗ convergent
subsequence can be extracted from each norm bounded sequence in the dual space. As
mentioned in [1], this is the property that allows obtaining sequential representations
instead of topological.

We consider lower semicontinuous functions from X to R ∪ {+∞}. The function f :
X → R ∪ {+∞} is said to be lower semicontinuous if f(x0) ≤ lim infx→x0 f(x) for any
x0 ∈ X. The function f is proper if it is not everywhere equal to ∞, that is domf 6= ∅,
where domf = {x ∈ X : f(x) < ∞}. It is often useful to consider the convergence in the
graph of f . The sequence {xn}∞n=1 is said to converge to x in the graph of f , denoted by
xn →f x, if xn → x (in the norm topology) and f(xn) → f(x).

We say that x ∈ X is a strong local minimum of the function f : X → R∪{+∞} if there
is δ > 0 such that for any sequence {xn}∞n=1 ⊂ x+ δBX , for which

lim sup
n→∞

f(xn) ≤ f(x),

it follows that xn → x.

The notion of β-subdifferential we are about to recall goes back to Crandall and Lions [7].
It is known also as viscosity, variational or smooth subdifferential. Borwein and Ioffe in
[2] demonstrated that it is quite useful to split the β-subdifferential in the following way.

Definition 2.1. Let f : X → R∪{+∞} be a proper and lower semicontinuous function,
x0 ∈ domf and k > 0. Then

D−
β,kf(x0) = {p ∈ X∗; there is a β-smooth function g with local Lipschitz constant k

such that g′(x0) = p and f − g has a local minimum at x0} is the set of all β-smooth
subdifferentials of rank k. We put

D−
β f(x0) =

⋃

k>0

D−
β,kf(x0).

If x0 6∈ domf then D−
β,kf(x0) = D−

β f(x0) = ∅.

Recall that X is an Asplund space if each convex and continuous real valued function on
X is Fréchet differentiable on a set of second category. Topologically, a Banach space is
Asplund if and only if any separable subspace of it has separable dual, cf. [8, 20]. It is
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known, see for example [8, 20], that if X has F -smooth bump, then X is Asplund. To
the best of author’s knowledge there is no proved example of Asplund space which is not
F -smooth, but it is "likely" that such examples should exist.

In order to proceed simultaneously the important case when X is Asplund space, we
define D−

F,kf(x0) for x0 ∈ domF in the following manner: p ∈ D−
F,kf(x0) if and only if

‖p‖ ≤ k and

lim inf
‖h‖→0

f(x0 + h)− f(x0)− p(h)

‖h‖
≥ 0. (11)

Proposition VIII.1.2 in [8] shows that if the space is F -smooth and p ∈ D−
F,kf(x0) then

there is a F -smooth function g with g′(x0) = p, such that f−g attains a local minimum at
x0. (In fact, Proposition VIII.1.2 is stated for spaces with Lipschitz and F -differentiable,
but not necessarily smooth, bump and correspondingly the function obtained may not be
F -smooth. But, if the bump is in addition F -smooth, then the construction in [8] will
provide F -smooth g.) It follows that g is locally ‖p‖+ε Lipschitz around x0 for any ε > 0
and therefore p will be in D−

β,k′ for each k′ > k if the definition is taken as for general
bornology with β = F . Obviously, the definition with F -smooth supporting function
implies the other one, and so, if the space is F -smooth, the discrepancy that occurs as a
result of having two definitions for D−

F,k, is insignificant.

If S is a closed subset of X then the indicator function of S is

IS(x) =

{

0, x ∈ S
∞, x 6∈ S.

If S ⊂ X is a closed set and x ∈ S then the β-smooth normal cone to S at x is Nβ(S, x) =
∪∞

k=1Nβ,k(S, x), where

Nβ,k(S, x) = D−
β,kIS(x). (12)

The following relation is established in [3].

Lemma 2.2. ([3], Proposition 2.3) Let X be a Banach space equipped with some bornology
β. Let f : X → R ∪ {+∞} be a proper lower semicontinuous function. Then for any
x ∈ X and l > k > 1 the following two assertions are fulfilled.

(ı) If p ∈ D−
β,kf(x) then (p,−1) ∈ Nβ,k(epif, (x, f(x)));

(ıı) If (p,−1) ∈ Nβ,k(epif, (x, f(x))) then p ∈ D−
β,lf(x).

Proof. The case of D−
F , as defined in (11), is straightforward, so we omit it.

(ı) Let p ∈ D−
β,kf(x0) which means by definition that there is a β-smooth and lo-

cally k-Lipschitz g : X → R such that f − g attains a local minimum at x0 and
g′(x0) = p. Then the function g̃(x, t) = g(x) − t is β-smooth and locally k-Lipschitz:
recall that ‖g̃′(x, t)‖ = max{‖g′(x)‖, 1} ≤ k. Also, Iepif − g̃ attains a local mini-
mum at (x0, f(x0)). Indeed, if Iepif (x, t) − g̃(x, t) < ∞ then t ≥ f(x) and −g̃(x, t) ≥
−g(x) + f(x) ≥ f(x0) − g(x0) = −g̃(x0, f(x0)). Obviously, g̃′(x0, f(x0)) = (p,−1) and
therefore (p,−1) ∈ D−

β,kIepif (x0, f(x0)).

(ıı) Let g : X × R → R be β-smooth, locally k-Lipschitz and such that g′(x0, f(x0)) =
(p,−1) and Iepif − g attains a local minimum at (x0, f(x0)). We assume for simplicity
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that x0 = 0, f(0) = 0 and g(0, 0) = 0. Let δ > 0 be such that g′t(x, t) < −k/l for
(x, t) ∈ δBX × [−δ, δ]. Such δ exists because g is β-smooth. Since g is strictly decreasing
on t ∈ [−δ, δ] for each fixed x ∈ δBX , it is straightforward to find an open neighborhood
U of (0, 0) in X × R such that there is ϕ(x) solution to g(x, ϕ(x)) = 0 in U and if
(x1, y1) ∈ U and g(x1, y1) = 0 then y1 = ϕ(x1). It is easy to see that ϕ is continuous. At
each point (x, ϕ(x)) ∈ U we can apply Implicit Function Theorem to the restriction of g
to arbitrary finite dimensional subspace of X multiplied by R to obtain that ϕ is GÝateaux
differentiable and

ϕ′(x) = −g′x(x, ϕ(x))

g′t(x, ϕ(x))
.

The function g is locally k-Lipschitz and therefore k ≥ ‖g′‖(X×R)∗ = max{‖g′x‖, |g′t|}
around (0, 0). Thus ‖ϕ′(x)‖ ≤ k−1l‖g′x(x, ϕ(x)‖ ≤ l, i.e. ϕ is locally l-Lipschitz.

Since g′x(x, ϕ(x)) tends to p in β∗ topology as x → 0 and g′t(x, ϕ(x)) → −1 as x → 0, we
have that β∗− limx→0 ϕ

′(x) = p. It is standard to verify that p is the β-derivative of ϕ at
0. The same argument applied to (x, ϕ(x)) ∈ U shows that ϕ is β-smooth.

If ϕ(x) > f(x) for some x such that (x, ϕ(x)) ∈ U then Iepif (x, ϕ(x) − t) = 0 for small
t > 0, whilst g(x, ϕ(x)−t) > 0, since g is strictly decreasing on t. This contradiction shows
that f ≥ ϕ around 0. From the above computations it follows that p ∈ D−

β,lf(0).

Transferring the above statement to the limiting cone and subdifferential is now easy. But
prior to this we put together few simple facts.

Lemma 2.3. If (p, λ) ∈ Nβ,k(epif, (x0, t0)) then λ ≤ 0.
If moreover t0 > f(x0) then λ = 0 and (p, 0) ∈ Nβ,k(epif, (x0, f(x0))).

Proof. By definition there is a β-smooth and locally k-Lipschitz g : X × R → R, such
that g ≤ Iepif around (x0, t0); g(x0, t0) = 0 and g′(x0, t0) = (p, λ).

Obviously Iepif (x0, t) is a decreasing function with respect to t and therefore λ = g′t(x0, t0)
≤ 0.

If moreover t0 > f(x0) then Iepif (x0, t) = 0 in a open neighborhood of t0 and therefore
λ = g′t(x0, t0) = 0. Also, around (x0, t0) we have that g̃(x, t) := g(x, t + t0 − f(x0)) ≤
Iepif (x, t+ t0− f(x0)) ≤ Iepif (x, t), since Iepif is decreasing with respect to t. So, g̃ ≤ Iepif ,
g̃(x0, f(x0)) = 0 = Iepif (x0, f(x0)) and g̃′(x0, f(x0)) = g′(x0, t0) = (p, 0).

Proof of Proposition 1.2. Let p ∈ ∂β,kf(x). By definition, see (1), this means that p =
w∗− limn→∞ pn, where pn ∈ D−

β,kf(xn) and (xn, f(xn)) → (x, f(x)). From Lemma 2.2 it

follows that (pn,−1) ∈ Nβ,k(epif, (xn, f(xn))). Therefore, (p,−1) ∈ ˜Nβ,k(epif, (x, f(x)));
see (2).

Let now (p,−1) ∈ ˜Nβ,k(epif, (x, f(x))). By definition this means that there are (xn, tn) ∈
epif , such that (xn, tn) → (x, f(x)) and (pn,−λn) ∈ Nβ,k(epif, (xn, tn)), such that pn

w∗
→ p

and λn → 1.

According to Lemma 2.3, (pn,−λn) ∈ Nβ,k(epif, (xn, f(xn))). Also, f(xn) ≤ tn, tn → f(x)
and f is lower semicontinuous, thus f(xn) → f(x), that is, xn →f x.



M. Ivanov / Sequential Representation Formulae for G-Subdifferential and ... 187

So, we have that (λ−1
n pn,−1) ∈ Nβ,λ−1

n k(epif, (xn, f(xn))), and since λ−1
n k < l for n large

enough, Lemma 2.2 implies that λ−1
n pn ∈ D−

β,lf(xn). As xn →f x and λ−1
n pn

w∗
→ p, by

definition p ∈ ∂β,lf(x).

The basic tool in dealing with β-smooth spaces is the Smooth Variational Principle of
Deville, Godefroy and Zizler: [8], Theorem I.2.3.

Theorem 2.4. (Smooth Variational Principle, [8]) Let X be a β smooth Banach space
and f : X → R ∪ {+∞} be a proper lower semicontinuous and bounded from below
function. Then for any ε > 0 there is a bounded β-smooth and Lipschitz continuous
function g : X → R such that f + g attains its strong local minimum and

sup{‖g(x)‖, ‖g′(x)‖; x ∈ X} < ε.

It is often easier to use some sum rule for smooth subdifferentials. The one that best suits
our purposes is the Enhanced Fuzzy Sum Rule, established by Borwein, Mordukhovich
and Shao (cf. [3], Theorem 3.1) for spaces with β-smooth norm. In order to extend this
sum rule to β-smooth spaces we need to consider a Leduc function.

Lemma 2.5. Let X be β-smooth. There is a constant µ ≥ 1 and a β-smooth function
Λ : X → R, such that

Λ(x) ≥ ‖x‖2,

and, moreover, if ‖Λ′(x)‖ < k then Λ is locally µk-Lipschitz around x.

Proof. Literally repeating the construction in Proposition II.5.1 of [8], we obtain a Leduc
function ψ, which is l-Lipschitz for some l, β-smooth away from the origin, and there is
some a > 0, so that

‖x‖ ≤ ψ(x) ≤ a‖x‖ and ψ(tx) = tψ(x), ∀x ∈ X, ∀t > 0.

Let Λ = ψ2. Since ‖Λ′(x)‖ ≤ 2lψ(x) → 0 as x → 0, the function Λ is β-smooth. For
x 6= 0 we can compute the derivative of Λ in direction x/‖x‖, using Λ(tx) = t2Λ(x), and
obtain that

‖Λ′(x)‖ ≥ 2Λ(x)/‖x‖ ≥ 2‖x‖,

because Λ(x) ≥ ‖x‖2. Hence, if for some x0 ∈ X we have that ‖Λ′(x0)‖ < k, then
necessarily ‖x0‖ < k/2 and ‖Λ′(x)‖ ≤ 2lψ(x) < lak around x0. So, we can take µ =
la.

Theorem 2.6. ([3], Theorem 3.1) Assume that X is β-smooth for some bornology β, or
that X is Asplund and β = F . There is a constant µ = µ(X, β) ≥ 1, such that µ(X, β) = 1
if the norm of X is β-smooth or X is Asplund and β = F ; and the following sum rule is
fulfilled:

If f : X → R ∪ {+∞} is lower semicontinuous, g : X → R is locally k-Lipschitz around
x0 and f + g attains a local minimum at x0, then for any ε > 0 and l > µk there are
x, y ∈ X such that ‖x − x0‖ < ε, ‖y − y0‖ < ε, |f(x) − f(x0)| < ε and p ∈ D−

β,lf(x),

q ∈ D−
β,lg(y) such that

‖p+ q‖ < ε.
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Proof. The case X Asplund and β = F is included here only for easier further reference,
because there is essentially nothing new in the above statement in comparison to the
standard sum rule: cf. [10], Theorem 3.

Let now X be β-smooth with respect to some bornology β. The constant µ is that of
Lemma 2.5, so it is clear that µ = 1 if the norm is β-smooth - simply take Λ = ‖ · ‖2.
We follow the proof of Deville and El Haddad, see [9], taking care of the Lipschitz constants
of the functions involved.

We can assume without loss of generality that x0 = 0 and f(0) = g(0) = 0. Considering
instead of g the function g+ δΛ for small enough δ, we can also assume that 0 is a strong
local minimum of f + g.

Let r > 0 be such that f is bounded from below on rBX and g is k-Lipschitz on rBX .

Consider the functions

wn(x, y) =

{

f(x) + g(y) + nΛ(x− y), x, y ∈ rBX

∞, otherwise.

For each n ∈ N the function wn is lower semicontinuous and bounded from below on
X ×X and the latter space is β-smooth, so according to the smooth variational principle
there exists a function ϕn : X ×X → R that is Lipschitz continuous, β-smooth and such
that ||ϕn||∞ < n−1, ||ϕ′

n||∞ < n−1, and wn + ϕn attains its strong minimum at (xn, yn).

We claim that ||xn − yn|| → 0 and {xn} is a minimizing sequence for f + g.

First, observe that
(wn + ϕn)(0, 0) ≥ (wn + ϕn)(xn, yn)

and using wn(0, 0) = 0 we obtain ϕn(0, 0) ≥ f(xn) + g(yn) + nΛ(xn − yn) + ϕn(xn, yn).
Since ‖ϕ‖∞ < n−1, we get

f(xn) + g(yn) + nΛ(xn − yn) ≤ 2n−1. (13)

Let K ≤ 0 be a lower bound of f and g on rBX . As Λ(xn − yn) ≥ ||xn − yn||2 we have
that 2n−1 > 2K + n||xn − yn||2, hence ||xn − yn|| ≤

√

2(1−K)n−1 → 0.

From (13) we have that 2n−1 ≥ f(xn)+g(yn) > (f+g)(xn)−|g(xn)−g(yn)|, and therefore

2n−1 + k‖xn − yn‖ ≥ (f + g)(xn) ≥ 0, (14)

hence (f + g)(xn) → 0 and xn is a minimizing sequence for f + g. As 0 is a strong local
minimum of f + g, this implies that xn → 0 and thus yn → 0 too. Hence, for n large
enough the points (xn, yn) are interior points for r(BX×BX). Moreover, (14) implies that
f(xn) → 0.

It is clear that for large enough n the function f(·) + ϕ(·, yn) + nΛ(· − yn) has a local
minimum at xn and from the definition of D−

β it follows that pn = −ϕ′
x(xn, yn)−nΛ′(xn−

yn) ∈ D−
β f(xn). Similarly, the function g(·) + ϕ(xn, ·) + nΛ(xn − ·) has a local minimum

at yn and qn = −ϕ′
y(xn, yn) + nΛ′(xn − yn) ∈ D−

β g(yn). Hence, pn + qn = −ϕ′
x(xn, yn) −

ϕ′
y(xn, yn) and ||pn + qn|| ≤ 2n−1.
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Moreover, since g is k-Lipschitz we have that n‖Λ′(xn − yn)‖ ≤ k+ n−1 and according to
Lemma 2.5, nΛ has local Lipschitz constant (µk + 2µn−1) around xn − yn. For n large
enough this means that pn ∈ D−

β,lf(xn) and qn ∈ D−
β,lg(yn).

Take some large enough n to complete the proof.

We can now prove what is perhaps the main result of this paper.

Proof of Proposition 1.4. We assume without loss of generality that x0 = 0 and
f(x0) = 0.

Let X be β-smooth. Let g : X ×R → R be k-Lipschitz, β-smooth and such that Iepif − g
has a local minimum at (0, 0), g(0, 0) = 0 and g′(0, 0) = (p, 0). As in the proof of
Theorem 2.6 we may also assume that (0, 0) is a strong local minimum of Iepif − g.

Fix a β∗ neighborhood U∗ of 0 in X∗ of form (10) and ε > 0 such that ε < min{1, k}. Let
δ1 ∈ (0, ε) be such that δ1BX∗ ⊂ 2−1U∗ and if the sequence
{(xn, tn)}∞n=1 ⊂ δ1BX × [−δ1, δ1] satisfies

lim sup
n→∞

(Iepif (xn, tn)− g(xn, tn)) ≤ 0 then (xn, tn) → (0, 0). (15)

Since g is β-smooth and the β∗ topology is stronger than the w∗ topology we can find
δ ∈ (0, δ1) such that for arbitrary (x, t) ∈ δBX × [−δ, δ] it follows that g′x(x, t) ∈ p+2−1U∗

and g′t(x, t) > −ε/2. Then for x ∈ δBX and t ∈ (0, δ] according to the Mean Value
Theorem there is θ ∈ (0, 1) such that g(x, t) = g(x, 0)+ g′t(x, θ)t, but g

′
t(x, θ) > −ε/2 and

therefore
∀(x, t) ∈ δBX × (0, δ] ⇒ g(x, t) > g(x, 0)− 2−1εt. (16)

Consider the function

g0(x, t) =

{

g(x, 0)− 2−1εt, t ≥ 0
g(x, 0), t ≤ 0.

We claim that Iepif −g0 has a strong local minimum at (0, 0). To this end let {(xn, tn)}∞n=1

be such that
lim sup
n→∞

(Iepif (xn, tn)− g0(xn, tn)) ≤ 0. (17)

For arbitrary subsequence {(xnk
, tnk

)}∞k=1 such that all tnk
> 0, (16) implies that Iepif (xnk

,
tnk

) − g0(xnk
, tnk

) > Iepif (xnk
, tnk

) − g(xnk
, tnk

). Therefore (17) and (15) imply that
(xnk

, tnk
) → (0, 0). Thus there is no loss of generality if we assume that all tn ≤ 0.

Of course, Iepif (xn, tn) = 0 for n large enough. Thus Iepif (xn, 0) = 0 and consequently

lim sup
n→∞

(Iepif (xn, 0)− g(xn, 0)) ≤ 0.

From (15) it follows that xn → 0. If tn 6→ 0 then we can find a subsequence tnk
such that

tnk
→ a < 0. But Iepif (0, a) = ∞ and we get a contradiction with the lower semicontinuity

of Iepif . So, (xn, tn) → (0, 0) and therefore (0, 0) is a strong local minimum of Iepif − g0.

Let now for n ∈ N

ξn(t) =

{

−2−1εt, t ≥ 0,
ε

2(2n−1)
(1 + (t− 1)1−2n), t ≤ 0.
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It is clear that ξn is C1-smooth, ξ′n(t) ∈ [−2−1ε, 0) and ξn(t) tends to 0 uniformly with
respect to t ∈ (−∞, 0] as n → ∞. Put

an = −max{ξ′n(t); t ∈ [−1, 1]} = −ξ′(−1) = ε2−2n−1. (18)

Let
gn(x, t) = g(x, 0) + ξn(t).

It is clear that gn(x, t) = g0(x, t) for t ≥ 0 and gn tends to g0 as n → ∞ uniformly on
δBX × [−δ, δ]. Moreover, as a sum of two β-smooth functions gn is β-smooth. Obviously,
‖g′n(x, t)‖(X×R)∗ = max{‖g′x(x, 0)‖, |ξ′n(t)|} ≤ k for n large enough. That is, gn is k-
Lipschitz. Let

F (x, t) =

{

Iepif (x, t), (x, t) ∈ δBX × [−δ, δ]
∞, (x, t) 6∈ δBX × [−δ, δ].

Obviously F − gn is lower semicontinuous and bounded from below, so by Theorem 2.4
there exists a Lipschitz continuous and β-smooth function ϕn : X → R such that

max{‖ϕn‖∞, ‖ϕ′
n‖∞} < (2n)−1min{an, δ}

and F − gn + ϕn attains its minimum at (xn, tn). Indeed, (xn, tn) ∈ δBX × [−δ, δ].
Since {gn − ϕn}∞n=1 converges to g0 uniformly on δBX × [−δ, δ], it is easy to verify that
{(xn, tn)}∞n=1 is a minimizing sequence of Iepif − g0 on the latter set. By the first part of
the proof it follows that (xn, tn) → (0, 0). Choose n0 ∈ N such that ‖xn0‖ < δ, |tn0| < δ
and ‖ϕ′

n0
‖∞ < l−k. Then the function Iepif − gn0 +ϕn0 has a local minimum at (xn0 , tn0)

and since gn0 − ϕn0 is l-Lipschitz on δBX × [−δ, δ] we obtain by definition that

(q, λ) ∈ D−
β,lIepif (xn0 , tn0),

where q = (gn0 − ϕn0)
′
x(xn0 , tn0) ∈ g′x(xn0 , 0) + δBX∗ ⊂ p+ U∗

and λ = (gn0 − ϕn0)
′
t(xn0 , tn0) ≤ ξ′n0

(tn0) + 2−1an0 ≤ −an0 + 2−1an0 < 0 by (18). Thus,
Lemma 2.3 implies that tn0 = f(xn0), meaning that |f(xn0) − f(0)| = |tn0| < δ. In the
same way we see that λ ≥ ξ′n0

(tn0)− 2−1δ ≥ −2−1ε− 2−1δ > −ε and the proof of the case
when X is β-smooth, is completed.

If X is Asplund and β = F we may consider instead of above g the function g(x, t) =
p(x)−ν‖x‖−ν|t| for small enough ν > 0 and go through the same steps, using Ekeland’s
Variational Principle (cf. for example [20]) and Theorem 2.6 where needed.

The proof of the sequential representation for the singular limiting subdifferential is now
straightforward.

Proof of Proposition 1.3. If p = w∗− limλ−1
n pn, where pn ∈ D−

β,λnk
f(xn), xn →f x

and λn → ∞; then by Lemma 2.2 we have that (pn,−1) ∈ Nβ,λnk(epif, (xn, f(xn))).

Therefore, (λ−1
n pn,−λ−1

n ) ∈ Nβ,k(epif, (xn, f(xn))). As (λ
−1
n pn,−λ−1

n )
w∗
→ (p, 0), the latter

means that (p, 0) ∈ ˜Nβ,k(epif, (x, f(x))), or p ∈ ∂∞
β,kf(x). The proof of (ı) is completed.

Let now A = {w∗− limn→∞ λ−1
n pn; pn∈D−

β,λnl
f(xn), xn→fx, λn→∞}.

Let U∗ be an arbitrary β∗ neighborhood of 0 in X∗ of form (10). Let p ∈ ∂∞
β,kf(x), that is,

(p, 0) = w∗− lim(qn,−µn), where (qn,−µn) ∈ Nβ,k(epif, (yn, tn)) with (yn, tn) → (x, f(x)).
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Note that µn ≥ 0 according to Lemma 2.3. As in the proof of Proposition 1.2 we use
Lemma 2.3 to show that yn →f x and we may assume that tn = f(yn).

Fix l′ ∈ (k, l).

If µn > 0 for some n ∈ N then we put xn = yn, λn = µ−1
n and pn = λnqn.

If, on the other hand, µn = 0 then by Proposition 1.4 there exist (pn,−λ−1
n ) ∈ Nβ,l′(epif,

(xn, f(xn))), such that pn ∈ qn +U∗, λn > n and ‖yn − xn‖ < n−1, |f(yn)− f(xn)| < n−1.
Let pn = λnpn.

Having constructed the sequences {pn}, {λn} and {xn}, we see that l ≥ ‖(λ−1
n pn,−λ−1

n )‖ ≥
‖λ−1

n pn‖. As BX∗ is w∗ sequentially compact, we can extract from the bounded {λ−1
n pn}

a convergent subsequence. Let for simplicity this subsequences be denoted again by

{λ−1
n pn}. Since λ−1

n pn ∈ qn + U∗, qn
w∗
→ p and U∗ is w∗ closed, we have that

w∗− limλ−1
n pn ∈ p+ U∗. (19)

As (λ−1
n pn,−λ−1

n ) ∈ Nβ,l′(epif, (xn, f(xn))), we have that (pn,−1) ∈ Nβ,λnl′(epif, (xn,
f(xn))), that is pn ∈ Dβ,λnlf(xn) by Lemma 2.2. But xn →f x and λn → ∞, so (19)
implies that A∩{p+U∗} 6= ∅. Since U∗ was arbitrary from the local base of β∗ topology,
we get that p ∈ β∗−clA.

We finish this section by demonstrating Proposition 1.1. Recall the following

Definition 2.7. ([19]) The Kruger-Mordukhovich normal cone N(S, x) to the set S ⊂ X
at x ∈ S is

N(S, x) = {w∗− lim
n→∞

pn; pn ∈ ̂Nεn(S, xn), xn → x, εn → 0, εn > 0},

where for ε ≥ 0

̂Nε(S, x) = {p ∈ X∗; lim sup
y→x, y∈S

p(y − x)

‖y − x‖
≤ ε}.

Proof of Proposition 1.1. Straight from the definition it follows thatNF (S, x) = ̂N0(S,

x), ∀x ∈ S. Therefore ˜NF (S, x) ⊂ N(S, x).

Note that if ε > 0 and p ∈ ̂Nε(S, x) then there is δ > 0 such that p(y − x) ≤ 2ε‖y − x‖
for all y ∈ S ∩ δBX . In other words g(y) = IS(y) − p(y − x) + 2ε‖y − x‖ attains a local
minimum at x.

Therefore, p ∈ N(S, x) ⇐⇒ ∃pn
w∗
→ p, {xn} ⊂ S, xn → x and εn → 0+, such that

gn(y) = IS(y)− pn(y − xn) + εn‖y − xn‖ has a local minimum at xn.

Fix now p ∈ N(S, x) and a sequence pn
w∗
→ p as above. Since any w∗ convergent sequence

is bounded, there is k > 0, such that ‖pn‖+ εn < k, ∀n ∈ N.

Then the function y → pn(y − xn) − εn‖y − xn‖ has Lipschitz constant < k and, as
D−

F (−pn(·+xn)+ εn‖ ·−xn‖) ⊂ −pn+ εnBX∗ , Theorem 2.6 ensures that there are zn ∈ S
and qn ∈ D−

F,kIS(zn) = NF,k(S, zn) such that ‖zn − xn‖ < εn and ‖qn − pn‖ < 2εn. This

means that zn → x and qn
w∗
→ p; or N(S, x) ⊂ ˜NF (S, x).
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3. G-subdifferential and Clarke subdifferential

In the beginning of this section we give a definition for G-normal normal cone to a closed
subset and prove a sequential representation of it in terms of β-smooth normals in β-
smooth space. This representation is well known - see [2, 3, 12], but the existing proofs
concern spaces with β-smooth norm.

We denote the distance function to a closed S ⊂ X by ρS(x) = inf{‖x− y‖; y ∈ S}.
The lower Dini-Hadamard directional derivative of f : X → R at x ∈ X at direction
h ∈ X is

d−f(x, h) = lim inf
t→0+,h′→h

f(x+ th′)− f(x)

t
.

Definition 3.1. ([2], Definition 2) Let S be a closed subset of the Banach space X and
x ∈ S. Then p ∈ X∗ is G-normal of rank k to S at x if for any ε > 0 and any finite
dimensional subspace Y ⊂ X, there are y ∈ B(x; ε) and q ∈ X∗ such that

〈q − p, h〉 ≤ ε‖h‖, ∀h ∈ Y and q(h) ≤ kd−ρS(y, h), ∀h ∈ Y.

The set of all G-normals of rank k to S at x is denoted by NG,k(S, x), whilst NG(S, x) =
∪k>0NG,k(S, x).

Proof of Proposition 1.5. With µ given by Theorem 2.6 we will show that for each
l > kµ

cl∗ ˜Nβ,k(S, x) ⊂ NG,k(S, x) ⊂ cl∗ ˜Nβ,l(S, x), (20)

which, of course, implies (4).

Assume that x = 0.

Let p = w∗− limn→∞ pn, where pn ∈ Nβ,k(S, xn) and xn → 0. Obviously, xn ∈ S, for
otherwise the normal cone would be empty. We check Definition 3.1 in order to show that
p ∈ NG,k(S, 0).

Fix ε > 0 and a finite dimensional subspace Y of X. Fix n large enough, so that ‖xn‖ < ε
and 〈p− pn, h〉 ≤ ε‖h‖, ∀h ∈ Y . This is possible due to w∗ convergence.

Since pn ∈ Nβ,k(S, xn), there is β-smooth ϕ, which is k-Lipschitz around xn, such that
IS − ϕ attains a local minimum at xn and ϕ′(xn) = pn. We can indeed assume that
ϕ(xn) = 0, which in effect means that there is δ > 0 such that ϕ(y) ≤ 0 for y ∈ S∩B(xn; δ).
Let also ϕ be k-Lipschitz on B(xn; δ).

If y ∈ B(xn; 2
−1δ) and y0 ∈ S \B(xn; δ) then ‖y0−y‖ ≥ ‖y0−xn‖−‖xn−y‖ ≥ δ/2. Since

xn ∈ S and ‖y − xn‖ ≤ δ/2, we have that ρS(y) = inf{‖y − y1‖; y1 ∈ S ∩ B(xn; δ)}. Fix
any y1 ∈ S ∩ B(xn; δ). Since ϕ(y1) ≤ 0, we have that ϕ(y) ≤ ϕ(y) − ϕ(y1) ≤ k‖y − y1‖.
Taking infimum over y1 ∈ B(xn; δ), we get ϕ(y) ≤ kρS(y), ∀y ∈ B(xn; 2

−1δ).

Fix h ∈ Y and let tm → 0+ and hm → h be such that d−ρS(xn, h) =
limm→∞ t−1

m ρS(xn + tmhm). Since the set {h} ∪ {hm}∞m=1 is norm compact and ϕ is H-
smooth, supm | 〈ϕ′(y)− ϕ′(xn), hm〉 | → 0 as y → xn. Thus kt

−1
m ρS(xn+tmhm) ≥ t−1

m ϕ(xn+
tmhm) = t−1

m (ϕ(xn + tmhm) − ϕ(xn)) = 〈ϕ′(xn + ξmhm), hm〉 → 〈ϕ′(xn), h〉 as m → ∞.
Therefore, pn(h) ≤ kd−ρS(xn, h).

We have shown that p ∈ NG,k(S, 0). It is not difficult to see that NG,k(S, 0) is w
∗ closed.

Therefore, the left hand side inclusion of (20) is verified. Although we have computed only
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the case of β-smooth space, the case of X Asplund and β = F can be tackled similarly,
using instead of ϕ the function ψ(y) = pn(y− xn)− ε‖y− xn‖, or by direct computation;
see [19].

Let now p ∈ NG,k(S, 0) and l > µk. We want to show that p ∈ cl∗ ˜Nβ,l(S, 0). This will be
done once we manage to verify the following

Claim. For each w∗ neighborhood W ∗ of 0 in X∗ and each ε > 0 there is q ∈ Nβ,l(S, y),
such that p− q ∈ W ∗ and ‖y‖ ≤ 2ε.

Of course, we simply fix W ∗ and apply the claim with ε = n−1 to obtain xn → 0 and qn ∈
Nβ,l(S, xn)∩{p+W ∗}. SinceW ∗ is w∗ closed, the limit q of the w∗ convergent subsequence,
that we can extract from bounded {qn}∞n=1 due to the w∗ sequential compactness of BX∗ ,

will be in ˜Nβ,l(S, 0) ∩ {p +W ∗}, showing that the latter intersection is nonempty. Since

W ∗ is arbitrary, p is in the w∗ closure of ˜Nβ,l(S, 0).

Proof of the Claim. Fix W ∗ and ε. We can assume without loss of generality that
W ∗ = {x∗ ∈ X∗; x∗(h) ≤ 3δ‖h‖, ∀h ∈ Y } for some finite dimensional subspace Y of X.

According to Definition 3.1 there are x0 ∈ εBX and p0 ∈ X∗ such that 〈p− p0, h〉 ≤ δ‖h‖
and p0(h) ≤ kd−ρS(x0, h) for all h ∈ Y .

Consider the function

g(x) = inf
h∈Y

{−p0(h) + δ‖h‖+ k‖x0 + h− x‖}.

Since ρS is 1-Lipschitz, d−ρS(x0, h) ≤ ‖h‖. Therefore, p0(h) ≤ k‖h‖, ∀h ∈ Y . Thus
g(x0) = 0 and also −p0(h)+ δ‖h‖+k‖x0+h−x‖ ≥ −k‖h‖+ δ‖h‖+k(‖h‖−‖x0−x‖) ≥
k‖x0 − x‖ for ‖h‖ > δ−12k‖x0 − x‖. Since, taking h = 0, g(x) ≤ k‖x0 − x‖, this means
that the infimum in the definition of g is taken over cBY , where c = δ−12k‖x0 − x‖, and
is therefore minimum.

As a minimum of k-Lipschitz functions of x, the function g is k-Lipschitz. Let h0 ∈ Y and
note that g(x+ h0) = minh∈Y {−p0(h) + δ‖h‖+ k‖x0 + h− x− h0‖} ≤ minh∈Y {−p0(h−
h0) + δ‖h − h0‖ + k‖x0 + (h − h0) − x‖} − p0(h0) + δ‖h0‖. Since Y is linear space, this
means that g(x+ h0) ≤ g(x)− p0(h0) + δ‖h0‖. That is, g(x+ h)− g(x) + p0(h) ≤ δ‖h‖,
∀h ∈ Y . In effect this means that for any q ∈ D−

β g(x)⇒〈q + p0, h〉 ≤ δ‖h‖, ∀h ∈ Y .

Finally, IS(x)+g(x) attains a local minimum at x0, or, equivalently, g(x) ≥ 0 for x ∈ S and
close enough to x0. If this was not the case, then we would find a sequence {xn}∞n=1 ⊂ S,
converging to x0, such that g(xn) < 0. The definition of g and the estimate of the norm
of the point of minimum in it, tell us that there are hn ∈ Y , hn → 0, such that

−p0(hn) + δ‖hn‖+ k‖x0 + hn − xn‖ < 0. (21)

Clearly, hn 6= 0 and since the unit sphere of Y is norm compact, we may assume that
‖hn‖−1hn → h ∈ Y , ‖h‖ = 1, as n → ∞. Since ρS(x0) = 0, we have by definition that
kd−ρS(x0, h) ≤ lim infn→∞ k‖hn‖−1ρS(x0 + hn) ≤ lim infn→∞ k‖hn‖−1‖x0 + hn − xn‖,
since xn ∈ S. Applying (21), we obtain that kd−ρS(x0, h) ≤ lim infn→∞ ‖hn‖−1(p0(hn)−
δ‖hn‖) = p0(h)− δ. This contradicts p0(h) ≤ kd−ρS(x0, h).

We are now able to apply Theorem 2.6 to IS(x) and the k-Lipschitz g at x0 and obtain
x, y ∈ B(x0; ε) ⊂ 2εBX , q1 ∈ D−

β,lg(x) and q ∈ Nβ,l(S, y), such that ‖q1 + q‖ < δ. But
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for each h ∈ Y , as we have shown, 〈q1 + p0,−h〉 ≤ δ‖h‖, meaning that 〈q − p, h〉 =
〈q + q1, h〉 − 〈q1 + p0, h〉 + 〈p0 − p, h〉 ≤ 3δ‖h‖. Thus y and q satisfy the claim, thereby
completing the proof.

Lemma 3.2. Let A ⊂ X∗ be w∗ sequentially compact, x ∈ X and λ ∈ R. Then

cl∗A ∩ x−1(λ) = cl∗{A ∩ x−1(λ)},

where x−1(λ) = {p ∈ X∗; p(x) = λ}.

Proof. Since x−1(λ) is w∗ closed, it is clear that cl∗{A ∩ x−1(λ)} ⊂ cl∗A ∩ x−1(λ).

Let p ∈ cl∗A ∩ x−1(λ) and U∗ be a w∗ neighborhood of 0 in X∗. Since p ∈ cl∗A ∩ x−1(λ)
there are pn ∈ A such that

pn − p ∈ U∗ ∩ x−1([−n−1, n−1]).

In other words, pn ∈ p+ U∗ and |pn(x)− λ| ≤ n−1, since p(x) = λ.

Because A is w∗ sequentially compact, {pn} has a w∗ convergent subsequence; let its w∗

limit be q. Obviously, q ∈ A, q(x) = λ and q ∈ p+U∗. That is, {p+U∗}∩{A∩x−1(λ)} 6= ∅.
Since U∗ was arbitrary, this means that p ∈ cl∗{A ∩ x−1(λ)}.

Proof of Theorem 1.6. Let µ be the one given by Theorem 2.6. If we can prove that
for each k > 1 and l > µk

cl∗∂β,kf(x) ⊂ ∂G,kf(x) ⊂ cl∗∂β,lf(x); (22)

cl∗∂∞
β,kf(x) ⊂ ∂∞

G,kf(x) ⊂ cl∗∂∞
β,lf(x); (23)

we will be done because (22) implies (7), while (23) and Proposition 1.3 imply (8).

Denote e2 = (0, 1) ∈ X × R.

Let l′ ∈ (µk, l). Since NG,k(epif, (x, f(x))) ⊂ cl∗ ˜Nβ,l′(epif, (x, f(x))), see (20), and
˜Nβ,l′(epif, (x, f(x))) is w∗ sequentially compact as w∗ sequentially closed subset of the
w∗ sequentially compact l′BX∗×R; Lemma 3.2 shows that

(∂G,kf(x),−1) ⊂ cl∗{ ˜Nβ,l′(epif, (x, f(x))) ∩ e−1
2 (−1)}.

But Proposition 1.2 may be reformulated as

˜Nβ,l′(epif, (x, f(x))) ∩ e−1
2 (−1) ⊂ (∂β,lf(x),−1).

Taking w∗ closures we obtain the right hand side inclusion of (22). The other inclusion
of (22) is obtained similarly.

For (23) note that (6), (20), Lemma 3.2 and (3) imply:

(∂∞
G,kf(x), 0) = NG,k(epif, (x, f(x))) ∩ e−1

2 (0) ⊂ cl∗{ ˜Nβ,l(epif, (x, f(x))) ∩ e−1
2 (0)} =

cl∗(∂∞
β,l, 0).

The following elementary fact is included here only for the sake of completeness. It is
stated in the form used in the subsequent proof.



M. Ivanov / Sequential Representation Formulae for G-Subdifferential and ... 195

Lemma 3.3. Let A and B be subsets of X∗. Assume also that B is a cone. Then

coA+ coB ⊂ co∗(A+B).

Proof. Assume the contrary: there are p ∈ coA and q ∈ coB such that p+q 6∈ co∗(A+B).
By the Strong Separation Theorem there is x ∈ X such that

〈p+ q, x〉 > sup 〈A+B, x〉 . (24)

If there was q1 ∈ B such that q1(x) > 0 then since λq1 ∈ B, ∀λ ≥ 0 and 〈p+ λq1, x〉 → ∞
as λ → ∞, (24) would have been impossible. Thus, sup 〈B, x〉 = 0

Note also that p(x) ≤ sup 〈A, x〉 and q(x) ≤ sup 〈B, x〉 = 0.

Since 0 ∈ B we have that
sup 〈A, x〉 ≤ sup 〈A+B, x〉 < p(x) + q(x) ≤ p(x) ≤ sup 〈A, x〉, contradiction.

Proof of Proposition 1.7. In order to shorten the annotation we fix x and omit f(x),
epif , etc.

By (5) and (6) we have that (∂G,−1)+ (∂∞
G , 0) ⊂ NG +NG ⊂ coNG. Therefore, co

∗(∂G +
∂∞
G ,−1) ⊂ (co∗NG,−1) = (∂C ,−1), that is co∗(∂G + ∂∞

G ) ⊂ ∂C .

For the opposite inclusion, let (p,−1) ∈ coNG. There are (pi,−λi) ∈ NG and αi > 0 with
∑n

i=1 αi = 1, such that
n

∑

i=1

αipi = p and
n

∑

i=1

αiλi = 1.

As in Lemma 2.3 it is easy to show that λi ≥ 0. Let λi > 0 for i = 1..k and λi = 0 for
i = (k + 1)..n. Let r =

∑n
i=k+1 αipi if k < n and r = 0 otherwise. In any case r ∈ co∂∞

G ,
since ∂∞

G is a cone.

Also,
∑k

i=1 αiλi =
∑n

i=1 αiλi = 1, λ−1
i pi ∈ ∂G, since (λ−1

i pi,−1) ∈ NG, and therefore

q =
∑k

i=1 αipi =
∑k

i=1(αiλi)(λ
−1
i pi) ∈ co∂G. We have that

p = q + r ∈ co∂G + co∂∞
G .

We apply Lemma 3.3 with A = ∂G and B = ∂∞
G in order to obtain that p ∈ co∗(∂G + ∂∞

G )
and complete the proof.
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