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Totally convex functions and Bregman projections associated to them are of special interest for building
optimization and feasibility algorithms. This motivates one to investigate existence of totally convex
functions in Banach spaces. Also, this raises the question whether and under which conditions the
corresponding Bregman projections have the properties needed for guaranteeing convergence and stability
of the algorithms based on them. We show that a reflexive Banach space in which some power r ∈ (1,+∞)
of the norm is totally convex is an E-space and conversely. Also we prove that totally convex functions
in reflexive Banach spaces are necessarily essentially strictly convex in the sense of [6]. We use these facts
in order to establish continuity and stability properties of Bregman projections.
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1. Introduction

Let X be a Banach space and g : X → (−∞,+∞] be a proper convex function. According
to [14, Section 1.2], the modulus of total convexity of g at the point x ∈ domg is the
function νg(x, ·) : [0,+∞) → [0,+∞] defined by

νg(x, t) = inf {Dg(y, x) : y ∈ domg, ‖y − x‖ = t} , (1)

where Dg : domg × domg → [0,+∞] is the Bregman distance with respect to g given by

Dg(y, x) := g(y)− g(x)− g◦(x, y − x).

For any x ∈ domg and z ∈ X we denote by g◦(x, z) the right-hand sided derivative of g
at x in the direction z, that is,

g◦(x, z) = lim
t↘0

g(x+ tz)− g(x)

t
.

The function g is called totally convex at x ∈ domg if νg(x, t) > 0, for all t ∈ (0,∞). The
function g is called totally convex on the convex set C ⊆ domg if it is totally convex at any
point x ∈ C. It was shown in [14, Section 1.2.4] that (locally) uniformly convex functions
are totally convex functions, while the latter are strictly convex (cf. [14, Proposition
1.2.6]). Total convexity is a property of interest in the convergence analysis of the proximal
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point algorithm with generalized distances (see, e.g., [11], [12], [16], [27], [30], [31], [32],
[38]) and of some projection type methods for solving convex feasibility problems (see,
for instance, [1], [2], [5], [8], [10], [14], [21], [23], [36]). This concept was introduced in
[13] and further studied in detail in [15], [17]. A natural question is how this notion
relates with other concepts studied for similar purposes, as for instance, essential strict
convexity (as defined in [6], by generalizing the one proposed in [37]) and Kadec-Klee
property (see, e.g., [25]). Using results from [19] makes it possible to prove that totally
convex functions in reflexive Banach spaces are essentially strictly convex (see Proposition
2.1). In practice, the most convenient totally convex functions to work with in infinite
dimensional Banach spaces are powers greater than one of the norm (provided that they
have this property). For example, this can be seen in the analysis of the augmented
Lagrangian methods ([14], [30]), in algorithms for solving the stochastic convex feasibility
problem ([14], [21]) or linear operator equations ([18]). Therefore, it is interesting to know
in which Banach spaces the powers greater than one of the norm are totally convex. It
has been shown that the function gr = ‖ · ‖r with r > 1 is totally convex in Lp and `p

with p > 1 (see [14]) or, more general, in any uniformly convex space ([18]). This holds
even in any locally uniformly convex space where the function gr is uniformly convex at
any point (cf. [40]), and, hence, totally convex (cf. [14], [19]). We prove below that a
Banach space on which the functions gr = ‖·‖r with r > 1 are totally convex is necessarily
strictly convex and has the Kadec-Klee property. Moreover, we give a characterization
of the reflexive Banach spaces in which, for some r > 1, gr is totally convex. Precisely,
we prove that those spaces are exactly the E-spaces (see Theorem 3.3). Another problem
which occurs in the same algorithmic context is whether or not the Bregman projections
with respect to totally convex functions in reflexive Banach spaces have continuity and
stability properties which will ensure enough stability of the computational procedures
when errors are involved. In Section 4, we show that Bregman projections with respect to
Fréchet differentiable totally convex functions in reflexive Banach spaces are continuous
and have good stability properties with respect to Mosco convergence. This is relevant
because it opens a way for deeper studying the effect of computational errors on the
behavior of various iterative algorithms involving Bregman projections like, for instance,
those in [30].

2. Totally convex functions

We start by discussing the relationship between essential strict convexity and total con-
vexity. Recall that, according to [6], the function g is essentially strictly convex if (∂g)−1 is
locally bounded on its domain and g is strictly convex on every convex subset of dom(∂g).

Proposition 2.1. Let X be a reflexive Banach space and g : X → (−∞,+∞] be a proper
convex lower semicontinuous function such that dom(∂g) is a convex set. If g is totally
convex on dom(∂g), then it is essentially strictly convex.

Proof. According to [6, Theorem 5.4], the function g is essentially strictly convex if and
only if its Fenchel conjugate g∗ is essentially smooth. Showing essential smoothness of g∗

is equivalent, by [6, Theorem 5.6], to proving that int domg∗ 6= ∅ and ∂g∗ is single valued
on its domain. In order to establish these properties, take x ∈ dom(∂g) (such an x exists
since domg ⊂ dom(∂g) - see, e.g., [4, Corollary 2.2, p. 110]). By [19, Proposition 3.4],
total convexity of g at x implies x∗ ∈ int domg∗, whenever x∗ ∈ ∂g(x). If y∗ belongs
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to dom(∂g∗), which is necessarily nonempty because it contains int domg∗, then there
exists y ∈ X such that y∗ ∈ ∂g(y). Applying again [19, Proposition 3.4], it follows that
y∗ ∈ int domg∗ and g∗ is Fréchet differentiable at y∗. Hence, ∂g∗(y∗) is singleton.

The converse implication in Proposition 2.1 is not true. In order to see that, one can take
into account Theorem 3.3 in Section 3 which states that a reflexive and strictly convex
Banach space has the Kadec-Klee property if and only if the function 1

2
‖ · ‖2 is totally

convex. In this respect, the reference [7] provides an example of a reflexive, strictly convex
Banach space which fails to have the Kadec-Klee property. Therefore, the function 1

2
‖ · ‖2

on that space cannot be totally convex, although it is essentially strictly convex.

In finite dimensional Banach spaces, essential strict convexity seems to be slightly differ-
ent from total convexity. In this respect, it is interesting to note that the most useful
essentially strictly convex functions in Rn (see, for instance, [5]) are also totally convex.
Moreover, any function which has closed domain and which is strictly convex and continu-
ous on its domain as well as any strictly convex function whose domain is the entire space
is essentially strictly convex and totally convex at the same time (see [14, Proposition
1.2.6]). On one hand, we do not have any example of a function which simultaneously
satisfies the assumptions of Proposition 2.1 and is essentially strictly convex without be-
ing totally convex. On the other hand, we do not have a proof for the equivalence of the
two notions in finite dimensional Banach spaces.

The following result, which gives a sequential characterization of the total convexity of a
function, will be repeatedly used later:

Proposition 2.2. Let X be a Banach space, let g : X → (−∞,+∞] be a convex function
and take x ∈ domg. The following statements are equivalent:

(i) The function g is totally convex at x;

(ii) For any sequence {yn}n∈N ⊆ domg,

lim
n→∞

Dg(yn, x) = 0 ⇒ lim
n→∞

‖yn − x‖ = 0; (2)

(iii) For any sequence {yn}n∈N ⊆ domg,

lim inf
n→∞

Dg(yn, x) = 0 ⇒ lim inf
n→∞

‖yn − x‖ = 0;

(iv) For any sequence {yn}n∈N ⊆ domg,

lim
n→∞

Dg(yn, x) = 0 ⇒ lim inf
n→∞

‖yn − x‖ = 0.

Proof. (i) ⇔ (ii): Suppose that g is totally convex at x. Take {yn}n∈N ⊆ domg such
that limn→∞Dg(yn, x) = 0. Since νg(x, ‖yn−x‖) ≤ Dg(yn, x) for all n ∈ N, it follows that

lim
n→∞

νg(x, ‖yn − x‖) = 0. (3)

Suppose, by contradiction, that there exist a positive number ε and a subsequence{ynk
}k∈N

of {yn}n∈N such that ‖ynk
− x‖ ≥ ε, for all k ∈ N. It was shown in [14, Proposition 1.2.2]

that the function νg(x, ·) is strictly increasing, whenever x is in the algebraic interior of
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domg. It is easy to see that this result is still valid when x ∈ domg. Consequently, we
get

lim
k→∞

νg(x, ‖ynk
− x‖) ≥ νg(x, ε) > νg(x, 0) = 0,

contradicting (3). Conversely, suppose that there exists t0 > 0 such that νg(x, t0) = 0,
that is, there exists {yn}n∈N ⊆ domg with ‖yn − x‖ = t0 and limn→∞Dg(yn, x) = 0.
Then (2) yields t0 = 0, a contradiction. (i) ⇔ (iii) can be shown in the same way as
(i) ⇔ (ii), using the strict monotonicity of νg(x, ·). Obviously, (iii) ⇒ (iv). The proof
for the converse implication is the same as for (ii) ⇒ (i), the contradiction being reached
as follows: 0 = lim infn→∞ ‖yn − x‖ = t0 > 0.

In the sequel, we emphasize some special properties of Bregman distances. This result
improves in some respects Theorem 3.5(v) in [5] and Lemma 7.3(vii) in [6].

Proposition 2.3. Let X be a reflexive Banach space and let g : X → (−∞,+∞] be a
convex, lower semicontinuous function which is totally convex at some x ∈ domg. Then,

(i) for all y ∈ domg,

x∗ ∈ ∂g(x), y∗ ∈ ∂g(y) ⇒ Dg(y, x) +Dg∗(y
∗, x∗) ≤ 〈y∗ − x∗, y − x〉;

If, in addition, g is GÝateax differentiable at x, then the inequality becomes equality.

(ii) For all y ∈ domg,

x∗ ∈ ∂g(x), y∗ ∈ ∂g(y) ⇒ Dg(x, y) ≤ Dg∗(y
∗, x∗);

If, in addition, g is GÝateax differentiable at y, then the inequality becomes equality.

(iii) If g satisfies

lim
‖z‖→∞

g(z)/‖z‖ = +∞,

then, for any x∗, y∗ ∈ X∗ there exist x0 ∈ (∂g)−1(x∗) and y0 ∈ (∂g)−1(y∗), such that

Dg∗(y
∗, x∗) ≥ Dg(x0, y0).

If, in addition, g is GÝateax differentiable on dom(∂g), then the inequality becomes
equality.

Proof. (i) Note that x∗, y∗ ∈ dom∂g∗ ⊆ domg∗ and, thus, it makes sense to discuss
about Dg∗(y

∗, x∗). Recall that whenever z∗ ∈ ∂g(z), we have

g(z) + g∗(z∗) = 〈z∗, z〉.

According to Proposition 3.4 in [19], if x∗ ∈ ∂g(x), then x∗ ∈ int dom(g∗)), the function
g∗ is Fréchet differentiable at x∗ and (g∗)′(x∗) = x. Consequently, if y∗ ∈ ∂g(y), then

Dg(y, x) +Dg∗(y
∗, x∗) = g(y)− g(x)− g◦(x, y − x)

+ g∗(y∗)− g∗(x∗)− 〈y∗ − x∗, (g∗)′(x∗)〉
≤ 〈y∗, y〉 − 〈x∗, x〉 − 〈x∗, y − x〉 − 〈y∗ − x∗, x〉
= 〈y∗ − x∗, y − x〉.
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If g is differentiable at x, then ∂g(x) has a unique element x∗ and, hence, g◦(x, y − x)
equals to 〈x∗, y − x〉.
(ii) Suppose that x∗ ∈ ∂g(x) and y∗ ∈ ∂g(y) with y ∈ domg. Then

Dg∗(y
∗, x∗) = g∗(y∗)− g∗(x∗)− 〈y∗ − x∗, (g∗)′(x∗)〉

= g∗(y∗)− g∗(x∗)− 〈y∗ − x∗, x〉
= 〈y∗, y〉 − g(y)− 〈x∗, x〉+ g(x)− 〈y∗ − x∗, x〉
= g(x)− g(y)− 〈y∗, x− y〉
≥ g(x)− g(y)− g◦(y, x− y).

(iii) Take x∗, y∗ ∈ X∗. By [4, Proposition 2.5, p.112], we deduce that there exist x0, y0 ∈ X
such that x∗ ∈ ∂g(x0) and y∗ ∈ ∂g(y0). Then we apply (ii).

3. Locally totally convex spaces

LetX be a Banach space. Recall that the function ϕ : R+ → R+ is a weight function if it is
increasing, continuous, ϕ(0) = 0 and limt→+∞ ϕ(t) = +∞. We denote by Jϕ : X → P(X∗)
and J : X → P(X∗) the duality mapping of weight ϕ and the normalized duality mapping,
respectively (see, e.g., [24]). We follow [39] and associate to the weight function ϕ the
functions ψ : R+ → R+ and Φ : X → R+ given by

ψ(t) =

∫ t

0

ϕ(s)ds and Φ(x) = ψ(‖x‖). (4)

The function ψ is strictly convex, increasing, differentiable, ψ
′
= ϕ, it has

lim
t→+∞

ψ(t)

t
= +∞, (5)

and Φ is convex and continuous (cf. [40], Lemma 3.7.1 and Theorem 3.7.2). We use
h to denote the function 1

2
‖ · ‖2 all over this section. It is known that the space X is

uniformly convex if and only if h is uniformly convex on bounded sets. Also, X is locally
uniformly convex if and only if h is uniformly convex at any point (see, e.g., [40]). We call
a Banach space locally totally convex if the function h = 1

2
‖ · ‖2 is totally convex at each

x ∈ X. Locally uniformly convex spaces are locally totally convex (cf. [14, Section 1.2.4]);
separable or reflexive Banach spaces can be equivalently renormed for becoming locally
totally convex spaces (see [9] and [24], respectively). In this section, we establish some
properties of locally totally convex spaces and show that there are strong connections
between these spaces and the E-spaces. We start with a useful characterization of the
locally totally convex spaces.

Theorem 3.1. The following conditions are equivalent:

(i) X is locally totally convex;

(ii) There exists a weight function ϕ such that the function Φ is totally convex;

(iii) For any weight function ϕ, the function Φ is totally convex.
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Proof. (i) ⇒ (iii): Let ϕ be a weight function. Consider x ∈ X and take {yn}n∈N ⊆ X
such that

lim
n→∞

DΦ(yn, x) = 0. (6)

We show that limn→∞ ‖yn − x‖ = 0. If x = 0, then

0 = lim
n→∞

DΦ(yn, x) = lim
n→∞

ψ(‖yn‖).

Taking into account that the function ψ is increasing, we necessarily obtain that limn→∞
‖yn‖ = 0. Now, suppose that x 6= 0. Since Φ is continuous at x and convex, for any
n ∈ N, there exists x∗

n ∈ ∂Φ(x) = Jϕ(x) such that

Φ◦(x, yn − x) = max{〈z∗, yn − x〉 : z∗ ∈ ∂Φ(x)} = 〈x∗
n, yn − x〉

First, note that {yn}n∈N is bounded. Indeed, if we assume that {yn}n∈N is unbounded,
i.e., limn→∞ ‖yn‖ = +∞ (or a subsequence of it), then we have

DΦ(yn, x) = ψ(‖yn‖)− ψ(‖x‖)− 〈x∗
n, yn − x〉

= ψ(‖yn‖)− ψ(‖x‖) + ‖x‖ϕ(‖x‖)− 〈x∗
n, yn〉

≥ ψ(‖yn‖)− ψ(‖x‖) + ‖x‖ϕ(‖x‖)− ‖yn‖ϕ(‖x‖)
= ‖yn‖ [ψ(‖yn‖)/‖yn‖ − ψ(‖x‖)/‖yn‖+ ‖x‖ϕ(‖x‖)/‖yn‖ − ϕ(‖x‖)] .

Letting n → ∞ and taking into account (5), we get a contradiction. Since {yn}n∈N is
bounded, there exists a subsequence {‖ynk

‖}k∈N of {‖yn‖}n∈N which converges to some
α ∈ R+. For any k ∈ N,

δk =
1

2
ψ(‖ynk

‖) + 1

2
ψ(‖x‖)− ψ

(

‖ynk
+ x‖
2

)

.

From the convexity of Φ we obtain

Φ◦(x, ynk
− x) ≤ 2

[

Φ
(ynk

+ x

2

)

− Φ(x)
]

and, thus, we deduce that
1

2
DΦ(ynk

, x) ≥ δk ≥ 0,

for all k ∈ N. Consequently, limk→∞ δk = 0 and, hence,

lim
k→∞

[

1

2
ψ(‖ynk

‖) + 1

2
ψ(‖x‖)− ψ

(

‖ynk
‖+ ‖x‖
2

)]

≤ lim
k→∞

δk = 0.

This implies
1

2
ψ(α) +

1

2
ψ(‖x‖) ≤ ψ

(

α+ ‖x‖
2

)

, (7)

because ψ is continuous. Since ψ is also strictly convex, (7) cannot hold unless α = ‖x‖.
This, combined with (6) yields

0 = lim
k→∞

Φ◦(x, ynk
− x) = lim

k→∞
ϕ(‖x‖)g◦(x, ynk

− x),
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i.e., limk→∞ g◦(x, ynk
− x) = 0, where g = ‖ · ‖. Thus,

lim
k→∞

Dh(ynk
, x) = lim

k→∞

[

1

2
‖ynk

‖2 − 1

2
‖x‖2 − ‖x‖g◦(x, ynk

− x)

]

= 0.

Consequently, by Proposition 2.2, we obtain

lim
k→∞

‖ynk
− x‖ = 0.

Observing that the entire sequence {yn}n∈N converges to x completes the proof. (ii) ⇒ (i):
Suppose that for some weight function ϕ, Φ is totally convex. Let {yn}n∈N be such that
limn→∞Dh(yn, x) = 0. We would like to establish that limn→∞ ‖yn − x‖. If x = 0, then

0 = lim
n→∞

Dh(yn, x) = lim
n→∞

(1/2)‖yn‖2.

Now, suppose that x 6= 0. Note that, for any n ∈ N, there exists x∗
n ∈ ∂h(x) = J(x) such

that

Dh(yn, x) =
1

2
‖yn‖2 −

1

2
‖x‖2 − 〈x∗

n, yn − x〉

≥ 1

2
‖yn‖2 +

1

2
‖x‖2 − ‖x‖‖yn‖

=
1

2
(‖yn‖ − ‖x‖)2 ,

and, consequently, limn→∞ ‖yn‖ = ‖x‖. We have

0 = lim
n→∞

Dh(yn, x) = lim
n→∞

(−‖x‖g◦(x, yn − x)),

that is, limn→∞ g◦(x, yn − x) = 0. By a simple calculation, we get limn→∞DΦ(yn, x) = 0.
Therefore, Proposition 2.2 and the hypothesis imply limn→∞ ‖yn − x‖ = 0.

The next lemma provides a sufficient condition for the locally total convexity of a Banach
space.

Lemma 3.2. If h = 1
2
‖ · ‖2 is totally convex at each point of the unit sphere of X, then

X is locally totally convex.

Proof. Let x ∈ X and denote z := 1
‖x‖x. Take {yn}n∈N ⊆ X such that limn→∞Dh(yn, x) =

0. It is sufficient to show that limn→∞

∥

∥

∥

1
‖x‖yn − z

∥

∥

∥ = 0. Note that

Dh

(

1

‖x‖
yn, z

)

=
‖yn‖2

2‖x‖2
− 1

2
− 1

‖x‖
max{〈z∗, yn − x〉 : z∗ ∈ ∂h(z)}

=
‖yn‖2

2‖x‖2
− 1

2
− 1

‖x‖2
max {〈‖x‖z∗, yn − x〉 : ‖x‖z∗ ∈ ∂h(x)}

=
1

‖x‖2
Dh(yn, x).

Since h is totally convex at z with ‖z‖ = 1 and limn→∞Dh

(

1
‖x‖yn, z

)

= 0, we get

limn→∞

∥

∥

∥

1
‖x‖yn − z

∥

∥

∥ = 0.
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The E-spaces, introduced by Fan and Glicksberg [28], were studied over the years because
they are the natural setting for the research of strong Tykhonov and Hadamard well-
posedness of convex best approximation problems (see, e.g., [26], [29]), and variational
inequalities in Banach spaces (see, e.g., [3]). Recall that the Banach spaceX is an E-space
if it is reflexive, strictly convex and has the Kadec-Klee property, that is,

(

w − lim
n→∞

xn = x and lim
n→∞

‖xn‖ = ‖x‖
)

⇒ lim
n→∞

xn = x.

Note that the notion of E-space is equivalent to that of weakly uniformly convex space
as defined in [24, p. 47]. A Banach space X is called weakly uniformly convex if for any
two sequences {xn}n∈N, {yn}n∈N ⊆ X with ‖xn‖ = ‖yn‖ = 1, n ∈ N, we have

lim
n→∞

〈x∗, xn + yn〉 = 2 ⇒ lim
n→∞

‖xn − yn‖ = 0,

whenever x∗ ∈ X∗, ‖x∗‖ = 1. We show next that the E-spaces are exactly those Banach
spaces which are reflexive and locally totally convex.

Theorem 3.3. The Banach space X is an E-space if and only if it is reflexive and locally
totally convex.

Proof. "⇒": Let x ∈ X. In order to show that h is totally convex at x, it is sufficient to
prove that

∀ε > 0, ∃δ > 0, Dh(y, x) < δ ⇒ ‖y − x‖ < ε. (8)

Since h is convex and continuous on X, there exists x∗ ∈ ∂h(x) such that h◦(x, y − x) =
〈x∗, y−x〉. Note that (cf. [26, Theorem 3, p. 41]), X is an E-space if and only if the dual
norm ‖·‖∗ is Fréchet differentiable on X∗\{0} and, consequently, the function h∗ = 1

2
‖·‖2∗

is Fréchet differentiable on X∗. According to [26, Proposition 26 and Theorem 27, p. 15],
the Fréchet differentiability of h∗ at the point x∗ is equivalent to the strong rotundity of
h at x = (h∗)′(x∗) with slope x∗, i.e.,

∀ε > 0, ∃δ > 0, h(y)− h(x)− 〈x∗, y − x〉 < δ ⇒ ‖y − x‖ < ε.

This is, in fact, (8). "⇐": X is strictly convex because, (cf. [14, Proposition 1.2.6]), any
totally convex function is strictly convex. Thus, it remains to show thatX has the Kadec-
Klee property. Indeed, let {xn}n∈N such that w–limn→∞ xn = x and limn→∞ ‖xn‖ = ‖x‖.
Since h◦(x, ·) is convex and continuous on X, it is also weakly lower semicontinuous.
Hence, we have

lim sup
n→∞

Dh(xn, x) = lim sup
n→∞

[

1

2
‖xn‖2 −

1

2
‖x‖2 − h◦(x, xn − x)

]

= − lim inf
n→∞

h◦(x, xn − x)

≤ −h◦(x, 0) = 0.

Consequently, limn→∞Dh(xn, x) = 0 and, by the total convexity of h at x, we obtain
limn→∞ xn = x.

Now, one can summarize the connections between locally totally convex spaces and various
classes of Banach spaces as follows:
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Corollary 3.4. The following implications hold among the statements below: (i)⇒ (ii)⇒
(iii)⇒(iv):

(i) X is uniformly convex;

(ii) X is an E-space/locally uniformly convex space;

(iii) X is locally totally convex;

(iv) X is strictly convex.

Note that locally totally convex spaces with additional properties are locally uniformly
convex, as one can see below.

Proposition 3.5. If X is locally totally convex and if ‖ · ‖2 is Fréchet differentiable on
X, then X is locally uniformly convex.

Proof. This follows from [19, Proposition 2.3] and [40, Theorem 4.1 (i)].

4. Continuity and stability properties of the Bregman projections

The concept of Bregman projection was first used by Bregman [10], while the terminology
is due to Censor and Lent [22]. It has been shown that this generalized projection is a
good replacement for the metric projection in optimization methods and in algorithms
for solving convex feasibility problems. Let K ⊆ int domg be a nonempty closed convex
set and take x ∈ int domg. Recall that the Bregman projection of x onto K with respect
to g is defined by

Πg
K(x) = argmin{Dg(y, x) : y ∈ K}.

If X is reflexive, g is totally convex and GÝateaux differentiable on int domg, and lower
semicontinuous, then there exists a unique minimizer of the function Dg(·, x) in K (see
Proposition 2.1.5 in [14] for a proof). In other words, Πg

K(x) is the only point in which
the Bregman distance from x to K, i.e.,

Dg(K, x) = inf
y∈K

{Dg(y, x)},

is attained. Moreover, the Bregman projection Πg
K(x) is characterized by the following

inequality

Dg(z,Π
g
K(x)) +Dg(Π

g
K(x), x) ≤ Dg(z, x), (9)

for every z ∈ K. Note that, if X is a Hilbert space and g = ‖ · ‖2, then Πg
K(x) is the

metric projection of x onto K. All over this section, unless otherwise stated, we assume
that X is a reflexive Banach space. We prove next some results which are useful in the
sequel, but may also be of more general interest.

Proposition 4.1. Let X be a Banach space, g : X → (−∞,+∞] be a convex function
which is GÝateaux differentiable on an open convex set U ⊆ domg. Then, the following
statements are true:

(i) If g is continuous on U , then the function Dg(·, ·) is continuous on U × U ;

(ii) If g is Fréchet differentiable on U and lower semicontinuous, then the function
Dg(·, ·) is sequentially weak-to-norm lower semicontinuous on U × U ;
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(iii) If {yn}n∈N is a sequence contained in U , x, y ∈ U and g is totally convex at y, then
(

w– lim
n→∞

yn = y and lim
n→∞

Dg(yn, x) = Dg(y, x)
)

⇒ lim
n→∞

yn = y.

Proof. (i) Consider x, y ∈ U and let two sequences {xn}n∈N, {yn}n∈N ⊆ U such that
limn→∞ xn = x and limn→∞ yn = y. According to [34, Proposition 2.1], the function
〈g′(·), ·〉 is continuous on U ×X. Then, letting n → ∞ in

Dg(yn, xn) = g(yn)− g(xn)− 〈g′(xn), yn − xn〉,

we obtain limn→∞Dg(yn, xn) = Dg(y, x). (ii) Take x, y, {xn}n∈N as in (i) and let{yn}n∈N ⊆
U with w− limn→∞ yn = y. Using the weakly lower semicontinuity of g and the continuity
of the differential g′, we obtain

lim inf
n→∞

Dg(yn, xn) = lim inf
n→∞

[g(yn)− g(xn)− 〈g′(xn)− g′(x), yn − xn〉]

− lim
n→∞

〈g′(x), yn − xn〉

= lim inf
n→∞

g(yn)− g(x)− 〈g′(x), y − x〉

≥ Dg(y, x).

(iii) Note that

Dg(yn, x)−Dg(y, x)−Dg(yn, y) = 〈g′(x)− g′(y), y − yn〉.

Letting n → ∞ and using the hypothesis, we obtain limn→∞Dg(yn, y) = 0. Since g is
totally convex at y, we get limn→∞ yn = y.

Continuity of the Bregman projection operator Πg
K : int domg → K and of the function

Dg(K, ·), when happens, is an important property in applications (see, for instance, [20]
and Theorem 2.3.6 in [14]). As far as we know, this fact is already established for the
special case when X = Rn and g is the negentropy (see [13]). Also, the continuity of
Dg(K, ·) when g is a totally convex function in reflexive Banach spaces was shown in [14,
Section 2.3.6] under quite restrictive conditions. We can prove now that this property as
well as the continuity of the operator Πg

K hold in more general situations. First, let us
denote, for any α ∈ (0,+∞) and y ∈ domg,

Rg
α(y;K) := {x ∈ K : Dg(y, x) ≤ α}. (10)

Proposition 4.2. Let g : X → (−∞,+∞] be a convex lower semicontinuous function
which is totally convex and Fréchet differentiable on int domg. If the set Rg

α(y;K) is
bounded, whenever α ∈ (0,+∞) and y ∈ K, then the function Dg(K, ·) is continuous on
int domg.

Proof. Since Dg(K, ·) is upper semicontinuous on int domg (as a consequence of Propo-
sition 4.1(i)), it remains to prove only lower semicontinuity. To this end, consider
z ∈ int domg and let {zn}n∈N be a sequence in int domg such that limn→∞ zn = z.
Denote Ýz := Πg

K(z) and Ýzn := Πg
K(zn), for all n ∈ N. Then,

Dg(Ýzn, zn)−Dg(Ýz, z) ≥ Dg(Ýzn, zn)−Dg(Ýzn, z)

= [g(z)− g(zn)] + 〈g′(zn)− g′(z), zn − Ýzn〉
+ 〈g′(z), zn − z〉.
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If we prove that the sequence {Ýzn}n∈N is bounded, then using the continuity of the function
g and of the differential g′, we obtain

lim inf
n→∞

Dg(Ýzn, zn) ≥ Dg(Ýz, z).

For y ∈ K, inequality (9) applied to Ýzn = Πg
K(zn) yields, for any n ∈ N,

Dg(y, Ýzn) +Dg(Ýzn, zn) ≤ Dg(y, zn).

Clearly, the sequence {Dg(y, zn)}n∈N is convergent and, thus, bounded. Since the set
Rg

α(y;K) is bounded for some upper bound α of the sequence {Dg(y, zn)}n∈N, the bound-
edness of {Ýzn}n∈N immediately follows.

Using the preceding result, we show the continuity of Πg
K : int domg → K under the

same requirements.

Proposition 4.3. Let g : X → (−∞,+∞] be a convex lower semicontinuous function
which is totally convex and Fréchet differentiable on int domg. If the set Rg

α(y;K) is
bounded, whenever α ∈ (0,+∞) and y ∈ K, then the Bregman projection operator Πg

K :
int domg → K is norm-to-norm continuous on int domg.

Proof. Consider Ýz and {Ýzn}n∈N as above. From (9), we have, for any n ∈ N,

Dg(Ýz, Ýzn) +Dg(Ýzn, zn) ≤ Dg(Ýz, zn).

Taking into account Proposition 4.2 and the continuity of the function Dg(Ýz, ·), we deduce
that limn→∞Dg(Ýz, Ýzn) = 0. Now Proposition 2.3(ii) applies and yields

lim
n→∞

Dg∗(g
′(Ýzn), g

′(Ýz)) = lim
n→∞

Dg(Ýz, Ýzn) = 0.

Our further argument is based on the following fact.

Claim. The function g∗ is totally convex at g′(Ýz) ∈ int domg∗.

For proving the claim, it is sufficient to show, cf. [19, Proposition 3.5], that g′(Ýz) ∈
int domg∗, the conjugate function g∗ is continuous at g′(Ýz), (g∗)′(g′(Ýz)) ∈ int dom(g∗∗)
and g∗∗ is Fréchet differentiable at (g∗)′(g′(Ýz)). Indeed, by [19, Proposition 3.4], it follows
that g′(Ýz) ∈ int domg∗ and g∗ is Fréchet differentiable at g′(Ýz). Hence, g∗ is also con-
tinuous at g′(Ýz). The fact that g = g∗∗ is Fréchet differentiable on int domg and, thus,
at (g∗)′(g′(Ýz)) = Ýz completes the proof of the claim. Consequently, by Proposition 2.2,
we get limn→∞ ‖g′(Ýz)− g′(Ýzn)‖∗ = 0. As shown in the previous proposition, the sequence
{Ýzn}n∈N is bounded. Therefore, taking limit in

Dg(Ýz, Ýzn) +Dg(Ýzn, Ýz) = 〈g′(Ýzn)− g′(Ýz), Ýz − Ýzn〉

implies limn→∞Dg(Ýzn, Ýz) = 0. Finally, from total convexity of g we obtain that limn→∞ Ýzn
= Ýz.

In the significant particular case of g = ‖ · ‖r, r > 1, Proposition 4.2 and Proposition 4.3
become the following:

Corollary 4.4. If X and X∗ are E-spaces and g = ‖ · ‖r, r > 1, then
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(i) The function Dg(K, ·) is continuous on X;

(ii) The Bregman projection operator Πg
K is norm-to-norm continuous on X.

Proof. According to Theorems 3.1 and 3.3, the functions g and g∗ are totally convex.
In order to apply Propositions 4.2 and 4.3 and to get the conclusion, it is sufficient to
take into account [18, Corollary 2.4(i)] and to prove that g is Fréchet differentiable on
X. Indeed, by [19, Proposition 3.4], it follows that g∗∗ = g is Fréchet differentiable on
the image of ∂(g∗). It is known (see, e.g., [39, Theorem 3.7.2]) that g∗ = c‖ · ‖q∗ where
1/r + 1/q = 1 and c is some positive constant. Applying Asplund’s Theorem, we deduce
that ∂(g∗) is a duality mapping of some weight function. Moreover, this mapping acting
from X∗ into X∗∗ is surjective because X is reflexive (see [24, Theorem 3.4, p. 62]). By
consequence, the function g is Fréchet differentiable on the entire space X.

As observed in the Introduction, Bregman distances and Bregman projections are useful
in optimization and feasibility algorithms. Therefore, knowing how they vary when the set
that one projects onto is perturbed is of interest for investigating stability of such methods.
We study below the behavior of the Bregman distances and Bregman projections when X
is reflexive and the set K is "approximated" in Mosco’s sense [33], generalizing in some
respects several results from [26, p. 49]. A sequence {Kn}n∈N of subsets of X is said to
converge in the sense of Mosco to K ⊆ X, and we write M − limn→∞Kn = K, if the
following two conditions hold:

(M1) for every u ∈ K there exists un ∈ Kn for every n sufficiently large such that
limn→∞ un = u; (M2) for every subsequence nj of natural numbers, if xj ∈ Knj

for every
j and w − limj→∞ xj = x, then x ∈ K.

The next result shows that if {Kn}n∈N converges to K in Mosco’s sense, then {Πg
Kn

}n∈N
also approaches Πg

K . A careful analysis of the Theorem 4.5 below shows that the implica-
tions (i)⇒ (ii)⇒(iii) remain true even if g is not Fréchet, but only GÝateaux differentiable.

Theorem 4.5. Let g : X → (−∞,+∞] be a convex lower semicontinuous function which
is totally convex and Fréchet differentiable on int domg, and {Kn}n∈N, K be closed convex
subsets of int domg. Among the statements below the implications (i)⇔(ii)⇒(iii) hold :

(i) The sequence {Kn}n∈N converges in the sense of Mosco to K;

(ii)
lim
n→∞

Πg
Kn

(x) = Πg
K(x), for every x ∈ int domg;

(iii)
lim
n→∞

Dg(Kn, x) = Dg(K, x), for every x ∈ int domg.

Proof. (i)⇒ (iii): Fix x ∈ int domg and denote x0 := Πg
K(x) and xn := Πg

Kn
(x). Let

u ∈ K and un ∈ Kn such that limn→∞ un = u. Then, for any n ∈ N,

Dg(un, xn) +Dg(xn, x) ≤ Dg(un, x).

Since the sequence {Dg(un, x)}n∈N is convergent (to Dg(u, x)), it is bounded and so is
the sequence {Dg(xn, x)}n∈N. Note that Dg(xn, x) ≥ νg(x, ‖xn − x‖) for all n ∈ N; this,
combined with the strict monotonicity of νg(x, ·), yields the boundedness of the sequence
{xn}n∈N. Hence, there exists some subsequence {xnj

}j∈N which converges weakly to some



E. Resmerita / On Total Convexity, Bregman Projections and Stability 13

y ∈ X. By (M2), it follows that y ∈ K. Since g is lower semicontinuous and convex, it is
weakly lower semicontinuous. By consequence,

Dg(y, x) ≤ lim inf
j→∞

Dg(xnj
, x) ≤ lim

j→∞
Dg(un, x) = Dg(u, x).

Since u was arbitrarily chosen inK, we deduce that y = Πg
K(x). As this weak cluster point

is unique, we obtain that the entire sequence {xn}n∈N converges weakly to x0. Hence,

Dg(x0, x) ≤ lim inf
n→∞

Dg(xn, x) ≤ lim sup
n→∞

Dg(xn, x) ≤ Dg(u, x).

for all u ∈ K. In particular, this holds for x0. Therefore, the following limit exists and

lim
n→∞

Dg(xn, x) = Dg(x0, x),

which means that (iii) is proved. (i)⇒ (ii): Since (iii) holds, too, and {xn}n∈N converges
weakly to x0, we apply Proposition 4.1 (iii) and obtain limn→∞ xn = x0. (ii)⇒ (i):
Clearly, (M1) holds: if x ∈ K, there exists {Πg

Kn
(x)}n∈N such that Πg

Kn
(x) ∈ Kn, for all

n ∈ N, and limn→∞Πg
Kn

(x) = Πg
K(x) = x. It remains to prove (M2). Let {xi}i∈N with

xi ∈ Ki such that it converges weakly to some x ∈ X. If y0 := Πg
K(x) and yi := Πg

Ki
(x),

then the hypothesis yields limi→∞ yi = y0. By (9) we have, for any i ∈ N,

〈g′(yi)− g′(x), xi − yi〉 ≥ 0.

Letting i → ∞, we obtain 〈g′(y0)− g′(x), x− y0〉 ≥ 0. As g′ is strictly monotone (because
g is strictly convex), we deduce that x = y0 ∈ K.

In the case of special interest when g is a power greater than one of the norm, Theorem
4.5 leads to the following result:

Corollary 4.6. Suppose that X and X∗ are E-spaces, {Kn}n∈N, K is a sequence of closed
convex subsets of X and g = ‖ · ‖r, r > 1. Among the statements below the implications
(i)⇔ (ii)⇒(iii) hold:

(i) The sequence {Kn}n∈N converges in the sense of Mosco to K;

(ii)
lim
n→∞

Πg
Kn

(x) = Πg
K(x), for every x ∈ X;

(iii)
lim
n→∞

Dg(Kn, x) = Dg(K, x), for every x ∈ X.

Theorem 4.5 can be improved by using a technique occurring in the proof of [26, Theorem
10, p. 49]. We show next that the Bregman distances Dg(K, x) and the Bregman projec-
tions Πg

K(x) with respect to certain totally convex functions are stable under simultaneous
variation of the set K and of the point x.

Theorem 4.7. Let g : X → (−∞,+∞] be a convex lower semicontinuous function which
is totally convex and Fréchet differentiable on int domg, and it satisfies the following
condition: If {xn}n∈N and {yn}n∈N are sequences in int domg such that {xn}n∈N and
{Dg(yn, xn)}n∈N are bounded, then {yn}n∈N is bounded. Then the following statement is
true:
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For every sequence x, {xn}n∈N in int domg and for every sequence K, {Kn}n∈N of closed
convex subsets of int domg such that limn→∞ xn = x and M − limn→∞Kn = K, we have

lim
n→∞

Dg(Kn, xn) = Dg(K, x) and w − lim
n→∞

Πg
Kn

(xn) = Πg
K(x). (11)

Moreover, if the differential g′ is bounded on bounded subsets of int domg, then the con-
vergence of Bregman projections in (11) is strong.

Proof. Denote Ýxn := Πg
Kn

(xn) and Ýx := Πg
K(x). Let z ∈ K and zn ∈ Kn, n ∈ N such

that limn→∞ zn = z. Applying (9), it follows that, for any n ∈ N,

Dg(zn, Ýxn) +Dg(Ýxn, xn) ≤ Dg(zn, xn).

Since {Dg(zn, xn)}n∈N is convergent (as a consequence of Proposition 4.1(i)), it is also
bounded. Then the sequence {Dg(Ýxn, xn)}n∈N is bounded and, by hypothesis, so is
the sequence {Ýxn}n∈N. Consequently, {Ýxn}n∈N has some weakly convergent subsequence
{Ýxnj

}j∈N to some point y which necessarily belongs to K. We apply Proposition 4.1(ii)
and obtain

Dg(Ýx, x) ≤ Dg(y, x) ≤ lim inf
j→∞

Dg(Ýxnj
, xnj

).

Now let vn ∈ Kn, n ∈ N such that limn→∞ vn = Ýx. From the previous inequality combined
with the chain of inequalities below

lim inf
j→∞

Dg(Ýxnj
, xnj

) ≤ lim sup
j→∞

Dg(Ýxnj
, xnj

) ≤ lim
n→∞

Dg(vn, xn) = Dg(Ýx, x),

we deduce that limn→∞Dg(Ýxn, xn) = Dg(Ýx, x), the weak cluster point y coincides with Ýx
and, therefore, the entire sequence {Ýxn}n∈N converges weakly to Ýx. Thus, the first part of
the theorem is proved. Suppose now that g′ is bounded on bounded subsets of int domg.
Note that

Dg(Ýxn, x)−Dg(Ýxn, xn)−Dg(xn, x) = 〈g′(x)− g′(xn), xn − Ýxn〉.

Taking limit above, we obtain that limn→∞Dg(Ýxn, x) = Dg(Ýx, x). Now Proposition 4.1(iii)
applies and yields limn→∞ Ýxn = Ýx.

One can easily see that the function g = ‖ · ‖r, r > 1 satisfies the hypothesis of the
preceding theorem whenever X and X∗ are E-spaces.
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