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We consider a rate independent evolution quasivariational inequality in a Hilbert space X with closed con-
vex constraints having nonempty interior. We prove that there exists a unique solution which is Lipschitz
dependent on the data, if the dependence of the Minkowski functional on the solution is Lipschitzian
with a small constant and if also the gradient of the square of the Minkowski functional is Lipschitz
continuous with respect to all variables. We exhibit an example of nonuniqueness if the assumption of
Lipschitz continuity is violated by an arbitrarily small degree.
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1. Introduction

In 1973, Moreau has introduced the sweeping process, [10, 11]. It describes the movement
ξ = ξ(t) of a point in a Hilbert space X induced by a time-dependent closed convex set
C = C(t) according to

−ξ̇(t) ∈ NC(t)(ξ(t)) , ξ(0) = ξ0 , (1)

where NK(x) denotes the normal cone to a convex set K at a point x. The evolution
variational inequality

〈v̇(t), w − v(t)〉 ≥ 〈f(t), w − v(t)〉 ∀w ∈ Γ , v(t) ∈ Γ , v(0) = v0 , (2)
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Γ ⊂ H closed and convex, constitutes a special case of (1), if we set

ξ(t) = v(t)−
∫ t

0

f(s) ds , ξ0 = v0 , C(t) = Γ−
∫ t

0

f(s) ds . (3)

In the same manner, the evolution quasivariational inequality

〈v̇(t), w − v(t)〉 ≥ 〈f(t), w − v(t)〉 ∀w ∈ Γ(v(t)) , v(t) ∈ Γ(v(t)) , v(0) = v0 , (4)

becomes a special case of the implicit or state-dependent sweeping process

−ξ̇(t) ∈ NC(t,ξ(t))(ξ(t)) , ξ(0) = ξ0 , (5)

if we set

ξ(t) = v(t)−
∫ t

0

f(s) ds , ξ0 = v0 , C(t, ξ) = Γ

(
ξ +

∫ t

0

f(s) ds

)
−
∫ t

0

f(s) ds . (6)

An appropriate meaning has to be given to the time derivative if discontinuous processes
are taken into consideration. The Young integral formulation was investigated in [5].
Another approach to nonsmooth evolution differential inclusions based on energy consid-
erations was recently proposed by Mielke and Theil in [9].

While the sweeping process (1) has been an object of extensive study, see the survey
[7], much less is known about the implicit process (5). The paper [2] seems to be the
first result in this direction, in a more general setting actually, but restricted to the case
dimX = 1. Kunze and Monteiro Marques [8] have proved existence for (5), if C satisfies
a Lipschitz condition with respect to the Hausdorff distance,

dH(C(t, ξ), C(s, η)) ≤ L1|t− s|+ L2|ξ − η| , (7)

if L2 < 1 and give examples for nonexistence if L2 > 1. However, no matter how small L2

is chosen, uniqueness may fail to hold; Ballard [1] has given an example in the context of
quasi-static friction problems.

Indeed, it is a general feature of quasivariational inequalities that the loss of monotonicity,
as caused by the state dependence of the constraint C, is accompanied by a loss of
uniqueness of their solution. On the other hand, there is no a priori reason why it should be
impossible to enforce uniqueness if the constraint behaves in a sufficiently regular manner.
We will show in this paper that uniqueness holds if the normal vectors to the constraint
C(t, ξ) satisfy a Lipschitz condition with respect to (t, ξ). Under the assumptions below
this means that we require the gradient of the square of the Minkowski functional M of C
to be Lipschitz continuous as a function of (t, ξ), whereas (7) is under suitable hypotheses,
see Lemma 3.2 below, equivalent to the Lipschitz continuity of M itself.

Our proof of uniqueness (and, incidentally, of existence at the same time) is based on
the contraction principle, thus the possible loss of monotonicity does not play any role
here. In order to obtain a contraction, results concerning time regularity for the solution
operator f 7→ ξ of the standard variational inequality (1) are required which are stronger
than the basic estimate

|ξ1(t)− ξ2(t)| ≤ |ξ01 − ξ02|+
∫ t

0

|f1(s)− f2(s)| ds . (8)
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Such stronger estimates have been provided within the context of hysteresis operators,
see [4] for a recent exposition. However, to apply those results we need the constraint
to be sandwiched uniformly between balls with fixed radius around zero. In particular,
constraints with empty topological interior are excluded.

In addition, we will relate the nonuniqueness in the quasivariational inequality to the
generic nonuniqueness phenomenon for scalar ordinary differential equations. More pre-
cisely, to every concave increasing function ψ : R → R with ψ(0) = 0 which gives rise to
a positive solution of the scalar problem

y′ = ψ(y) , y(0) = 0 , (9)

besides the trivial one, there corresponds a quasivariational inequality with nonunique
solution, where the gradient (with respect to the state ξ) of the Minkowski functional
varies like ψ(|ξ|).

2. Problem statement

We consider a separable Hilbert space X endowed with a scalar product 〈·, ·〉, a norm |x| =√
〈x, x〉 for x ∈ X, and a family of bounded convex closed sets Z(%) ⊂ X parametrized

by % ∈ R ⊂ Y , where Y is a reflexive Banach space endowed with a norm | · |Y and R is
a convex closed set with non-empty interior R◦. By Y ′ we mean the dual of Y , ((·, ·)) is
the duality pairing between Y and Y ′, and | · |Y ′ , | · |L(X,Y )

denote natural norms in the
corresponding spaces.

Throughout the paper, with the exception of Section 4, we will assume that there exist
0 < c ≤ C such that

Bc(0) ⊂ Z(%) ⊂ BC(0) ∀% ∈ R . (10)

We consider two problems, namely a variational inequality where the constraint Z de-
pends on an additional given function (Problem (P )), and a quasivariational inequality
(Problem (I )).

For given functions u ∈ W 1,1(0, T ; X), r ∈ W 1,1(0, T ; R) and an initial condition x0 ∈
Z(r(0)) we look for a function ξ ∈ W 1,1(0, T ; X) such that

(P ) (i) u(t)− ξ(t) ∈ Z(r(t)) ∀t ∈ [0, T ],

(ii) u(0)− ξ(0) = x0,

(iii)
〈
ξ̇(t), u(t)− ξ(t)− y

〉
≥ 0 ∀y ∈ Z(r(t)) for a. e. t ∈ ]0, T [ .

Besides serving as the crucial tool for the solution of problem (I ), problem (P ) is of
interest in itself (consider, for example, a constitutive stress-strain law where the yield
function depends on the temperature). Actually, problem (P ) is a reformulation of (1).
We reduce (P ) to (1) if we set u = 0, r(t) = t, x0 = −ξ0 and C = −Z, and we reduce
(1) to (P ) if we set C(t) = u(t)− Z(r(t)) and ξ0 = u(0)− x0.

We now formulate problem (I ). Let g : [0, T ] × X × X → R be a mapping satisfying
Hypothesis (G) stated below at the beginning of Section 6. For a given function u ∈
W 1,1(0, T ; X) and an initial condition x0 ∈ Z(g(0, u(0), u(0) − x0)) (for instance, any
x0 ∈ Bc(0) satisfies this inclusion) we look for a solution ξ ∈ W 1,1(0, T ; X) of the implicit
problem
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(I ) (i) u(t)− ξ(t) ∈ Z(g(t, u(t), ξ(t))) ∀t ∈ [0, T ],

(ii) u(0)− ξ(0) = x0,

(iii)
〈
ξ̇(t), u(t)− ξ(t)− y

〉
≥ 0 ∀y ∈ Z(g(t, u(t), ξ(t))) for a. e. t ∈ ]0, T [ .

The implicit sweeping process (5) becomes a special case of (I ), if we set u = 0,
g(t, u, ξ) = (t, ξ), x0 = −ξ0 and C = −Z. On the other hand, (I ) becomes a special case
of (5), if we set C(t, ξ) = u(t)− Z(g(t, u(t), ξ)) and ξ0 = u(0)− x0. The quasivariational
inequality (4) is subsumed under (I ) either going through (6), or by setting

ξ(t) = v(t)+u(t) , u(t) =

∫ t

0

f(s) ds , x0 = −v0 , Z = −Γ , g(t, u, ξ) = ξ−u . (11)

The formulation (5) certainly looks more compact than (I ). However, in applications a
driving function like u (or its derivative f) often appears, and it is useful to study the
dependence of ξ on u with respect to standard function spaces. (In (5) one has to deal
with metric properties of the set-valued mapping t 7→ C(t, ξ).)

Our main results include the existence, uniqueness, and Lipschitz continuous input-output
dependence for both Problems (P ) and (I ) in Sections 4 – 7. Before, we recall some
basic notions from convex analysis as presented in [12, 4].

3. Preliminaries: Convex sets

Consider a Hilbert space X as in the previous section and a convex closed set Z ⊂ X.
The mapping MZ : X → R+ defined by the formula

MZ(x) = inf
{
s > 0 ;

x

s
∈ Z

}
(12)

is called the Minkowski functional associated with Z. The polar set Z∗ to Z is defined by
the formula

Z∗ = {x ∈ X ; 〈x, y〉 ≤ 1 ∀y ∈ Z} . (13)

We first summarize in Lemma 3.1 below some results of [4, Sections 3 and 6].

Lemma 3.1.
Assume that there exist C > c > 0 such that

Bc(0) ⊂ Z ⊂ BC(0) . (14)

(i) It holds

B1/C(0) ⊂ Z∗ ⊂ B1/c(0) , (15)

|x|
C

≤ MZ(x) ≤ |x|
c
, (16)

c |x| ≤ MZ∗(x) ≤ C |x| . (17)

(ii) Let the derivative ∂xMZ(x) ∈ X exist for each x ∈ X \ {0}, and set JZ(0) = 0,
JZ(x) = MZ(x)∂xMZ(x) for x 6= 0. Then the unit outward normal nZ(x) to Z is
uniquely determined at each point x ∈ ∂Z, and we have

nZ(x) =
JZ(x)

|JZ(x)|
∀x ∈ ∂Z , (18)
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MZ∗(JZ(x)) = MZ(x) ∀x ∈ Z . (19)

Let moreover L > 0 such that

|nZ(x)− nZ(y)| ≤ L |x− y| ∀x, y ∈ ∂Z . (20)

Then we have

|JZ(x)− JZ(y)| ≤

(
1

c2
+
L

c

(
1 +

C

c

)2
)
|x− y| ∀x, y ∈ X . (21)

We can measure the distance of two sets Z1, Z2 in the system C of all closed convex subsets
Z of X either as the Hausdorff distance

dH(Z1, Z2) = max{ sup
z1∈Z1

dist (z1, Z2), sup
z2∈Z2

dist (z2, Z1)} , (22)

or the Minkowski distance

dM(Z1, Z2) = sup
|x|=1

|MZ1(x)−MZ2(x)| . (23)

We first show that these concepts are equivalent in the class of sets satisfying (14).

Lemma 3.2. Let Z1, Z2 ∈ C be such that (14) holds for Z = Zi, i = 1, 2. Then we have

c2dM(Z1, Z2) ≤ dH(Z1, Z2) ≤ C2dM(Z1, Z2) . (24)

Proof. Assume first that there exists x ∈ Z1 \ Z2. Using (16) we obtain

dist (x, Z2) ≤
∣∣∣∣x− x

MZ2(x)

∣∣∣∣ ≤ |x|2

MZ1(x)MZ2(x)

(
MZ2

(
x

|x|

)
−MZ1

(
x

|x|

))
≤ C2dM(Z1, Z2) ,

and reversing the roles of Z1 and Z2 we obtain the right inequality in (24). To prove the
left estimate in (24), we divide the unit sphere ∂B1(0) into the sets

A0 = {x ∈ ∂B1(0) ; MZ1(x) = MZ2(x)} ,
A1 = {x ∈ ∂B1(0) ; MZ1(x) > MZ2(x)} ,
A2 = {x ∈ ∂B1(0) ; MZ1(x) < MZ2(x)} .

For x ∈ A2 set x̄ = x/MZ1(x), and let QZ2x̄ be the orthogonal projection of x̄ onto Z2,
that is,

QZ2 x̄ ∈ Z2 , |PZ2x̄| = dist (x̄, Z2) , (25)

where we denote PZ2x̄ = x̄ − QZ2x̄. We have MZ2(x̄) > MZ1(x̄) = 1, hence x̄ /∈ Z2 and
d := |PZ2x̄| > 0. Put m = 1 + d/c. Then the vector

1

m
x̄ =

c

c+ d
QZ2x̄ +

d

c+ d

cPZ2 x̄

d
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is a convex combination of elements of Z2, hence MZ2(x̄) ≤ m. This yields

MZ2(x̄)−MZ1(x̄) ≤ m− 1 ≤ 1

c
dist (x̄, Z2) ≤ 1

c
dH(Z1, Z2) .

Using (16) we conclude that

MZ2(x)−MZ1(x) ≤ 1

c2
dH(Z1, Z2) ,

and arguing similarly for x ∈ A0 ∪ A1 we complete the proof.

Another distance criterion for convex sets involving the mapping JZ introduced in Lemma
3.1 is used in Sections 5 and 7. Here, we derive the following estimate.

Lemma 3.3. Let Z1, Z2 ∈ C be such ∂xMZ(x) exists for each x ∈ X \ {0} and that (14)
and (20) hold for Z = Zi, for Z = Zi, i = 1, 2. Let LJ be the Lipschitz constant on the
right-hand side of (21). Then

|JZ1(x)− JZ2(x)| ≤
2
√

2

c

(
dM(Z1, Z2) (cLJ + dM(Z1, Z2))

)1/2

∀x ∈ ∂B1(0) . (26)

Proof. Let x ∈ X with |x| = 1 and let JZ1(x) 6= JZ2(x). We define

xs = x+ s
JZ2(x)− JZ1(x)

|JZ2(x)− JZ1(x)|
for s ≥ 0 . (27)

We may assume that 〈xs − x, x〉 ≤ 0, otherwise we interchange Z1 and Z2. The functions
λi(s) := 1

2
M2

Zi
(xs) are convex and satisfy

λi(0) + sλ′i(0) ≤ λi(s) ≤ λi(0) + sλ′i(s) for s ≥ 0 . (28)

Thus,

λ2(s)− λ1(s) ≥ λ2(0)− λ1(0) + s (λ′2(0)− λ′1(s)) (29)

= λ2(0)− λ1(0) + s (λ′2(0)− λ′1(0)) + s (λ′1(0)− λ′1(s)) .

Note that, because s 7→MZi
(xs) is differentiable, the chain rule implies that

λ′i(s) =

〈
JZi

(xs),
JZ2(x)− JZ1(x)

|JZ2(x)− JZ1(x)|

〉
for s ≥ 0 .

Hence

λ′2(0)− λ′1(0) = |JZ2(x)− JZ1(x)| , (30)

|λ′1(s)− λ′1(0)| ≤ |JZ1(xs)− JZ1(x)| ≤ sLJ . (31)

We further have by (16) for all s ≥ 0 that (recall that we have assumed 〈xs − x, x〉 ≤ 0)

|λ2(s)− λ1(s)| ≤
|xs|
c
|MZ2(xs)−MZ1(xs)| ≤

|xs|2

c
dM(Z1, Z2) ≤

1 + s2

c
dM(Z1, Z2) .

(32)



M.Brokate, P.Krejč́ı, H. Schnabel / On Uniqueness in Evolution ... 117

Combining (29)–(32) we obtain for all s > 0 that

|JZ2(x)− JZ1(x)| ≤
2 + s2

sc
dM(Z1, Z2) + sLJ . (33)

The right-hand side attains its minimum for s =
√

2 dM(Z1, Z2)/(cLJ + dM(Z1, Z2)), and
the assertion follows.

We conclude this section with the following result as a simplified variant of [6, Lemma
3.2].

Lemma 3.4. Let Z ⊂ X be an arbitrary convex closed set, and for θ > 0 set Zθ =
Z + Bθ(0). Then the outward unit normal nθ(x) to Zθ is uniquely determined at each
point x ∈ ∂Zθ, and we have

|nθ(x)− nθ(y)| ≤
1

θ
|x− y| ∀x, y ∈ ∂Zθ . (34)

Proof. Let QZ : X → Z be the orthogonal projection onto Z. Putting PZx = x−QZx
we have |PZx| = dist (x, Z) for each x ∈ X, and

〈PZx,QZx− z〉 ≥ 0 ∀x ∈ X , ∀z ∈ Z . (35)

For x ∈ ∂Zθ and x̂ ∈ Zθ this yields |PZx| = θ, |PZ x̂| ≤ θ, and

〈PZx, x− x̂〉 = 〈PZx,QZx−QZ x̂〉 + |PZx|2 − 〈PZx, PZ x̂〉 ≥ 0 .

Let ñ be an arbitrary unit vector such that 〈ñ, x− x̃〉 ≥ 0 for every x̃ ∈ Zθ. Putting
x̃ = QZx+ θñ we obtain 〈ñ, PZx〉 ≥ θ, hence ñ = (1/θ)PZx = nθ(x). From (35) it follows
for all x, y ∈ X that 〈PZx− PZy,QZx−QZy〉 ≥ 0, hence |PZx−PZy| ≤ |x−y|, and (34)
follows.

4. Existence and uniqueness for the explicit problem

Since Problem (P ) is equivalent to the classical sweeping process (1), the existence and
uniqueness result for (P ) can be deduced from the results of Moreau [11], if the set-valued
function Z is Lipschitz continuous with respect to the Hausdorff metric, that is, if

dH(Z(%), Z(σ)) ≤ LZ |%− σ| ∀%, σ ∈ R (36)

holds for some LZ > 0.

It is obvious that if Problem (P ) has a solution, it is unique. Indeed, if ξ, η are two

solutions, then
〈
ξ̇, η − ξ

〉
≥ 0, 〈η̇, ξ − η〉 ≥ 0, hence

〈
ξ̇ − η̇, ξ − η

〉
≤ 0 and the assertion

follows.

Proposition 4.1. Let there exist LZ > 0 such that (36) is satisfied. Then Problem (P )
admits a unique solution ξ ∈ W 1,1(0, T ; X) for any given functions u ∈ W 1,1(0, T ; X),
r ∈ W 1,1(0, T ; R) and any initial condition x0 ∈ Z(r(0)).



118 M.Brokate, P.Krejč́ı, H. Schnabel / On Uniqueness in Evolution ...

Proof. We consider the sweeping process (1) with

C(t) = u(t)− Z(r(t)) , ξ0 = u(0)− x0 ,

which is equivalent to (P ). By (36) we have

dH(C(t), C(τ)) ≤ |u(t)− u(τ)|+ LZ |r(t)− r(τ)| .

Since u and r are absolutely continuous, so is C. By Proposition 3c in [11], (1) then has
a solution ξ ∈ W 1,1(0, T ; X).

Note that in Proposition 4.1 there is no assumption regarding the interior of the sets Z(ρ),
in particular (10) is not needed.

Concerning the dependence of u upon C in the sweeping process (1), the basic general
result is of Hölder type, see Proposition 2g in [11] or Theorem 4 in [7]. Let ξ, η be the
solutions of Problem (P ) for the data (u, r, x0) respectively (v, s, y0). Then Theorem 4
in [7] implies, if u, r, v, s are Lipschitz continuous,

|ξ(t)−η(t)|2 ≤ (|x0 − y0|+ |u(0)− v(0)|)2 +L

∫ t

0

|u(τ)−v(τ)|+LZ |r(τ)−s(τ)| dτ , (37)

where
L = 2(‖u̇‖∞ + ‖v̇‖∞ + LZ(‖ṙ‖∞ + ‖ṡ‖∞)) . (38)

Because of the square in (37), this formula cannot serve as the basis of a contraction
mapping argument for problem (I ).

5. Lipschitz estimates

Under the assumption (10), we denote by Z∗(%) the polar set to Z(%) defined in (13) for
% ∈ R, and by M∗(%, ·) its Minkowski functional. By Lemma 3.1 we have B1/C(0) ⊂
Z∗(%) ⊂ B1/c(0) for every % ∈ R, and the inequalities

|x|
C

≤ M(%, x) ≤ |x|
c
, (39)

c |x| ≤ M∗(%, x) ≤ C |x| (40)

hold for every x ∈ X and % ∈ R. The following conditions are assumed to hold:

(L1) The partial derivatives ∂%M(%, x) ∈ Y ′, ∂xM(%, x) ∈ X exist for every x ∈ X \{0}
and % ∈ R◦, and the mappings

J(%, x) = M(%, x)∂xM(%, x) : R◦ ×X \ {0} → X , (41)

K(%, x) = M(%, x)∂%M(%, x) : R◦ ×X \ {0} → Y ′ (42)

admit continuous extensions to x = 0 and % ∈ R.

(L2) For every x, x′ ∈ BC(0) and %, %′ ∈ R we have

|K(%, x)|Y ′ ≤ K0 , (43)

|J(%, x)− J(%′, x′)| ≤ CJ (|%− %′|Y + |x− x′|) , (44)

|K(%, x)−K(%′, x′)|Y ′ ≤ CK (|%− %′|Y + |x− x′|) (45)

with some fixed constants K0, CJ , CK > 0.
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Lemma 5.1. Let (10), (L1) and (43) hold. Then

dH(Z(%), Z(σ)) ≤ C3K0|%− σ| (46)

holds for all %, σ ∈ R.

Proof. By Lemma 3.2,

dH(Z(%), Z(σ)) ≤ C2 sup
|x|=1

|M(%, x)−M(σ, x)| .

By (39), if |x| = 1 we have∣∣∣∣12M2(%, x)− 1

2
M2(σ, x)

∣∣∣∣
≥ 1

2
|M(%, x)−M(σ, x)|(M(%, x) +M(σ, x)) ≥ 1

C
|M(%, x)−M(σ, x)| ,

and (46) follows from (43).

Thus, Problem (P ) has a unique solution by Proposition 4.1.

The following two lemmas constitute the main steps towards the desired Lipschitz esti-
mates.

Lemma 5.2. Let (L1) hold, let (r, u) ∈ W 1,1(0, T ; R)×W 1,1(0, T ; X) and x0 ∈ Z(r(0))
be given, and let ξ ∈ W 1,1(0, T ; X) be the corresponding solution to Problem (P ). For
t ∈ ]0, T [ set

A[r, u](t) =
〈
ξ̇(t), J(r(t), x(t))

〉
,

B[r, u](t) =
1

2
M2(r(t), x(t)) ,

G[r, u](t) = 〈u̇(t), J(r(t), x(t))〉+ ((K(r(t), x(t)), ṙ(t))) ,

with x(t) = u(t)− ξ(t). Then for a. e. t ∈ ]0, T [ we have either

(i) ξ̇(t) = 0, d
dt
B[r, u](t) = G[r, u](t)

or

(ii) ξ̇(t) 6= 0, x(t) ∈ ∂Z(r(t)), A[r, u](t) = G[r, u](t) > 0, B[r, u](t) = max[0,T ]B[r, u] =
1/2, d

dt
B[r, u](t) = 0, and

ξ̇(t) =
A[r, u](t)

|J(r(t), x(t))|2
J(r(t), x(t)) . (47)

Proof. Let L ⊂ ]0, T [ be the set of Lebesgue points of all functions u̇, ṙ, ξ̇, d
dt
B[r, u].

Then L has full measure in [0, T ], and for t ∈ L we have

d

dt
B[r, u](t) = 〈ẋ(t), J(r(t), x(t))〉+ ((K(r(t), x(t)), ṙ(t))) . (48)
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If ξ̇(t) = 0, then ẋ(t) = u̇(t), and (i) follows from (48). If ξ̇(t) 6= 0, then x(t) ∈ ∂Z(r(t)),
hence M(r(t), x(t)) = 1 = maxs∈[0,T ]M(r(s), x(s)). We therefore have B[r, u](t) =

1/2 = max[0,T ]B[r, u], d
dt
B[r, u](t) = 0. As a consequence of (P ) (iii) we have ξ̇(t) =

k n(r(t), x(t)) with a constant k > 0, where n(r(t), x(t)) is the unit outward normal to

Z(r(t)) at the point x(t), hence k =
〈
ξ̇(t), n(r(t), x(t))

〉
, and (47) follows from Lemma

3.1 (ii). Furthermore, (48) yields 〈ẋ(t), J(r(t), x(t))〉 = − ((K(r(t), x(t)), ṙ(t))), hence〈
ξ̇(t), J(r(t), x(t))

〉
= 〈u̇(t), J(r(t), x(t))〉 − 〈ẋ(t), J(r(t), x(t))〉

= 〈u̇(t), J(r(t), x(t))〉+ ((K(r(t), x(t)), ṙ(t))) ,

and the proof is complete.

In the situation of Lemma 5.2, we always have

|G[r, u](t)| ≤ |u̇(t)||J(r(t), x(t))|+K0|ṙ(t)|Y , (49)

|ξ̇(t)| ≤ |u̇(t)|+ CK0|ṙ(t)|Y . (50)

Indeed, (50) is trivial if ξ̇(t) = 0; otherwise we have |ξ̇(t)| = A[r, u](t)/|J(r(t), x(t))| =
G[r, u](t)/|J(r(t), x(t))| with x(t) ∈ ∂Z(r(t)). Lemma 3.1 then yields C |J(r(t), x(t)))| ≥
M∗(r(t), J(r(t), x(t))) = M(r(t), x(t)) = 1, and (50) follows from (49).

Lemma 5.3. Let (L1) and (43) hold, let (r, u), (s, v) ∈ W 1,1(0, T ; R) ×W 1,1(0, T ; X)
and x0 ∈ Z(r(0)), y0 ∈ Z(s(0)) be given, let ξ, η ∈ W 1,1(0, T ; X) be the respective
solutions to Problem (P ), and set x = u− ξ, y = v− η. Then for a. e. t ∈ ]0, T [ we have

|A[r, u](t)− A[s, v](t)|+ d

dt
|B[r, u](t)−B[s, v](t)| ≤ |G[r, u](t)−G[s, v](t)| , (51)

|ξ̇(t)− η̇(t)| ≤ C (|u̇(t)|+ CK0|ṙ(t)|Y )|J(r(t), x(t))− J(s(t), y(t))| (52)

+ C |A[r, u](t)− A[s, v](t)| .

Proof. The assertion follows directly from Lemma 5.2 if ξ̇(t) = η̇(t) = 0. Assume now

• ξ̇(t) 6= 0, η̇(t) 6= 0.

Then (51) is again an immediate consequence of Lemma 5.2. To prove (52), we use (47)
and the elementary vector identity∣∣∣∣ z|z|2 − z′

|z′|2

∣∣∣∣ =
1

|z||z′|
|z − z′| for z, z′ ∈ X \ {0} ,

to obtain

|ξ̇(t)− η̇(t)| ≤ |A[r, u](t)|
∣∣∣∣ J(r(t), x(t))

|J(r(t), x(t))|2
− J(s(t), y(t))

|J(s(t), y(t))|2

∣∣∣∣
+

1

|J(s(t), y(t))|
|A[r, u](t)− A[s, v](t)|

=
1

|J(r(t), x(t))| |J(s(t), y(t))|
|G[r, u](t)| |J(r(t), x(t))− J(s(t), y(t))|

+
1

|J(s(t), y(t))|
|A[r, u](t)− A[s, v](t)| .
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Lemma 3.1 yields |J(r(t), x(t))| ≥ 1/C, |J(s(t), y(t))| ≥ 1/C. Combining the above
inequalities with (49) we obtain the assertion.

Let us consider now the case

• ξ̇(t) 6= 0, η̇(t) = 0.

Then |A[r, u](t) − A[s, v](t)| = A[r, u](t), B[r, u](t) − B[s, v](t) = 1/2 − B[s, v](t) ≥ 0,
hence

|A[r, u](t)− A[s, v](t)|+ d

dt
|B[r, u](t)−B[s, v](t)| = A[r, u](t)− d

dt
B[s, v](t)

= G[r, u](t)−G[s, v](t) ,

hence (51) is fulfilled. We further have similarly as above that

|ξ̇(t)− η̇(t)| = |ξ̇(t)| ≤ C A[r, u](t) = C |A[r, u](t)− A[s, v](t)| ,

hence (52) holds. The remaining case

• ξ̇(t) = 0, η̇(t) 6= 0

is analogous, and Lemma 5.3 is proved.

We are now ready to prove the following crucial estimate.

Proposition 5.4. Let (L1), (L2) hold, let (r, u), (s, v) ∈ W 1,1(0, T ; R)×W 1,1(0, T ; X)
and x0 ∈ Z(r(0)), y0 ∈ Z(s(0)) be given, let ξ, η ∈ W 1,1(0, T ; X) be the respective
solutions to Problem (P ), and set x = u− ξ, y = v− η. Then for a. e. t ∈ ]0, T [ we have

|ξ̇(t)− η̇(t)| + C
d

dt
|B[r, u](t)−B[s, v](t)| ≤ C

c
|u̇(t)− v̇(t)|+ CK0 |ṙ(t)− ṡ(t)|Y (53)

+ C
(
2CJ |u̇(t)|+ (CK + CCJK0) |ṙ(t)|Y

)
(|r(t)− s(t)|Y + |x(t)− y(t)|) .

Proof. By Lemma 3.1 we have c |J(r(t), x(t))| ≤M∗(r(t), J(r(t), x(t))) = M(r(t), x(t))≤
1, hence |J(r(t), x(t))| ≤ 1/c for every t ∈ [0, T ]. By Lemma 5.3, we can estimate the
left-hand side of (53) by

C
(
|G[r, u](t)−G[s, v](t)|+ (|u̇(t)|+ CK0|ṙ(t)|Y )|J(r(t), x(t))− J(s(t), y(t))|

)
which together with the assumptions (43) – (45) yields the assertion.

6. Implicit model

We now consider Problem (I ) under the following hypothesis on the mapping g.

(G) g : [0, T ] × X × X → Y is continuous and g(t, u, ξ) ∈ R for each (t, u, ξ) ∈
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[0, T ]×X ×X. Its partial derivatives ∂tg, ∂ug, ∂ξg exist and satisfy the inequalities

|∂ξg(t, u, ξ)|L(X,Y )
≤ γ , (54)

|∂ug(t, u, ξ)|L(X,Y )
≤ ω , (55)

|∂tg(t, u, ξ)|Y ≤ a(t) , (56)

|∂ξg(t, u, ξ)− ∂ξg(t, v, η)|L(X,Y )
≤ Cg (|u− v|+ |ξ − η|) , (57)

|∂ug(t, u, ξ)− ∂ug(t, v, η)|L(X,Y )
≤ Cu (|u− v|+ |ξ − η|) , (58)

|∂tg(t, u, ξ)− ∂tg(t, v, η)|Y ≤ b(t) (|u− v|+ |ξ − η|) (59)

for every u, v, ξ, η ∈ X and a. e. t ∈ ]0, T [ with given functions a, b ∈ L1(0, T ) and
given constants γ, ω, Cg, Cu > 0 such that

δ = CK0 γ < 1 , (60)

where C, K0 are as in Hypotheses (10) and (L2).

Let us start our analysis with the following necessary condition.

Lemma 6.1. Let Hypotheses (L1), (L2), and (G) hold, and let ξ ∈ W 1,1(0, T ; X) be a
solution to Problem (I ) with some u ∈ W 1,1(0, T ; X) and x0 ∈ Z(g(0, u(0), u(0)− x0)).
Then we have

|ξ̇(t)| ≤ 1

1− δ
((1 + CK0ω)|u̇(t)|+ CK0 a(t)) a. e. (61)

Proof. Inequality (61) is an easy consequence of (50) with r(t) = g(t, u(t),ξ(t)). Indeed,
using (54), (55) we obtain |ṙ(t)|Y ≤ a(t) + ω|u̇(t)|+ γ|ξ̇(t)| and (61) follows.

We now prove the converse as the main result of this section.

Theorem 6.2. Let Hypotheses (L1), (L2), and (G) hold. Then for every u ∈ W 1,1(0, T ;
X) and every x0 ∈ Z(g(0, u(0),u(0)−x0)) there exists a unique solution ξ ∈ W 1,1(0, T ; X)
to Problem (I ) in the set

Ω =

{
η ∈ W 1,1(0, T ; X) ;

|η̇(t)| ≤ 1
1−δ ((1 + CK0ω)|u̇(t)|+ CK0 a(t)) a. e.

η(0) = u(0)− x0

}
.

Proof. Let S : Ω → W 1,1(0, T ; X) be the mapping which with each η ∈ Ω associates
the solution ξ to Problem (P ) with r(t) = g(t, u(t), η(t)). By (50) we have

|ξ̇(t)| ≤ |u̇(t)|+ CK0|ṙ(t)|Y ≤ (1 + CK0ω)|u̇(t)|+ CK0 a(t) + δ|η̇(t)| (62)

≤ 1

1− δ
((1 + CK0ω)|u̇(t)|+ CK0 a(t)) ,

hence S(Ω) ⊂ Ω. The set Ω is convex and closed in W 1,1(0, T ; X). We now check that
S : Ω → Ω is a contraction with respect to a suitable norm in W 1,1(0, T ; X).



M.Brokate, P.Krejč́ı, H. Schnabel / On Uniqueness in Evolution ... 123

Let η1, η2 ∈ Ω be given. By Proposition 5.4, the functions ξi = S(ηi) for i = 1, 2 satisfy
almost everywhere the inequality

|ξ̇1(t)− ξ̇2(t)|+ β̇(t) ≤ δ|η̇1(t)− η̇2(t)| (63)

+ Cδ(|u̇(t)|+ a(t) + b(t))(|η1(t)− η2(t)|+ |ξ1(t)− ξ2(t)|)

with β(t) = C|B[g(·, u,η1), u](t) − B[g(·, u,η2), u](t)| ≥ 0, β(0) = 0, and with a constant
Cδ > 0 independent of η1, η2.

Let now ε > 0 be chosen so small that

δ + εCδ
1− εCδ

= δ∗ < 1 , (64)

and let us define an auxiliary function

w(t) = e−
1
ε

R t
0 (|u̇(τ)|+a(τ)+b(τ)) dτ for t ∈ [0, T ] . (65)

We have w(t) > 0 for every t ∈ [0, T ] and ẇ(t) ≤ 0 a. e. We test the inequality (63) by
w(t) and integrate over [0, T ]. Taking into account the relations∫ T

0

β̇(t)w(t) dt = [β(t)w(t)]T0 −
∫ T

0

β(t) ẇ(t) dt ≥ 0 ,∫ T

0

w(t) (|u̇(t)|+ a(t) + b(t))(|η1(t)− η2(t)|+ |ξ1(t)− ξ2(t)|) dt

≤ −ε
∫ T

0

ẇ(t)

∫ t

0

(|η̇1(τ)− η̇2(τ)|+ |ξ̇1(τ)− ξ̇2(τ)|) dτ dt

= −ε
[
w(t)

∫ t

0

(|η̇1(τ)− η̇2(τ)|+ |ξ̇1(τ)− ξ̇2(τ)|) dτ
]T

0

+ ε

∫ T

0

w(t) (|η̇1(t)− η̇2(t)|+ |ξ̇1(t)− ξ̇2(t)|) dt

≤ ε

∫ T

0

w(t) (|η̇1(t)− η̇2(t)|+ |ξ̇1(t)− ξ̇2(t)|) dt ,

we obtain from (63) that∫ T

0

w(t) |ξ̇1(t)−ξ̇2(t)| dt ≤ (δ+εCδ)

∫ T

0

w(t) |η̇1(t)−η̇2(t)| dt+εCδ
∫ T

0

w(t) |ξ̇1(t)−ξ̇2(t)| dt

hence ∫ T

0

w(t) |ξ̇1(t)− ξ̇2(t)| dt ≤ δ∗
∫ T

0

w(t) |η̇1(t)− η̇2(t)| dt . (66)

We thus checked that S is a contraction on Ω with respect to the weighted norm

‖η‖ = |η(0)|+
∫ T

0

w(t) |η̇(t)| dt ,

hence S admits a unique fixed point ξ which is a solution of (I ).
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7. Lipschitz continuity

In this section we prove local Lipschitz continuity estimates for both Problems (P ) and
(I ) as a combination of Proposition 5.4 and a Gronwall-type argument.

Theorem 7.1. Let the assumptions of Proposition 5.4 be fulfilled. Then there exist pos-
itive constants C0, C1 such that for every R > 0, every (r, u), (s, v) ∈ W 1,1(0, T ; R) ×
W 1,1(0, T ; X) with

∫ T
0

(|u̇| + |ṙ|Y )dt ≤ R,
∫ T

0
(|v̇| + |ṡ|Y )dt ≤ R, and every x0 ∈ Z(r(0)),

y0 ∈ Z(s(0)), the respective solutions ξ, η ∈ W 1,1(0, T ; X) of problem (P ) satisfy the
inequality∫ T

0

|ξ̇ − η̇| dt ≤ C1e
C0R

(
|x0 − y0|+ |r(0)− s(0)|Y +

∫ T

0

(|u̇− v̇|+ |ṙ − ṡ|Y )dt

)
. (67)

Proof. By Proposition 5.4, there exists a constant C0 > 0 such that

|ẋ(t)− ẏ(t)|+ β̇(t) ≤ C0

(
|u̇(t)− v̇(t)|+ |ṙ(t)− ṡ(t)|Y (68)

+ (|u̇(t)|+ |ṙ(t)|Y )(|x(t)− y(t)|+ |r(t)− s(t)|Y )
)

with β(t) = C |B[r, u](t)− B[s, v](t)|. We argue similarly as in the proof of Theorem 6.2
and test (68) by the function

w1(t) = e−C0

R t
0 (|u̇|+|ṙ|Y ) dτ .

This yields

d

dt

(
w1(t)

∫ t

0

|ẋ− ẏ| dτ
)

+ w1(t) β̇(t) ≤ C0w1(t)
(
|u̇(t)− v̇(t)|+ |ṙ(t)− ṡ(t)|Y

)
(69)

−ẇ1(t)

(
|x0 − y0|+ |r(0)− s(0)|Y +

∫ t

0

|ṙ − ṡ|Y dτ
)
.

Note that∫ T

0

w1(t) β̇(t) dt = [w1(t) β(t)]T0 −
∫ T

0

ẇ1(t) β(t) dt ≥ −w1(0) β(0) (70)

≥ −C
2
|M2(r(0), x0)−M2(s(0), y0)| ≥ −

(
CK0|r(0)− s(0)|Y +

C

c
|x0 − y0|

)
.

On the other hand, integrating (69) from 0 to T and using the fact that for every t ∈ [0, T ]
we have 1 ≥ w1(t) ≥ w1(T ) ≥ e−C0R we obtain

e−C0R

∫ T

0

|ẋ− ẏ| dt ≤ −
∫ T

0

w1(t) β̇(t) dt+ |x0 − y0|+ |r(0)− s(0)|Y (71)

+ (C0 + 1)

∫ T

0

(|u̇− v̇|+ |ṙ − ṡ|Y ) dt ,

and the assertion follows from (70), (71).
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Theorem 7.2. Let the assumptions of Theorem 6.2 be fulfilled. Then there exist positive
constants C2, C3 such that for every R > 0, every u, v ∈ W 1,1(0, T ; X) with

∫ T
0
|u̇| dt ≤ R,∫ T

0
|v̇| dt ≤ R, and every x0 ∈ Z(g(0, u(0), u(0) − x0), y0 ∈ Z(g(0, v(0), v(0) − y0), the

respective solutions ξ, η ∈ W 1,1(0, T ; X) of problem (I ) satisfy the inequality∫ T

0

|ξ̇ − η̇| dt ≤ C3e
C2R

(
|x0 − y0|+ |u(0)− v(0)|+

∫ T

0

|u̇− v̇| dt
)
. (72)

Proof. We use Lemma 6.1 and Proposition 5.4 with r(t) = g(t, u(t), ξ(t)), s(t) =
g(t, v(t), η(t)), and find a constant C∗ > 0 such that

(1− δ)|ξ̇(t)− η̇(t)|+ β̇(t) ≤ C∗
(
|u̇(t)− v̇(t)| (73)

+ (|u̇(t)|+ a(t) + b(t))(|u(t)− v(t)|+ |ξ(t)− η(t)|)
)

with β(t) = C |B[g(·, u, ξ), u](t) − B[g(·, v, η), v](t)|. Repeating the procedure from the
proof of Theorem 7.1 with

C2 =
C∗

1− δ
, w2(t) = e−C2

R t
0 (|u̇(τ)|+a(τ)+b(τ)) dτ (74)

we easily obtain the assertion.

8. Nonuniqueness

Let ψ : [0, 1] → [0, 1] be an increasing concave function with ψ(0) = 0. Then the initial
value problem

ẇ = δψ(w) , w(0) = 0 , (75)

has a positive solution for any δ > 0 in addition to the trivial one, if and only if∫ 1

0

1

ψ(ε)
dε <∞ . (76)

Let us assume that (76) holds. Then

lim
ε→0+

ψ′(ε) = lim
ε→0+

ψ(ε)

ε
= ∞ . (77)

Moreover assume that there exists K > 0 such that

ψ′(ε) ≤ K√
ε

for a. e. ε ∈ ]0, 1[ . (78)

Then
ψ(ε) ≤ 2K

√
ε ∀ε ∈ [0, 1] . (79)

A typical example is ψ(ε) = εβ, 1/2 ≤ β < 1.

We denote

θ =
1

1 + 8K2
(80)
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with K from (78), and consider for α ≥ 0 and 0 ≤ η ≤ 1− θ the system of convex sets

V (η, α) = B1−θ(0) ∩H(η, α) , (81)

in X = R2, where H(η, α) is the half-plane

H(η, α) = {z ∈ R2; 〈z, να〉 ≤ 1− θ − η} , να =

(
1

−α

)
. (82)

We further define two one-parametric families of convex sets

Z̃(ε) = V (ε+ θ(
√

1 + ψ2(ε)− 1), ψ(ε)) , (83)

Z(ε) = Z̃(ε) +Bθ(0) , (84)

for ε ∈ [0, ε0], where ε0 ∈ ]0, 1] is chosen in such a way that for every ε ∈ ]0, ε0] we have

ε+ θ
√

1 + ψ2(ε) < 1 , (85)

θ2 (1 + ψ2(ε))
ψ2(ε)

ε
+ 2θ

(
(1− ε)

ψ2(ε)

ε
+

1

ε

(
1− 1− ε√

1 + ψ2(ε)

))
≤ 2− ε . (86)

Let Λ(θ, ε) denote the left-hand side of (86). To see that condition (86) is meaningful, it
suffices to use (79) which entails that

lim sup
ε→0+

Λ(θ, ε) ≤ 4K2θ2 + 2θ (1 + 6K2) = 2

(
1−

(
4K2

1 + 8K2

)2
)

< 2 . (87)

The set Z̃(ε) can also be characterized as

z ∈ Z̃(ε) ⇔ |z| ≤ 1− θ ,
〈
z, νψ(ε)

〉
≤ 1− ε− θ

√
1 + ψ2(ε) , (88)

see Figure 1. As the next step, we check that the segment

S(ε) =

{
z =

(
x
y

)
; x− ψ(ε)y = 1− ε , |y| ≤ θ ψ(ε)

}
(89)

satisfies
S(ε) ⊂ ∂Z(ε) ∀ε ∈ [0, ε0] . (90)

The limit case ε = 0 is easy: we have Z(0) = B1(0), and S(0) contains only one element

e1 =

(
1
0

)
. For ε > 0 and z ∈ S(ε) we define

zθ = z − θ√
1 + ψ2(ε)

νψ(ε) .

Then
|zθ − z| = θ , (91)〈

zθ, νψ(ε)

〉
= 1− ε− θ

√
1 + ψ2(ε) , (92)
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|zθ|2 = |z|2 + θ2 − 2θ
1− ε√

1 + ψ2(ε)
, (93)

where |z|2 ≤ (1− ε+ θψ2(ε))2 + θ2ψ2(ε) by (89). Developing the computation and using
(86) we obtain from (93) that

|zθ|2 ≤ (1− ε)2 + θ2 (1+ψ2(ε) + ψ4(ε)) + 2θ (1− ε)ψ2(ε)− 2θ
1− ε√

1 + ψ2(ε)

= (1− θ)2 + θ2 (1+ψ2(ε))ψ2(ε) + 2θ

(
(1− ε)ψ2(ε)+

(
1− 1− ε√

1 + ψ2(ε)

))
+ ε2 − 2ε

≤ (1− θ)2,

hence zθ ∈ Z̃(ε) and z ∈ Z(ε).

To see that z ∈ ∂Z(ε), we notice using (88) that for arbitrary z̃ ∈ Z̃(ε) we have

|z − z̃| ≥ 1√
1 + ψ2(ε)

〈
z − z̃, νψ(ε)

〉
≥ θ .

In other words, dist (z, Z̃(ε)) = θ, and (90) is verified.

�
v(t)

1 x0

y

1− θ

Z̃(w(t))

Z(w(t))

Figure 1. Trajectory of the nontrivial solution v(t).

We now construct the example of nonuniqueness for the evolution quasivariational in-
equality (4). Let w : [0, t0] → R be the positive solution to the initial value problem (75)
for a fixed δ > 0, where we choose t0 sufficiently small such that

w(t0) ≤ ε0 ,
w(t0)

ψ(w(t0))
≤ δ θ , δψ(w(t0)) < 1 . (94)

We define v(t) =

(
v1(t)
v2(t)

)
with

v1(t) = 1− w(t) +
1

δ
w(t)ψ(w(t)) , v2(t) =

1

δ
w(t) , (95)
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and set
Γ(v) = Z(δv2) . (96)

Then
v2(t)

ψ(w(t))
≤ v2(t0)

ψ(w(t0))
< θ , (97)

hence v(t) ∈ S(w(t)) ⊂ ∂Z(w(t)) = ∂Γ(v(t)) for all t ∈ [0, t0], see Figure 1. We set

f(t) = (f1(t), 0) , f1(t) = 1 + v̇1(t) , (98)

then f(t)− v̇(t) = νψ(w(t))(v(t)) ∈ NΓ(v(t))(v(t)), and f1(t) > 0 for t ≤ t0. Therefore, both

v(t) as defined and v̂(t) ≡ e1 =

(
1
0

)
are solutions of (4). Thus, there is nonuniqueness,

despite the fact that the outward normal vectors nZ(ε)(z) are Lipschitz continuous in z
for every ε with a Lipschitz constant independent of ε as a consequence of Lemma 3.4.
Moreover, the orthogonal projections QZ̃(ε) of X onto Z̃(ε) (and therefore also nZ(ε) by
virtue of the argument in the proof of Lemma 3.4) depend Lipschitz-continuously on ε
in each interval [ε1, ε0] with 0 < ε1 < ε0. For ε = 0 there is indeed no problem in
any direction different from e1, as the boundary of Z(ε) does not move here for ε small.
However, the dependence of JZ(ε)(z) on ε is not globally Lipschitz and the Lipschitz
constant behaves like ψ(ε)/ε for z = e1 near ε = 0. Indeed, for fixed ε > 0 and z ∈ S(ε)
we have MZ(ε)(z) =

〈
z, νψ(ε)

〉
/(1− ε). We easily find q(ε) > 0 which guarantees that for

every y ∈ Bq(ε)(0) we can find p(ε, y) > 0 such that p(ε, y)(e1 + y) ∈ S(ε). For all such
y we thus have MZ(ε)(e1 + y) =

〈
e1 + y, νψ(ε)

〉
/(1− ε), hence JZ(ε)(e1) = νψ(ε)/(1− ε)2.

Obviously, JZ(0)(x) = x for every x ∈ X, and we conclude that

|JZ(ε)(e1)− JZ(0)(e1)| =

√
ψ2(ε) + ε2(2− ε)2

(1− ε)2
, (99)

where the right-hand side is of the order of εβ if for example ψ(ε) = εβ, 1/2 ≤ β < 1.
On the other hand, we will see that Z(ε) does depend Lipschitz-continuously on ε in
the sense of the Hausdorff distance. This implies in turn that the map v → Γ(v) is
Lipschitz with an arbitrarily small constant similarly as in the example of [1] provided δ
is chosen sufficiently small (in fact, to make Figure 1 more transparent, we have chosen a
trajectory of the solution v(t) corresponding to a ‘very large’ δ). We conclude the paper
by establishing this Lipschitz continuity result as a separate lemma.

Lemma 8.1. There exists a constant R > 0 such that for every 0 ≤ ε2 < ε1 ≤ ε0 we
have

(i) Z(ε1) ⊂ Z(ε2),

(ii) dH(Z(ε1), Z(ε2)) ≤ R (ε1 − ε2).

It is interesting to compare formula (99) with Lemmas 3.2, 3.3, and 8.1. We see that
the hypothesis (79) is sharp in the sense that if one sets ψ(ε) = εβ with β < 1/2 in the
example above, one cannot expect that dH(Z(ε), Z(0)) remains Lipschitz continuous in ε.

Proof. To prove (i), let us consider an arbitrary z =

(
x
y

)
∈ Z̃(ε1) and assume that
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z /∈ Z̃(ε2). Then

x− ψ(ε2)y > 1− ε2 − θ
√

1 + ψ2(ε2) , (100)

x− ψ(ε1)y ≤ 1− ε1 − θ
√

1 + ψ2(ε1) , (101)

x ≤ 1− θ . (102)

For α ∈ [0, ψ(ε0)] we define an auxiliary function

Ψ(α) = ψ−1(α) + θ (
√

1 + α2 − 1)

and set αi = ψ(εi), i = 0, 1, 2. From (100)–(102) it follows that

Ψ(α2)

α2

> y >
Ψ(α1)−Ψ(α2)

α1 − α2

. (103)

Since Ψ is convex, increasing, and Ψ(0) = 0, (103) is contradictory and we conclude that
Z̃(ε1) ⊂ Z̃(ε2), hence (i) holds.

It remains to prove the Lipschitz estimate in (ii). Let z ∈ Z̃(ε2)\ Z̃(ε1) be arbitrary. With
the above notation we have

〈z, να2〉 ≤ 1− θ −Ψ(α2) , (104)

〈z, να1〉 > 1− θ −Ψ(α1) . (105)

We find α∗ ∈ [α2, α1[ such that

〈z, να∗〉 = 1− θ −Ψ(α∗) , (106)

and put ε∗ = ψ−1(α∗), z1 = z − σνα1 , where σ > 0 is chosen in such a way that

〈z1, να1〉 = 1− θ −Ψ(α1) , (107)

that is,

σ =
1

1 + α2
1

(〈z, να1〉 − 1 + θ + Ψ(α1)) .

We have

|z1|2 = |z|2 − σ2 |να1 |2 − 2σ (1− θ −Ψ(α1)) < |z|2 ≤ (1− θ)2 ,

hence z1 ∈ Z̃(ε1). Our goal now is to find R > 0 independent of ε1, ε2 such that

|z − z1| ≤ R (ε1 − ε∗) , (108)

and it will suffice to pass from Z̃(εi) to Z(εi), i = 1, 2, to complete the proof. Inequality
(108) will follow from a series of estimates, where C1, C2, . . . will denote arbitrary positive
constants depending only on K. First of all, we have

|z − (1− θ)να∗|2 ≤ (1 + |να∗|2) (1− θ)2 − 2(1− θ) (1− θ −Ψ(α∗)) (109)

≤ (1− θ)
(
α2
∗ + 2ψ−1(α∗)

)
≤ C1 ε∗ .
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On the other hand, we have

|z − z1| = σ |να1| ≤ σ |να1 |2 = 〈z − z1, να1〉 (110)

= 〈z − (1− θ)να∗ , να1 − να∗〉 + (1− θ) 〈να∗ , να1 − να∗〉 + Ψ(α1)−Ψ(α∗)

≤
√
C1 ε∗ |να1 − να∗| +

1− θ

2

(
|να1|2 − |να∗|2

)
+ Ψ(α1)−Ψ(α∗)

≤ C2

(√
ε∗(α1 − α∗) + (ε1 − ε∗) + (α2

1 − α2
∗)
)
,

where, by (78)–(79), we have α1 − α∗ ≤ 2K(
√
ε1 −

√
ε∗) and

α2
1 − α2

∗ = 2

∫ ε1

ε∗

ψ(ε)ψ′(ε) dε ≤ 4K2 (ε1 − ε∗) ,

and (108) immediately follows.

Acknowledgements. The authors thank one of the referees for the suggestion that Propo-
sition 4.1 might follow directly from Moreau’s results. This turned out to be right, as the
exposition above shows.
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R. Acad. Sci. Paris Sér. A-B 273 (1973) A791–A794.

[11] J.-J. Moreau: Evolution problem associated with a moving convex set in a Hilbert space,
J. Diff. Eq. 26 (1977) 347–374.

[12] R. T. Rockafellar: Convex Analysis, Princeton University Press, Princeton (1970).


