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We give a sufficient condition in dimension N ≥ 3 in order to obtain the stability of a sequence of
Neumann problems on fractured domains.

1. Introduction

Given Ω open and bounded in RN , (Kn) a sequence of compact sets in RN , consider the
following Neumann problems

{

−∆u+ u = f
∂u
∂ν

= 0
in Ω \Kn

on ∂Ω ∪ (∂Kn ∩ Ω)
(1)

with f ∈ L2(Ω): we intend (1) satisfied in the usual weak sense of Sobolev spaces, that is
u ∈ H1(Ω \Kn) and

∫

Ω\Kn

∇u∇ϕ+

∫

Ω\Kn

uϕ =

∫

Ω\Kn

fϕ

for all ϕ ∈ H1(Ω \Kn). If (Kn) converges to a compact set K in the Hausdorff metric ,
we look for conditions on the sequence (Kn) such that, considered the problem

{

−∆u+ u = f
∂u
∂ν

= 0
in Ω \K
on ∂Ω ∪ (∂K ∩ Ω),

(2)

the solutions un of (1) (extended to 0 onKn∩Ω) converge to the solution u of (2) (extended
to 0 on K ∩ Ω). If this is the case, we say that the Neumann problems (1) are stable.

The problem of stability for elliptic problems under Neumann boundary conditions has
been widely investigated. Usually, since in general the domains Ω \Kn are not regular, it
is not possible to deal with the problem using extension operators (see for example [17],
[19]).

In dimension N = 2, Chambolle and Doveri [8] in 1997 proved a stability result under
a uniform limitation of H1(Kn) and of the number of the connected components of Kn;
Bucur and Varchon [3] in 2000 proved that if Kn has at most m connected components
(m ∈ N), the stability of the problems is equivalent to the condition L2(Ω \ Kn) →
L2(Ω \K).

In dimension N ≥ 3, the bound on the number of the connected components of Kn is
not a relevant feature and a condition similar to that of Bucur and Varchon doesn’t hold:
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in fact, problems (1) could be not stable even if the sets Kn are connected. In 1997,
Cortesani [11] proved that in general, if K is contained in a C1 submanifold of RN , the
limit of solutions of (1) satisfies a transmission condition on K. Several results on this
transmission condition are known under additional assumptions on (Kn). In the case in
which Kn is contained in a hyperplane M and is the complement in M of a periodic grid
of (N − 1) dimensional balls, the problem is treated in [22]. In [7], a continuity result
is obtained in the case Kn ⊆ M and Kn satisfies appropriate capacitary conditions on
the boundary. In Murat [20] and Del Vecchio [14] (see also [24],[25]), the case of a sieve
(Neumann sieve) is considered: the transmission conditions that occur in the limit are
determined in relation to capacitary properties of the holes of the sieve.

In this paper, we suppose that the sets Kn, locally, are sufficiently regular subsets of
(N − 1)-dimensional Lipschitz submanifolds of RN in such a way that homogenization
effects due to the possible holes cannot occur.

Let π be the hyperplane xN = 0 in RN and let C be an (N − 1)-dimensional finite closed
cone with nonempty relative interior (for a precise definition see Section 3). We say that
the sequence (Kn) satisfies the C-condition if there exist constants δ, L1, L2 > 0 such that,
for all n and for all x ∈ Kn, there exists Φx : Bδ(x) → RN with

(a) for all z1, z2 ∈ Bδ(x):

L1|z1 − z2| ≤ |Φx(z1)− Φx(z2)| ≤ L2|z1 − z2|;

(b) Φx(x) = 0 and Φx(Bδ(x) ∩Kn) ⊆ π;

(c) for all y ∈ B δ
2
(x) ∩Kn,

Φx(y) ∈ Cy ⊆ Φx(Bδ(x) ∩Kn)

for some finite closed cone Cy in π congruent (up to a rototranslation) to C. Conditions
(a), (b) imply that, near x, Kn is a subset of an (N−1)-dimensional Lipschitz submanifold
Mn,x of RN and condition (c) implies that Kn is sufficiently regular in Mn,x, essentially a
finite union of Lipschitz subsets. A particular class of cracks which satisfy the C-condition
is given for example by (Ψn(A)), where A is a Lipschitz bounded open subset of π and
(Ψn) is a sequence of bi-Lipschitz maps from RN into itself with constants L1 and L2;
another example is given by (Ψn(K̃n)), where (K̃n) is a sequence of compact subsets of π
satysfying the cone condition with respect to a finite close cone C (see Definition 3.1).

The main result of the paper is that, if the sequence (Kn) satisfies the C-condition and
Kn → K in the Hausdorff metric, then the spaces W 1,p(Ω \Kn) converge in the sense of
Mosco (see Section 2) to the space W 1,p(Ω \K) for 1 < p ≤ 2. As a consequence for the
case p = 2, the problems (1) are stable, that is transmission conditions in the limit are
avoided.

The hypotheses above are not sufficient to cover the case p > 2; moreover, point (b) in
C-condition cannot be omitted: in fact a sort of “curvilinearÔ cone condition given only
by points (a) and (c) does not provide the Mosco convergence. We will see these facts
through explicit examples.

Finally we mention [9] and [18] in which compactness properties for domains satisfying
appropriate uniform cone and segment conditions are used to deal with shape optimization
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problems: the present work is in spirit close to these papers, the main difference being
that the moving boundary can be inside Ω, so that Ω can lie on both side of the boundary.

The paper is organized as follows: in Section 2, we introduce the basic notation; after
some preliminaries, we prove the main stability result in Section 4. In Section 5, we give
the above mentioned examples of non-stability which require some basic techniques of
Γ-convergence.

2. Notation and preliminaries

In this section, we introduce the basic notation and the tools employed in the rest of the
paper.

The Mosco convergence. Let X be a reflexive Banach space, (Yn) a sequence of closed
subspaces of X. Let us set

Y ′ := {x ∈ X : x = w- lim ynk
, ynk

∈ Ynk
, nk → +∞} (3)

and

Y ′′ := {x ∈ X : x = s- lim yn , yn ∈ Yn for n large}; (4)

Y ′ and Y ′′ are called, respectively, the weak-limsup and the strong-liminf of the sequence
(Yn) in the sense of Mosco. We say that the sequence (Yn) converges in the sense of
Mosco if Y ′ = Y ′′ = Y and we call Y the Mosco limit of (Yn). Clearly Y ′′ ⊆ Y ′: as a
consequence, in order to prove that Yn → Y in the sense of Mosco, it is sufficient to prove
that Y ′ ⊆ Y (weak-limsup condition) and Y ⊆ Y ′′ (strong-liminf condition). Since Y ′′ is
closed, the strong-liminf condition can be established proving the inclusion D ⊆ Y ′′, D
being a dense subset of Y .

Let Ω′ be open and bounded in RN , Ωn,Ω open subsets of Ω′, p ∈ [1,+∞]. We can
identify the Sobolev space W 1,p(Ωn) with a closed subspace of Lp(Ω′;RN+1) through the
map

W 1,p(Ωn)
u

−→
7−→

Lp(Ω′;RN+1)
(u,D1u, . . . , DNu)

(5)

with the convention of extending u and ∇u to zero on Ω′ \ Ωn.

Let Y and Yn be the closed subspaces of Lp(Ω′;RN+1) corresponding to W 1,p(Ω) and
W 1,p(Ωn) respectively. We say that W 1,p(Ωn) converges to W 1,p(Ω) in the sense of Mosco
if Y is the Mosco limit of the sequence (Yn) in the space Lp(Ω′;RN+1).

Stability of Neumann problems. Let Ω′ be open and bounded in RN ; consider the Neu-
mann problems

{

−∆un + un = f
u ∈ H1(Ωn)

(6)

and
{

−∆u+ u = f
u ∈ H1(Ω)

(7)
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with f ∈ L2(Ω′), Ω,Ωn open subsets of Ω′; we intend (6) and (7) in the usual weak sense,
that is

u ∈ H1(Ωn),

∫

Ωn

∇un∇ϕ+

∫

Ωn

uϕ =

∫

Ωn

fϕ ∀ϕ ∈ H1(Ωn)

and

u ∈ H1(Ω),

∫

Ω

∇u∇ϕ+

∫

Ω

uϕ =

∫

Ω

fϕ ∀ϕ ∈ H1(Ω).

We say that the problems (6) converge to the problem (7) if (un,∇un) → (u,∇u) strongly
in L2(Ω′;RN+1) under the identification (5).

Hausdorff metric on compact sets. Let Ω be open and bounded in RN . We indicate the
set of all compact subsets of Ω by K(Ω). K(Ω) can be endowed with the Hausdorff metric
dH defined by

dH(K1, K2) := max

{

sup
x∈K1

dist(x,K2), sup
y∈K2

dist(y,K1)

}

with the conventions dist(x, ∅) = diam(Ω) and sup ∅ = 0, so that dH(∅, K) = 0 if K = ∅
and dH(∅, K) = diam(Ω) if K 6= ∅. It turns out that K(Ω) endowed with the Hausdorff
metric is a compact space (see e.g. [23]).

3. Some auxiliary results

In this section, we prove some results that are used in the proof of the main theorem of
the paper. We begin recalling some properties of sets which satisfy the cone condition.

Consider a closed ball B ⊆ RN not containing 0 and x ∈ RN . The set

C := x+ {λy : y ∈ B, 0 ≤ λ ≤ 1}

is called a finite closed cone in RN with vertex at x. We say that two cones C and C ′ are
congruent if there exists a rototranslation Ψ in RN such that Ψ(C) = C ′.

A parallelepiped with a vertex at the origin is a set of the form

P :=

{

N
∑

j=1

λjyj : 0 ≤ λj ≤ 1, 1 ≤ j ≤ N

}

where y1, . . . , yN are N linearly independent vectors in RN . As for the case of cones, we
say that two parallelepipeds P, P ′ are congruent if there exists a rototranslation Ψ in RN

such that Ψ(P ) = P ′.

Definition 3.1. Let C be a finite closed cone in RN with vertex at the origin. We say
that a compact set K ⊆ RN satisfies the cone condition with respect to C if for all x ∈ K
there exists a finite closed cone Cx congruent to C such that x ∈ Cx ⊆ K.

If K satisfies the cone condition with respect to a cone C, it turns out that it is the union
of the closure of a finite number of Lipschitz open sets. In fact, the following result holds.
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Proposition 3.2. Let C be a finite closed cone in RN with vertex at the origin and
let K ⊆ RN be a compact set with diam(K) ≤ M which satisfies the cone condition
with respect to C. Then for every ρ > 0, there exist a finite number A1, A2, · · · , Am of
compact subsets of K with diam(Aj) ≤ ρ and a finite number P1, P2, · · · , Pm of congruent
parallelepipeds with a vertex at the origin such that:

(a) for all x ∈ K there exists 1 ≤ i ≤ m with x+ Pi ⊆ Cx;

(b) K =
m
⋃

i=1

Ki where Ki =
⋃

x∈Ai

(x+ Pi).

The number m and the parallelepipeds P1, . . . , Pm depend only on C,M, ρ, and not on the
particular set K.

Moreover there exists ρ > 0, depending only on C, such that for ρ < ρ, the following facts
hold for all i = 1, . . . ,m:

(c) for every y ∈ ∂Ki, there exists η > 0, an orthogonal coordinate system (ξ1, . . . , ξN)
and a Lipschitz function f such that Bη(y)∩Ki = Bη(y)∩{ξ = (ξ1, . . . , ξN) : ξN ≤
f(ξ1, . . . , ξN−1)};

(d) int(Ki) =
⋃

x∈Ai

(x+ int(Pi)).

Proof. Properties (a), (b) and (c) can be obtained as in the Gagliardo theorem on the
decomposition of open sets with the cone property (see [1], Thm. 4.8). In particular, ρ
can be chosen as the distance of the center of Pi from ∂Pi; with this choice of ρ, it turns
out that, if a ball B of radius r < ρ

2
is such that B ∩ (x1 + Pi) 6= ∅ and B ∩ (x2 + Pi) 6= ∅

for some x1, x2 ∈ Ai, then B cannot intersect relative opposite faces of x1+Pi and x2+Pi

respectively.

Let us turn to the proof of point (d). The inclusion

⋃

x∈Ai

(x+ int(Pi)) ⊆ int(Ki)

is immediate. Let y ∈ int(Ki) and let r < ρ
2
be such that Br(y) ⊆ Ki. For every z ∈ Br(y)

there exists xz ∈ Ai with z ∈ xz + Pi. If Br(y) ⊆ xz + int(Pi) for some z the proof is
concluded; let us assume that Br(y)∩ xz + ∂Pi 6= ∅ for all z ∈ Br(y). Since Br(y) cannot
intersect relative opposite faces of the parallelepipeds x + Pi with x ∈ Ai, we conclude
that there exists a vertex vj of Pi such that Br(y)−xz intersects the faces passing through
vj for all z ∈ Br(y). Let Qj := {λ(x − vj) : x ∈ Pi, λ > 0} and let yn → y be such that
y − yn ∈ int(Qj). For n large enough we have y ∈ xyn + int(Pi) and this concludes the
proof of point (d).

Let now consider a sequence (Kn) of compact subsets of RN satisfying the cone condition
with respect to a given finite closed cone C with vertex at the origin. If Kn converges to a
compact set K in the Hausdorff metric, clearly K satisfies the cone condition with respect
to C. Let P(Kn) be the family of all parallelepipeds contained in Kn and congruent to the
parallelepipeds P1, . . . , Pm which appear in the decomposition (b) of Proposition 3.2 and
let P(K) be the analogous family for K. Define Pr(K) as the subset of P(K) consisting
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of parallelepipeds P such that there exists nk → ∞ and P k ∈ P(Knk
) with P k → P in

the Hausdorff metric. Let us set

Kr := {x ∈ K : x ∈ int(P ′), P ′ ∈ Pr(K)}, (8)

and
Ks := K \Kr. (9)

We call the elements of Kr regular points of K (relative to the approximation given by
(Kn)) and the elements of Ks singular points of K: Kr is clearly an open set.

Proposition 3.3. Let C be a finite closed cone in RN and let (Kn) be a sequence of
compact subsets of RN satisfying the cone condition with respect to C and converging to
a compact set K in the Hausdorff metric. Then HN−1(Ks) < +∞.

Proof. Let us fix ρ smaller than the constant ρ given by Proposition 3.2 (which does not
depend on n). By point (b) of the same proposition, we can write

Kn =
m
⋃

i=1

Ki
n with Ki

n :=
⋃

x∈Ai
n

(x+ Pi)

where A1
n, . . . , A

m
n are compact subsets of Kn with diam(Ai

n) ≤ ρ and P1, . . . , Pm are
parallelepipeds with a vertex at the origin. There exists nk → ∞ such that Ai

nk
→ Ai in

the Hausdorff metric for i = 1, . . . ,m: clearlyKi
nk

converges toKi :=
⋃

x∈Ai(x+P i) in the
Hausdorff metric. Let us prove that int(Ki) ⊆ Kr for i = 1, . . . ,m. Since diam(Ai) ≤ ρ,
by point (d) of Proposition 3.2, we have int(Ki) =

⋃

x∈Ai(x+ int(P i)); given x0 ∈ Ai and
xnk

∈ Ai
nk

with xnk
→ x0, we have that x0 + P i is the Hausdorff limit of xnk

+ P i. Since
int(x0 + P i) = x0 + int(P i), we conclude that int(Ki) ⊆ Kr and so

⋃m
i=1 int(K

i) ⊆ Kr.

By point (c) of Proposition 3.2, we have that Ki has Lipschitz boundary; we conclude
that

HN−1(Ks) = HN−1(K \Kr) ≤
m
∑

i=1

HN−1(∂Ki) < +∞.

The proof is now complete.

4. The main result

We now recall the main regularity assumption on the sequence (Kn) of compact subsets
of RN in order to obtain the stability result mentioned in the Introduction. We assume
N ≥ 3.

Let π be the hyperplane xN = 0 in RN .

Definition 4.1. Let C be a finite closed cone in RN−1 and let (Kn) be a sequence of
compact subsets of RN . We say that (Kn) satisfies the C-condition if there exist constants
δ, L1, L2 > 0 such that, for all n and for all x ∈ Kn, there exists Φx : Bδ(x) → RN with:

(a) for all z1, z2 ∈ Bδ(x):

L1|z1 − z2| ≤ |Φx(z1)− Φx(z2)| ≤ L2|z1 − z2|;
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(b) Φx(x) = 0 and Φx(Bδ(x) ∩Kn) ⊆ π;

(c) for all y ∈ B δ
2
(x) ∩Kn,

Φx(y) ∈ Cy ⊆ Φx(Bδ(x) ∩Kn)

for some finite closed cone Cy in π congruent to C.

For technical reasons, we assume that L1diam(C) < 1
8
δ: this is clearly not restrictive up

to reducing C.

We can now state the main result of the paper.

Theorem 4.2. Let C be a finite closed cone in RN−1, Ω a bounded open subset of RN ,
1 < p ≤ 2, (Kn) a sequence of compact subsets of RN satisfying the C-condition and
converging to a compact set K in the Hausdorff metric. Then the spaces W 1,p(Ω \ Kn)
converge to W 1,p(Ω \K) in the sense of Mosco.

In order to prove the main theorem, we need to analyze the structure of the sets Kn and
K. This is done in the following lemmas.

Lemma 4.3. Let C be a finite closed cone in RN−1 and let (Kn) be a sequence of compact
subsets of RN converging to K in the Hausdorff metric. Suppose that (Kn) satisfies the
C-condition. Then there exist m ≥ 1 such that, for n large enough,

Kn =
m
⋃

i=1

Ki
n

with Ki
n compact, B δ

3
(xi

n)∩Kn ⊆ Ki
n ⊆ B δ

2
(xi

n) for some xi
n ∈ Kn such that xi

n → xi ∈ K

for all i = 1, . . . ,m and K ⊆
⋃m

i=1 B δ
3
(xi); moreover Φxi

n
(Ki

n) satisfies the cone condition

with respect to C for all i = 1, . . . ,m.

Proof. Since K is compact, there exists a finite number of points x1, . . . , xm ∈ K such
that

K ⊆
m
⋃

i=1

B δ
4
(xi). (10)

As Kn → K in the Hausdorff metric, there exist xi
n ∈ Kn such that xi

n → xi for i =
1, . . . ,m. For n large enough, we clearly have

Kn ⊆
m
⋃

i=1

B δ
3
(xi

n). (11)

In order to conclude the proof, it is sufficient to take Ki
n as the preimage under Φxi

n
of

the union of all cones C ′ ⊆ π congruent to C such that C ′ ⊆ Φxi
n
(Bδ(x

i
n) ∩ Kn) and

C ′ ∩Φxi
n
(B δ

3
(xi

n)∩Kn) 6= ∅. In fact, Ki
n is compact and the inclusion B δ

3
(xi

n)∩Kn ⊆ Ki
n

comes directly from the definition of Ki
n and the fact that (Kn) satisfies the C-condition;

moreover, the inclusionKi
n ⊆ B δ

2
(xi

n) comes from the assumption L1diam(C) < 1
8
δ, and by

(11) we haveKn =
⋃m

i=1 K
i
n. Finally, by construction, Φxi

n
(Ki

n) satisfies the cone condition
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with respect to C for all n and i = 1, . . . ,m, and by (10) we have K ⊆
⋃m

i=1 B δ
3
(xi) which

concludes the proof.

Lemma 4.4. Let C be a finite closed cone in RN−1 and let (Kn) be a sequence of compact
subsets of RN converging to K in the Hausdorff metric. Let (Kn) satisfy the C-condition
and let Kn =

⋃m
i=1 K

i
n according to the decomposition given by Lemma 4.3. Then, up to

a subsequence, for i = 1, . . . ,m, xi
n → xi ∈ K, Ki

n → Ki ⊆ K in the Hausdorff metric,
Φxi

n
→ Φi uniformly on B 3

4 δ
(xi) with

(a) K ⊆
m
⋃

i=1

B δ
3
(xi);

(b) B δ
3
(xi) ∩K ⊆ Ki ⊆ B 3

4 δ
(xi);

(c) K =
m
⋃

i=1

Ki;

(d) for all z1, z2 ∈ B 3
4 δ
(xi):

L1|z1 − z2| ≤ |Φi(z1)− Φi(z2)| ≤ L2|z1 − z2|;

(e) Φi(K ∩B 3
4 δ
(xi)) ⊆ π.

Moreover, Φi(K
i) satisfies the cone condition with respect to C for all i = 1, . . . ,m.

Proof. By Lemma 4.3, xi
n → xi ∈ K for all i = 1, . . . ,m and K ⊆

⋃m
i=1 B δ

3
(xi); this

proves point (a). Since Kn → K in the Hausdorff metric, up to a subsequence, Ki
n →

Ki ⊆ K in the Hausdorff metric for i = 1, . . . ,m. Fix i ∈ {1, . . . ,m}. Note that, for n
large enough, B 3

4 δ
(xi) ⊆ Bδ(x

i
n). We deduce that Φxi

n
are well defined on B 3

4 δ
(xi); since

they are equicontinuous and equibounded, we may assume that Φxi
n
→ Φi uniformly on

B 3
4 δ
(xi) with

L1|z1 − z2| ≤ |Φi(z1)− Φi(z2)| ≤ L2|z1 − z2|
for all z1, z2 ∈ B 3

4 δ
(xi). This proves point (d).

Passing to the limit in the relations

B δ
3
(xi

n) ∩Kn ⊆ Ki
n ⊆ B δ

2
(xi

n)

Kn =
m
⋃

i=1

Ki
n

Φxi
n
(Kn ∩B 3

4 δ
(xi

n)) ⊆ π,

we obtain points (b), (c) and (e).

Finally, it is easy to see that Φi(K
i) satisfies the cone condition with respect to C. In fact,

fix y ∈ Ki; since Ki
n → Ki in the Hausdorff metric, there exists yn ∈ Ki

n with yn → y.
As Φxi

n
(Ki

n) satisfies the cone condition with respect to C, there exists Cn finite closed
cone in π congruent to C such that Φxi

n
(yn) ∈ Cn ⊆ Φxi

n
(Ki

n). Up to a subsequence,
Cn → C ′ in the Hausdorff metric with C ′ congruent to C. Then Φi(y) ∈ C ′ ⊆ Φi(K

i)
since Φxi

n
(Ki

n) → Φi(K
i) in the Hausdorff metric.
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We can now pass to the proof of the main theorem.

Proof of Theorem 4.2. Let Y ′ and Y ′′ be the weak-limsup and the strong-liminf of the
sequence W 1,p(Ω \Kn) respectively. We have to prove that Y ′ = Y ′′ = W 1,p(Ω \K).

Let us start with the inclusion
Y ′ ⊆ W 1,p(Ω \K). (12)

Let (uk) be a sequence in W 1,p(Ω \Knk
) (nk → +∞), and let v, w1, · · · , wN ∈ Lp(Ω) be

such that uk → v and Diuk → wi weakly in Lp(Ω) for i = 1, . . . , N with the identification
(5). Since Knk

→ K in the Hausdorff metric, it is readily seen that for i = 1, . . . , N ,
wi = Div in the sense of distributions in Ω \K. Since (Kn) satisfies the C-condition, we
have LN(K) = 0; as a consequence, we get v = 0 and w1, . . . , wN = 0 a.e. on K, and so
we conclude that (v, w1, . . . , wN) is the element of Lp(Ω;RN+1) associated to a function
of W 1,p(Ω \K) according to (5).

We can thus pass to the inclusion

W 1,p(Ω \K) ⊆ Y ′′; (13)

we have to prove that, given u ∈ W 1,p(Ω \ K), there exists un ∈ W 1,p(Ω \ Kn) such
that (un,∇un) → (u,∇u) strongly in Lp(Ω;RN+1). By standard arguments on Mosco
Convergence, it is sufficient to prove that, given any subsequence nj, there exists a further
subsequence njk and a sequence uk ∈ W 1,p(Ω \ Knjk

) such that (uk,∇uk) → (u,∇u)

strongly in Lp(Ω;RN+1). Thus we deduce that, in order to prove (13), we can reason up
to subsequences.

Using the decomposition given by Lemma 4.3, there exists m ≥ 1 such that

Kn =
m
⋃

i=1

Ki
n

withKi
n compact, B δ

3
(xi

n)∩Kn ⊆ Ki
n ⊆ B δ

2
(xi

n) for some xi
n ∈ Kn, and Φxi

n
(Ki

n) satisfying

the cone condition with respect to C for all i = 1, . . . ,m. By Lemma 4.4, up to a
subsequence, xi

n → xi ∈ K for all i = 1, . . . ,m, with K ⊆
⋃m

i=1 B δ
3
(xi), and Φxi

n
→ Φi

uniformly on B 3
4 δ
(xi) such that, for all z1, z2 ∈ B 3

4 δ
(xi)

L1|z1 − z2| ≤ |Φi(z1)− Φi(z2)| ≤ L2|z1 − z2|.

Moreover, Ki
n → Ki in the Hausdorff metric with

K =
m
⋃

i=1

Ki,

B δ
3
(xi)∩K ⊆ Ki ⊆ B 3

4 δ
(xi) and Φi(K

i) satisfies the cone condition with respect to C for

all i = 1, . . . ,m. Finally, we have that

Φxi
n
(Ki

n) → Φi(K
i) (14)

in the Hausdorff metric for i = 1, . . . ,m.
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We begin proving the strong-liminf condition in the particular case in which u ∈ W 1,p(Ω\
K), supp(u) ⊂⊂ B δ

3
(xi) and

supp(u ◦ Φ−1
i ) ∩ π ⊆ [Φi(K

i)]r, (15)

where, according to (8), [Φi(K
i)]r denotes the set of regular points of Φi(K

i) relative to
the approximation (14). Set w := u ◦ Φ−1

i ; we have w ∈ W 1,p(Φi(B δ
3
(x) ∩ Ω) \ Φi(K

i)).

As in Section 3, let Pr(Φi(K
i)) denote the family of parallelepipeds contained in Φi(K

i)
and congruent to the parallelepipeds P1, . . . , Pm given by Proposition 3.2, that are limit
in the Hausdorff metric of parallelepipeds P n congruent to P1, . . . , Pm and contained in
Φxi

n
(Ki

n). By (8) and (15) there exist D1, . . . , Dt ∈ Pr(Φi(K
i)) such that

supp(w) ∩ π ⊆
t
⋃

j=1

intπ(Dj)

where intπ(·) denotes the interior relative to π. Let Qj ⊆ intπ(Dj) be a parallelepiped
in π such that supp(w) ∩ π ⊆ ∪t

j=1intπ(Qj) and let ε > 0 be such that, setting Uj :=
intπ(Qj)× ]− ε, ε[, (j = 1, . . . , t),

t
⋃

j=1

Uj ⊆ Φi(B δ
3
(xi) ∩ Ω).

Through a partition of unity associated to {U1, . . . , Ut, U0} with U0 := RN \ Φi(K
i), we

may write

w =
t

∑

j=0

ψjw,

with ψj ∈ C∞(Uj), supp(ψj) ⊂⊂ Uj, so that

u =
t

∑

j=0

(ψj ◦ Φi)u.

Note that supp((ψ0 ◦ Φi)u) ∩K = ∅ so that

(ψ0 ◦ Φi)u ∈ W 1,p(Ω \Kn)

for n large enough, that is (ψ0 ◦ Φi)u ∈ Y ′′. In order to conclude, it is thus sufficient to
deal with the case supp(w) ⊂⊂ Uj for j = 1, . . . , t.

Let us fix j ∈ {1, . . . , t}. Set U+
j := Uj ∩ (RN−1 × ]0, ε[), U−

j := Uj ∩ (RN−1 × ]− ε, 0[),
and let w± := w|U±

j
. We have w± ∈ W 1,p(U±

j ): let w̃± be the extension by reflection of

w± on Uj. Note that supp(w̃±) ⊂⊂ Uj. Up to a subsequence, Qj ⊆ Φxi
n
(Ki

n) because
Dj ∈ Pr(Φi(K

i)) and Qj ⊆ intπ(Dj); we deduce that Uj \ Φxi
n
(Ki

n) has exactly two
connected components that we indicate by B+ and B− (note that they do not depend on
n for n large). As a consequence Φ−1

xi
n
(Uj) \ Kn has exactly two connected components

given by Φ−1
xi
n
(B+) and Φ−1

xi
n
(B−) respectively. Consider

vn :=

{

w̃+ ◦ Φi on Φ−1
xi
n
(B+)

w̃− ◦ Φi on Φ−1
xi
n
(B−).
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Since w̃± has compact support in Uj, we deduce that for n large enough

vn ∈ W 1,p(Ω \Kn).

Since Ki
n → Ki in the Hausdorff metric and w̃± ◦ Φi does not depend on n, vn → u

and ∇vn → ∇u a.e. in Ω. By the Dominated Convergence Theorem, we deduce that
(vn,∇vn) → (u,∇u) in Lp(Ω;RN+1) under the identification (5). This proves u ∈ Y ′′ in
the case u satisfies (15).

In order to complete the proof of the theorem, we have to see that the assumption (15)
is not restrictive. Consider u ∈ W 1,p(Ω \K). Let {ϕ1, . . . , ϕm, ϕ0} be a C∞ partition of
unity associated to B δ

3
(x1), . . . , B δ

3
(xm),RN \K. We can write

u =
m
∑

i=0

ϕiu.

Since supp(ϕ0u) ∩ K = ∅, we have that supp(ϕ0u) ∩ Kn = ∅ for n large enough and so
ϕ0u ∈ W 1,p(Ω \ Kn). This implies ϕ0u ∈ Y ′′. We deduce that it is not restrictive to
assume supp(u) ⊂⊂ B δ

3
(xi) for some i = 1, . . . ,m.

Let us consider

Ks :=
m
⋃

i=1

Φ−1
i

(

[Φi(K
i)]s

)

where, according to (9), [Φi(K
i)]s denotes the set of singular points of Φi(K

i) under the
approximation (14). By Lemma 3.2, we obtain

HN−2(Ks) < +∞; (16)

by Theorem 3 in section 4.7.2 of [15], since 1 < p ≤ 2, we deduce that cp(Ks,Ω) = 0,
where

cp(Ks,Ω) := inf

{∫

Ω

|∇u|p : u ∈ W 1,p
0 (Ω), u ≥ 1 in a neighborhood of Ks

}

.

By standard properties of capacity, there exists a sequence (ψk) in C∞
c (RN) with ψk → 0

strongly in W 1,p(RN) and ψk ≥ 1 on a neighborhood of Ks. Since

u = ψku+ (1− ψk)u,

we deduce that the set

D :=
{

v ∈ W 1,p(Ω \K) : supp(v) ∩Ks = ∅
}

is dense in W 1,p(Ω \K) ∩ L∞(Ω \K) and hence in W 1,p(Ω \K). As observed in Section
2, in order to prove (13), it is sufficient to check the inclusion D ⊆ Y ′′. If u ∈ D, we have
that

supp(u ◦ Φ−1
i ) ∩ Φi(K

i) ⊆ [Φi(K
i)]r.

Consider V1, V2 ⊆ π open in the relative topology of π and such that

supp(u ◦ Φ−1
i ) ∩ Φi(K

i) ⊂⊂ V1 ⊂⊂ V2 ⊂⊂ [Φi(K
i)]r;
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let ε > 0 with U2 := V2 × ]− ε, ε[ ⊆ Φi(B δ
3
(xi)) and set U1 := V1 × ]− ε

2
, ε
2
[. Consider

ϕ ∈ C∞
c (Φ−1

i (U2)) with 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 on Φ−1
i (U1). Since u ∈ D, we deduce

supp((1 − ϕ)u) ∩ K = ∅ that is (1 − ϕ)u ∈ W 1,p(Ω \ Kn) for n large enough and so
(1− ϕ)u ∈ Y ′′. Moreover, since

supp((ϕu) ◦ Φ−1
i ) ∩ π ⊆ [Φi(K

i)]r,

we deduce by the previous step that ϕu ∈ Y ′′. We conclude u = ϕu+ (1− ϕ)u ∈ Y ′′ and
the theorem is proved.

From Theorem 4.2 in the case p = 2, we may deduce the stability of the Neumann
problems mentioned in the Introduction.

Corollary 4.5. Let C be a finite closed cone in RN−1, (Kn) a sequence of compact subsets
of RN satisfying the C-condition and converging to a compact set K in the Hausdorff
metric. Let Ω be an open and bounded subset of RN , f ∈ L2(Ω), and let un and u be the
solutions of the following Neumann problems

{

−∆un + un = f
u ∈ H1(Ω \Kn),

(17)

{

−∆u+ u = f
u ∈ H1(Ω \K).

(18)

Set un = 0, ∇un = 0 on Kn ∩ Ω, and u = 0, ∇u = 0 on K ∩ Ω.

Then we have un → u strongly in L2(Ω) and ∇un → ∇u strongly in L2(Ω;RN), so that
the problems (17) are stable.

Proof. Let un be the solution of (17) and u the solution of (18). We assume the identi-
fication (5). From the equation (17), we have that (un,∇un) is bounded in L2(Ω;RN+1).
There exists v ∈ L2(Ω;RN+1) such that up to a subsequence, (un,∇un) → v weakly in
L2(Ω;RN+1). By Theorem 4.2, we have that H1(Ω \Kn) converges to H1(Ω \K) in the
sense of Mosco. Thus we deduce v ∈ H1(Ω \K); moreover, taking ϕ ∈ H1(Ω \K), there
exists ϕn ∈ H1(Ω\Kn) with (ϕn,∇ϕn) → (ϕ,∇ϕ) strongly in L2(Ω;RN+1). We conclude
that

∫

Ω\K
∇v∇ϕ+

∫

Ω\K
vϕ = lim

n

∫

Ω\Kn

∇un∇ϕn +

∫

Ω\Kn

unϕn (19)

= lim
n

∫

Ω\Kn

fϕn

=

∫

Ω\K
fϕ,

that is v = u. Finally, taking ϕn = un and using again (19), we have that

||un||L2(Ω;RN+1) → ||u||L2(Ω;RN+1).

We conclude that (un,∇un) → (u,∇u) strongly in L2(Ω;RN+1) and so the proof is com-
plete.
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Remark 4.6. Similarly, under the same hypotheses of Theorem 4.2, we can prove that
the Neumann problems

{

−∆pun + |un|p−2un = f
un ∈ W 1,p(Ω \Kn)

(20)

where 1< p ≤ 2, Ω is open and bounded inRN , f ∈ Lp(Ω) and ∆pun := div(|∇un|p−2∇un),
converge to the Neumann problem

{

−∆pu+ |u|p−2u = f
u ∈ W 1,p(Ω \K),

(21)

that is (un,∇un) → (u,∇u) strongly in Lp(Ω;RN+1) under the identification (5).

Remark 4.7. The Mosco convergence proved in Theorem 4.2 is the key point in order
to prove the stability of more general problems. We now breafly sketch an application to
fracture mechanics in linearly elastic bodies.

For every open and bounded set A ⊆ RN , let us set

LD1,2(A) :=
{

u ∈ H1
loc(A;R

N) : E(u) ∈ L2(A,MN×N
sym )

}

,

where MN×N
sym denotes the set of symmetric matrices of order N and E(u) denotes the

symmetric part of the gradient of u. Let |M | := [tr(M2)]
1
2 denote the standard norm in

MN×N
sym .

Let (Kn) be a sequence of compact subsets of RN satisfying the C-condition with respect
to a given (N−1)-dimensional finite closed cone C, and converging to K in the Hausdorff
metric. Let Ω be open and bounded in RN and let ∂DΩ be a Lipschitz part of ∂Ω.
Consider gn, g ∈ H1(Ω;RN) with gn → g strongly and let

Γn :=
{

u ∈ LD1,2(Ω \Kn) : u = gn on ∂DΩ \Kn

}

and
Γ :=

{

u ∈ LD1,2(Ω \K) : u = g on ∂DΩ \K
}

.

Given the Lamé coefficients µ, λ, let un ∈ LD1,2(Ω \Kn) be the minimum of

min
v∈Γn

∫

Ω\Kn

µ|E(v)|2 + λ

2
|trE(v)|2 dLN

and let u ∈ LD1,2(Ω \K) be the minimum of

min
v∈Γ

∫

Ω\K
µ|E(v)|2 + λ

2
|trE(v)|2 dLN .

Let K ⊆ Ω, and let us suppose that K is locally contained in a Lipshitz graph, that
is, K ⊆

⋃m
i=1 Ui with Ui open and such that there exists an orthogonal coordinate sys-

tem (ξ1, . . . , ξN) and a Lipschitz function fi(ξ1, . . . , ξN−1) with Ui ∩K ⊆ graph(fi). Let
ϕ0, ϕ1, . . . , ϕm be a partition of unity associated to RN \ K,U1, . . . , Um. By means of
Korn’s inequality (see for example [26]) we get ϕiu ∈ H1(Ω\K;RN) for i = 1, . . . ,m. Us-
ing the Mosco convergence given by Theorem 4.2, we have that for all i = 1, . . . ,m there
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exists vin ∈ H1(Ω\Kn;RN) such that E(vin) → E(ϕiu) strongly in L2(Ω;MN×N
sym ), with the

convention of considering E(vin) = 0 and E(ϕiu) = 0 on Ω ∩Kn and Ω ∩K respectively.
Setting vn := ϕ0u +

∑m
i=1 v

i
n, we get vn ∈ Γn for n large and E(vn) → E(u) strongly

in L2(Ω;MN×N
sym ). By minimality of un, we thus deduce that E(un) → E(u) strongly in

L2(Ω;MN×N
sym ), with the convention of considering E(un) = 0 and E(u) = 0 on Ω ∩ Kn

and Ω ∩ K respectively. This can be interpreted as the convergence of the equilibrium
displacements for the elastic body Ω with fractures Kn and boundary displacements gn to
the equilibrium displacement relative to the fracture K and the boundary displacement
g.

5. Non-stability examples

In this section, we give two explicit examples of non-stability when the conditions of
Theorem 4.2 are violated. In Example 5.1, we see that the C-condition is not sufficient
in the case p > 2: in fact some problems related to capacity can occur which in the case
1 < p ≤ 2 were avoided thank to (16). In Example 5.2, we see that a sort of uniform
“curvilinearÔ cone condition for the sequence (Kn) given only by points (a) and (c) in the
C-condition does not guarantee the Mosco convergence of the spaces W 1,p(Ω \Kn) even
in the case 1 < p ≤ 2.

Example 5.1. Let N ≥ 3. Let Q, Q′, Q′′ be the open unit cube in RN , RN−1, and RN−2

respectively. For every n ≥ 1, let us set

Kn :=

{[

0,
1

2
− 1

n

]

∪
[

1

2
+

1

n
, 1

]}

×Q′′ ×
{

1

2

}

.

(Kn) is a sequence of compact sets in RN whose limit in the Hausdorff metric is

K = Q′ ×
{

1

2

}

.

Let us set L :=
{

1
2

}

×Q′′ ×
{

1
2

}

, S1 := Q′ × ]0, 1
2
[ and S2 := Q′ × ]1

2
, 1[.

Let C be the finite closed cone in RN−1 determined by B 1
8
(P ) with P := (1

8
, 1
8
, . . . , 1

8
).

Clearly (Kn) satisfies the C-condition.

We claim that, if p > 2, then the spaces W 1,p(Ω \Kn) do not converge to W 1,p(Ω \K) in
the sense of Mosco. In fact, assuming the Mosco convergence, by Remark 4.6, we deduce
that the Neumann problems

{

−∆pv + |v|p−2v = f
v ∈ W 1,p(Q \Kn)

(22)

with f ∈ Lp(Q) converge to the problem

{

−∆pv + |v|p−2v = f
v ∈ W 1,p(Q \K).

(23)

Let f = χS2 and let un, u be the solutions of (22) and (23) respectively. We readily
deduce that u = χS2 ; since (un,∇un) → (u,∇u) in Lp(Q;RN+1) under the identification
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(5), we obtain that un → u strongly in W 1,p(Si) for i = 1, 2. By strong convergence in
W 1,p(S1), we get un → 0 cp-q.e. on L, while from strong convergence in W 1,p(S2), we
deduce un → 1 cp-q.e. on L. Since cp(L,Q) 6= 0 as p > 2, we get a contradiction: we
conclude that the Mosco convergence does not hold.

Example 5.2. Let N ≥ 3. Let Q, Q′, Q′′ be the open unit cube in RN , RN−1, and RN−2

respectively. Let us write Q = Q′ × ]0, 1[. For every n ≥ 1 let us set

Kn :=
n−1
⋃

i=1

[

1

3
,
2

3

]

×Q′′ ×
{

i

n

}

.

(Kn) is a sequence of compact sets in RN whose limit in the Hausdorff metric is

K =

[

1

3
,
2

3

]

×Q′′ × [0, 1].

Let us set S1 :=
]

0, 1
3

[

×Q′′ × ]0, 1[ and S2 :=
]

2
3
, 1
[

×Q′′ × ]0, 1[.

Let C be the finite close cone in RN−1 determined by B 1
6
(P ) with P := (1

6
, 1
6
, . . . , 1

6
).

Clearly there exists δ > 0 such that, for all n and for all x ∈ Kn, setting

Φx(y) := y − x,

Φx : Bδ(x) → RN satisfies conditions (a) and (c) of Definition 4.1 with respect to C.
Observe that condition (b) is not satisfied: in particular, Φx(Bδ(x) ∩Kn) 6⊆ π.

Let 1 < p ≤ 2 and let us consider the Neumann problems

{

−∆pv + |v|p−2v = f
v ∈ W 1,p(Q \Kn)

(24)

with f ∈ Lp(Q). We claim that the problems (24) do not converge to the Neumann
problem

{

−∆pv + |v|p−2v = f
v ∈ W 1,p(Q \K)

(25)

in the sense given in Remark 4.6, that is (un,∇un) 6→ (u,∇u) strongly in Lp(Q;RN+1)
where un and u are the solutions of problems (24) and (25) respectively and the identifica-
tion (5) is assumed. This implies that W 1,p(Q \Kn) does not converge to W 1,p(Q \K) in
the sense of Mosco and so it proves that point (b) in the C-condition cannot be omitted.

We employ a Γ-convergence technique (the reader is referred to [12] for definitions and
basic properties). Let us consider the following functionals Fn : Lp(Q) → [0,∞] defined
by

Fn(z) :=







1

p

∫

Q

|∇z|p if z ∈ W 1,p(Q \Kn)

+∞ otherwise.
(26)

Up to a subsequence, (Fn) Γ-converges with respect to the strong topology of Lp(Q) to a
functional F . We will prove that if z ∈ Lp(Q) and F (z) < +∞, then

z|Si
∈ W 1,p(Si) for i = 1, 2, (27)
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z(·, xN) ∈ W 1,p(Q′) for a.e xN ∈ ]0, 1[. (28)

Let us assume for the moment (27) and (28). Given f ∈ Lp(Q), the functional

G(u) :=
1

p

∫

Q

|u|p −
∫

Q

fu

is a continuous perturbation of Fn: as a consequence,

Γ− lim
n
(Fn +G) = F +G.

Note that the solution un of problem (24) is precisely the minimum of Fn +G: from this,
we derive that for all n

Fn(un) +G(un) ≤ 0. (29)

Suppose that the problems (24) converge to the problem (25): then in particular, un → u
strongly in Lp(Q) where, as usual, u is extended to 0 on K. Note that F (u) < +∞
because of (29) and the Γ-liminf inequality. If we choose

f(x) := χS1

we conclude that u is equal to 1 on S1 and equal to 0 on S2. With the identification (5),
we get u = f . Clearly f(·, xN) 6∈ W 1,p(Q′) for xN ∈]0, 1[ and so we get a contradiction.
This proves that the problems (24) do not converge to problem (25).

In order to perform the previous argument by contradiction, we have to prove (27) and
(28). This can be done in the following way. Let zn → z strongly in Lp(Q) with

Fn(zn) ≤ C < +∞. (30)

Since
1

p

∫

S1

|∇zn|p +
1

p

∫

S2

|∇zn|p ≤ C,

we deduce that z|Si
∈ W 1,p(Si) for i = 1, 2 and so we get (27). For a.e. xN ∈]0, 1[, we

have that zn(·, xN) → z(·, xN) strongly in Lp(Q′); by (30) and Fatou’s lemma, we have

1

p

∫ 1

0

(

lim inf
n

∫

Q′
|∇zn(y, xN)|p dy

)

dxN ≤ C,

so that for a.e. xN ∈]0, 1[, there exists CxN
> 0 and a subsequence nk such that

1

p

∫

Q′

N−1
∑

i=1

|Diznk
(y, xN)|p dy ≤ CxN

.

We conclude that for a.e. xN ∈ [0, 1], z(·, xN) ∈ W 1,p(Q′) so that (28) is proved and the
proof is complete.
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