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In this paper, we introduce an iterative scheme for finding a common element of the set of fixed points
of a nonexpansive nonself-mapping and the set of solutions of the variational inequality for an inverse-
strongly-monotone mapping in a Hilbert space. Then we show that the sequence converges strongly to
a common element of two sets. Using this result, we consider the problem of finding a common element
of the set of zeros of a maximal monotone mapping and the set of zeros of an inverse-strongly-monotone
mapping and the problem of finding a common element of the closed convex set and the set of zeros of
the gradient of a continuously Fréchet differentiable convex functional.
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1. Introduction

Let C' be a closed convex subset of a real Hilbert space H. A mapping S of C into H is
called nonexpansive if
1Sz — Syl < |lz —y|

for all z,y € C. We denote by F(S) the set of fixed points of S. A mapping A of C' into
H is called monotone if for all x,y € C, (v — y, Az — Ay) > 0. The variational inequality
problem is to find a u € C' such that

(v—u,Au) >0

for all v € C. The set of solutions of the variational inequality is denoted by VI(C, A). A
mapping A of C' into H is called inverse-strongly-monotone if there exists a positive real
number « such that

(z -y, Av — Ay) > af|Az — Ay|®

for all z,y € C; see [5] and [13]. For such a case, A is called a-inverse-strongly-monotone.
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In this paper, we introduce an iterative scheme for finding a common element of the
set of fixed points of a nonexpansive nonself-mapping and the set of solutions of the
variational inequality for an inverse-strongly-monotone mapping in a real Hilbert space.
Then we show that the sequence converges strongly to a common element of two sets.
Using this result, we consider the problem of finding a common element of the set of zeros
of a maximal monotone mapping and the set of zeros of an inverse-strongly-monotone
mapping and the problem of finding a common element of the closed convex set and the
set of zeros of the gradient of a continuously Fréchet differentiable convex functional.

2. Preliminaries

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, and let C' be a
closed convex subset of H. We write z,, — x to indicate that the sequence {z, } converges
weakly to x. x, — x implies that {x,} converges strongly to z. For every point x € H,
there exists a unique nearest point in C, denoted by Pcx, such that ||z — Pox|| < ||z —y/|
for all y € C. Pg is called the metric projection of H onto C'. We know that Py is a
nonexpansive mapping of H onto C'. It is also known that P. satisfies

(¢ —y, Pew — Pey) > || Pex — Poyl? (1)

for every z,y € H. Moreover, Pox is characterized by the properties: Pox € C and
(x — Pox, Pox —y) > 0 for all y € C. In the context of the variational inequality problem,
this implies that

ueVI(C,A) <= u= Po(u— NAu), VYA >0. (2)

It is also known that H satisfies Opial’s condition [16], i.e., for any sequence {z,} with
T, — x, the inequality

liminf ||z, — z| < liminf||z, — y||

n—oo n—oo

holds for every y € H with y # x.

We state some examples for inverse-strongly-monotone mappings. If A = I — T, where
T is a nonexpansive mapping of C into itself and [ is the identity mapping of H, then
A is 1/2-inverse-strongly-monotone and VI(C,A) = F(T); see [11]. A mapping A of
C into H is called strongly monotone if there exists a positive real number n such that
(x —y, Az — Ay) > n||lx — y||* for all z,y € C. In such a case, we say that A is 7-
strongly monotone. If A is n-strongly monotone and k-Lipschitz continuous, i.e., |Az —
Ay|| < kljlz — y]| for all z,y € C, then A is n/k*-inverse-strongly-monotone. Let f be a
continuously Fréchet differentiable convex functional on H and let V f be the gradient of
f. If Vfis 1/a-Lipschitz continuous, then V f is a-inverse-strongly-monotone; see [1].

If A is an a-inverse-strongly-monotone mapping of C' into H, then it is obvious that A is
1/a-Lipschitz continuous. We also have that for all z,y € C' and A > 0,

I(7 = AA)z — (I = AA)y[* = [l(z —y) — A(Az — Ay)|”
= [lz = yl* = 2X\z — y, Az — Ay) + N[ Ax — Ay]*
< o= yll* + A\ = 20) [ Az — Ay|”. (3)

So, if A < 2a, then I — AA is a nonexpansive mapping of C' into H.
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A set-valued mapping T : H — 2 is called monotone if for all z,y € H, f € T and
g € Ty imply (x —y, f —g) > 0. A monotone mapping T : H — 2% is mazimal if the
graph G(T') of T' is not properly contained in the graph of any other monotone mapping.
It is known that a monotone mapping 7" is maximal if and only if for (z, f) € H x H,
(x —y, f—g) >0 for every (y,g) € G(T) implies f € Tx. Let A be an inverse-strongly-
monotone mapping of C' into H and let Nov be the normal cone to C' at v € C| i.e.,
Nev={we H : (v—u,w) >0,Yu € C'}, and define

| Av+ New, ved,
ro={ b @)

Then 7' is maximal monotone and 0 € T'v if and only if v € VI(C, A); see Theorem 3 of
[17].

3. Strong Convergence Theorem

In this section, we prove the main theorem in this paper. To prove it, we use the following
lemma [14]:

Lemma 3.1. Let C be a closed convex subset of a real Hilbert space H. Let S be a
nonexpansive nonself-mapping of C' into H such that F(S) # 0. Then F(S) = F(PcS).

Now we can state a strong convergence theorem.

Theorem 3.2. Let C be a closed convex subset of a real Hilbert space H. Let A be an
a-inverse-strongly-monotone mapping of C into H and let S be a nonexpansive nonself-
mapping of C into H such that F(S)NVI(C,A) # 0. Suppose x1 =z € C and {x,} is
given by

Tpr1 = Po(apr + (1 — ay,)SPo(x, — A\Axy,))

for everyn = 1,2, ..., where {c,} is a sequence in [0,1) and {\,} is a sequence in [0, 2.
If {a,} and {\,} are chosen so that A\, € [a,b] for some a,b with 0 < a < b < 2a,

n—oo

o0 (oo} oo
lim o, = 0, E a, = 00, E lons1 — ap| <00 and E Ani1 — | < 00,
n=1 n=1

= n=1

then {x,} converges strongly to Pp(s)nvi(c,a)®.

Proof. Put y, = Po(z, — \,Ax,) foreveryn =1,2,.... Let u € F(S)NVI(C, A). Since

I — )\, A is nonexpansive and u = Po(u — A\, Au) from (2), we have

| Po(x, — ApAxy,) — Po(u — A\ Au)||
|(xn, — AMAzy,) — (u — A Au)||

[0 = u

[ — ull

IA A
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for every n = 1,2,.... Then we have
|22 —ull = [|[Pe(arz + (1 — 1) Syr) — Poul|
< lewz + (1 — 1) Sy — ul|
< |z —ull + (1= )| Syr — vl
< ol —ull + (1= an)fyr —ull
< ol —uf + (1 — o)l —ul

— Jle —ull.

If ||z — u|| < ||z —ul| holds for some k € N, we can similarly show ||z —u|| < ||z —u].
Therefore, {x,} is bounded. Hence {y,}, {Sy,} and {Az,} are also bounded. Since

I — )\, A is nonexpansive, we also have

[Ynt1 = vnll = [Pe(Tni1 — Anp1ATn11) — Po(zn — AAzy)||
< ”(mn+1 - )\n+1A$n+1> - (mn - AnAxn)H
= H(ajn-i-l - )‘n+1A$n+1) - (mn - >‘n+1Axn) + (>‘n - )‘n-i-l)Aan
< [(@nsr = A1 Azngr) = (00 — A1 Azn)[| + [ A — A [[| Az ||
< lzna = 2l £ (A = Ana|[| Az | (5)
for every n =1,2,.... So, we obtain
|01 — 2l = [[Polomz + (1 — an)Syn) — Po(an-12 + (1 = an-1) Syn—1) |
< [[(anz + (1 = an)Syn) = (@17 + (1 = 1) Sy |
= |[(an —an_1)(z = Syn—1) + (1 — ) (Syn — Syn—1)||
< om — analllz = Synaall + (1 = an) [|Syn — Syn|
< o — o il — gl + (1= )l — o1
< Jan —apalllz = Synall + (1 = an)([[2n — zpa || + A0 = Anca [ Az ]])
< (1= an)|len — xpoal| + M|An — M| + Loy, — |

for every n = 1,2, ..., where L = sup{||z — Sy,|| : n € N} and M = sup{||Az,|| : n € N}.
By mathematical induction, we have

n+m—1 n+m—1 n+m—1
imer=ninll € T O=orslame =l #M3 PNesr=Ml+L 3 Joes—a
k=m k=m k=m
for every n,m =1,2,.... So, we obtain
lim sup Hanrl - xn” = lim sSup Hmn+m+1 - xn+m”
n—oo n—oo

(o) o
< MZ | A1 — Akl + LZ |1 — g
k=m k=m

for every m = 1,2,.... Since Y 7 |apt1 — o] < 00 and Y 07 Ay — Ay < 00, we
obtain
lim sup (|21 — ]| <0

n—oo
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and hence

lim ||z,41 — 2] = 0.
n—oo

From (5) and > 7 | [A1 — Au| < 00, we also obtain [|y,4+1 — yn|| — 0. Since

||xn_PCSynH é ”xn_PCSyn—lu+HPCSyn—1_PC'SynH

<l = Synaall + [[gn1 = wall,

we have ||z, — PoSy,|| — 0. For w € F(S)NVI(C,A), from (3), we obtain

|1 — ul?

VAN VAN VAN VAR VAN

Therefore, we have

| Po(an® + (1 — o) Syn) — PCUH2

|anz + (1 — an)Syn — U||2

apllz —ul* + (1 = )| Sy, —ul)?

anllz = ul? + (1 = )|y —ul?

anllz —ul? + (1 = ) {[|zn — ul]® + An(Xy — 20)[| Az, — Au|?}
anllr —ul® + ||z, — ul]* + (1 — an)a(b — 2a)|| Az, — Aul®.

—(1—am)a(b—2a)[| Az, — Aul* < anlle = ull® + [lzn — ul]* = |z — ull?

= anflz —ull® + (lzn — vl + [lzn41 — ul)
X(l[n = ull = lzns = ul])

< anllz —ull* + (on — ull + lzne1 — wl)llzn — Zagal.

Since ay, — 0 and ||z,41 — x,|| — 0, we obtain [|Ax,, — Au|| — 0. From (1), we have

1y — ull®

So, we obtain

IA

IA

| Po(x,, — \pAx,) — Po(u — )\nAu)H2
((xn, — MAxy,) — (u — N\ Au), Yy, — u)

1
Ul G@n = AnAw) = (u = A Aw)|* + flyn — ul?
—(@n — AAzy) — (u — ApAu) — (yn — U)H2}
1
5 Ul = all® + llyn = ull® = [[(z0 = yn) = An(Azn — Aw)|?}
1
g Ulen = ull® + g = wl® = llzn = yul®
22X (T — Yy Az — Au) — N2 || Az, — Aul|?}.

g = ull® < Nl — wll® = ll2n = yall* + 22020 — Yo, Az — Au) = X[l Az, — Aul)®

and hence

|1 — ul?

IAIAIA A

||P0(anx + (1 - an)Syn) - PCU||2
o + (1 — ) Sy, — ul?
anlle —ul* + (1 = ) || Syn — ulf?
|7 — u||2 + (1= ap)[yn — u||2
apllz = ull® + lon = ull® = (1 = an) |20 — yal|?
+2(1 — ap) A2y — Y, Az — Au) — (1 — ) A2 || Az, — Aul|?.
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Since a,, — 0, ||Tps1 — xn]| — 0 and ||Az,, — Aul| — 0, we obtain ||z,, — y,|| — 0. Since
[1PeSYn = ynll < [|1PeSyn — 2nll + [[2n — ynll, we obtain || oSy — ynll — 0.

Next we show that
lim sup(z — 2z, z,, — 20) < 0,

n—oo

where 2y = Pp(g)nvi(c,a)x. To show it, choose a subsequence {z,,} of {,} such that

limsup(z — 2z, T, — 20) = Zlg&(x — 20, Tn; — 20)-
As {zy,} is bounded, we have that a subsequence {z,, } of {z,,} converges weakly to z.
We may assume without loss of generality that z,,, — z. Since ||z, — yn|| — 0, we obtain
Yn, — 2. Then we can obtain z € F(S)NVI(C, A). In fact, let us first show z € VI(C, A).
Let
TU:{Av—i-ch, v e,
0, véeC.

Then 7' is maximal monotone. Let (v,w) € G(T). Since w — Av € Ngv and y,, € C, we

have
(U = Yp, w — Av) > 0.

On the other hand, from vy, = Po(z, — \yAz,), we have (v — yp, yn — (2, — \yAzy,)) >0
and hence

(o2 ) 20

Therefore, we have

<U — Yny» w) Z <U — Yny» AU)

Z <U_ynl>Av>_<U_ynZ>M+A$nZ>

A,

i — T,
U= Yp,, Av — Ax,,, — %>
n

i

= (U= Yn,, Av — Ayn,) + (U — Yn,, Ayn, — Ax,,)

yni _:Eni
ot

> (V= Yy Ay, — Ap,) — <U . u>

A,

Hence we obtain (v — z,w) > 0 as i — oo. Since T is maximal monotone, we have
z € T7'0 and hence z € VI(C, A). Let us show z € F(P:S). Assume z ¢ F(PgS). From
Opial’s condition, we have

liminf|ly,, — z|| < liminf|y,, — PcSz||

liminf||yn, — PoSyn, + PoSyn, — PcSZ||

liminf || PoSy,, — PoSz||

IN

lim inf ||y,,, — 2.
11— 00
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This is a contradiction. Thus, we obtain z € F(PxS). By Lemma 3.1, we obtain z € F(.S).
Then we have

limsup(z — zg, x, — 20) = Zlirglo(x — 20, Tn; — 20)
= (r— 20,2 — 2) <0.
Therefore, for any € > 0, there exists m € N such that
(x — 20, — 20) < €
for all n > m. On the other hand, since
Po(anx 4+ (1 — ay)Syn) — Po(anx + (1 — an)20) = Tpe1 — 20 + (20 — T),

we have

HPC’(O‘nx + (1 = an)Syn) — Po(anr + (1 — an)ZO)H2

> Hanrl — Zo||2 + 206n<2'0 — T, Tpt1 — ZO>-

This implies

21 = 20[I* < 20m(x — 20, Tns1 — 20) + (1 = a)?[| Sy — 20>
< 200 (T — 20, Tng1 — 20) + (1 — ) ||l 20 — 20l
for every n =1,2,.... For all n > m, we have

| Tns1 — ZO||2 < 2ape + (1= ap)|lzn — ZOHQ
= 2e(1—(1—ay))+ (1 — )|z, — 20|

By mathematical induction, we obtain

lni1 — 20l < 2e(1 = [T (1 — o)) + J] (1 = aw)llzm — 20]1*.
k=m k=m

Therefore, we have
limsup |2, 11 — 20|]* < 2e.

n—oo

Since € > 0 is arbitrary, we have limsup,,_,  ||zn+1 — 20]|* < 0 and hence z,, — 2. ]

4. Applications

In this section, we prove some theorems in a real Hilbert space by using Theorem 3.2.
Let C' be a closed convex subset of a real Hilbert space H. Then a mapping T': C' — C'
is called strictly pseudocontractive if there exists k with 0 < k < 1 such that

1Tz = Ty||* < |z — ylI* + k(I = T)z — (I = T)yl*

forall z,y € C. Put A=1—T. Then A is (1 — k)/2-inverse-strongly-monotone. For the
proof, see [23]. Using Theorem 3.2, we first prove a strong convergence theorem for finding
a common fixed point of a nonexpansive nonself-mapping and a strictly pseudocontractive

mapping.
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Theorem 4.1. Let C' be a closed conver subset of a real Hilbert space H. Let T be a
k-strictly pseudocontractive mapping of C' into itself and let S be a nonexpansive nonself-
mapping of C' into H such that F(S)NF(T) # 0. Suppose x1 = x € C' and {x,} is given
by

i1 = Polapx + (1 — a)S((1 — A\p)xy + N T'xy))

for everyn = 1,2,..., where {a,} is a sequence in [0,1) and {\,} is a sequence in [0, 1—k].
If {a,} and {\,} are chosen so that A\, € [a,b] for some a,b with 0 <a <b<1—k,

oo o0 o0
lim o, =0, E a, = 00, E lany1 — ap| < oo and E | Ans1 — An| < o0,
n—oo

n=1 n=1 n=1

then {x,} converges strongly to Ppsynpr)T.

Proof. Put A=1—T. Then A is (1 —k)/2-inverse-strongly-monotone. We have F'(T') =
VI(C,A) and Po(x, — A\Az,) = (1 — A\p)xy + A\ Tx,. So, by Theorem 3.2, we obtain the
desired result. ]

Using Theorem 3.2, we also have the following theorem which was obtained by [14].

Theorem 4.2. Let C' be a closed convex subset of a real Hilbert space H. Let S be a
nonexpansive nonself-mapping of C into H such that F(S) # (. Suppose x1 = x € C and
{z,} is given by

Tpr1 = Polapr + (1 — ay)Sxy)

for everyn =1,2,..., where {a,} is a sequence in [0,1). If {a,} is chosen so that

o0 o0
lim o, =0, E o, =00 and E |1 — | < 00,
n—oo

n=1 n=1

then {x,} converges strongly to Ppg)x.

Proof. In Theorem 3.2, put Ax =0 for all z € C'. Then A is inverse-strongly-monotone.
We have C' = VI(C, A) and SPo(x, — \yAzx,) = Sz,. So, by Theorem 3.2, we obtain the
desired result. O

Using Theorem 3.2, we have the following:

Theorem 4.3. Let H be a real Hilbert space. Let A be an a-inverse-strongly-monotone
mapping of H into itself and let B : H — 2% be a mazimal monotone mapping such that
AY0N B0 # 0. Let JB be the resolvent of B for each r > 0. Suppose v1 = x € H and
{z,} is given by

Tny1 = an? + (1 — ) JB (2, — MAz,,)

for everyn = 1,2, ..., where {c,} is a sequence in [0,1) and {\,} is a sequence in [0, 2c].
If {an,} and {\,} are chosen so that A\, € [a,b] for some a,b with 0 < a < b < 2a,

n—oo

o0 o oo
lim «,, =0, E a, = 00, E lans1 — ap| < oo and E [Ani1 — An| < 00,
n=1 n=1 n=1

then {x,} converges strongly to Py-1gnp-102.
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Proof. We have A~10 = VI(H, A) and F(J?) = B~10. So, putting Py = I, by Theorem
3.2, we obtain the desired result. Il

Remark. For finding an element of (A + B)~'0, Nakajo and Takahashi [15] considered
Mann’s type iteration: 1 =z € H and

Tpy1 = Ty + (1 — an)Jﬁ(xn — M Axy,)

and obtained that the sequence {z,} converges weakly to z € (A + B)~0.

Let A: H — 2% be a maximal monotone mapping on H, let J# denote the resolvent
for r > 0 and let A, = 1/r(I — J*) be the corresponding Yosida approximation. Then
A, : H — H is r-inverse-strongly-monotone. For the proof, see [11]. Using Theorem 4.3,
we have the following:

Corollary 4.4. Let H be a real Hilbert space. Let A : H — 2% be a mazimal monotone
mapping and let B : H — 2 be a mazimal monotone mapping such that A=10NB~10 # (.
Suppose xy = x € H and {x,} is given by

Tpp1 = apa + (1 — an)JrB((l - 5n)xn + 6nJ7l«4xn>

for everyn =1,2,..., where {a,,} is a sequence in [0,1) and {5,} is a sequence in [0,2].
If {a,,} and {B,} are chosen so that (3, € [c,d] for some ¢,d with 0 < ¢ < d < 2,

n—oo

o [e.e] [e.@]

lim o, = 0, Zan:oo, Z|an+1—an| < oo and Z|ﬁn+1—ﬁn| < 00,
n=1 n=1 n=1

then {x,} converges strongly to Py-1gnp-102.

Proof. Since A, is r-inverse-strongly-monotone and A-'0 = F(J4) = A0, we have
Ty — MAx, = (1 — Bz, + BuJ w,, where 3, = \,/r. So, by Theorem 4.3, we obtain
the desired result. O

Using Theorem 3.2, we have the following:

Theorem 4.5. Let C' be a closed convexr subset of a real Hilbert space H. Let f be a
continuously Fréchet differentiable convex functional on H and let V f be the gradient of
f such that C N (V)20 # 0. Suppose Vf is 1/a-Lipschitz continuous, v, = x € H and
{z,} is given by

Tny1 = T + (1 — an) Po(zn — AV f(20))

for everyn =1,2,..., where {a,,} is a sequence in [0,1) and {\,} is a sequence in [0, 2a].
If {a,} and {\,} are chosen so that A\, € [a,b] for some a,b with 0 < a < b < 2a,

n—oo

o0 (o] o
lim o, =0, Zan:oo, Z|an+1—an| < oo and Z|)‘”“_>‘”| < o0,
n=1

n=1 n=1

then {x,} converges strongly to Poneypy-10-

Proof. We know from [1] that V[ is an a-inverse-strongly-monotone mapping and
(V)70 = VI(H,Vf). We also have C = F(Pg). So, putting Py = I, by Theorem
3.2, we obtain the desired result. O]
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Note. We consider the initial value problem:

du(t)
T +Tu(t)>0, t>0, (6)

u(0) =z,

where T' is a maximal monotone mapping in H and z € D(T). If T : H — 2/ is a
maximal monotone mapping defined by (4), then (6) implies the following:

du(t)
dt

— Au(t) € Ne(u(t)).

We know that if int7—'0 # 0, then {u(t)} converges weakly to some element of 7710 =
VI(C, A); see [6]. On the other hand, from Theorem 3.2, the sequence {z,} generated by
r1 =2 € C and

Tpt1 = apx + (1 — o) Po(x, — N\ Azy,)

converges strongly to Pr-i1gz. We do not know the relation between {u(t)} and {z,}.
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