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In this paper, we introduce an iterative scheme for finding a common element of the set of fixed points
of a nonexpansive nonself-mapping and the set of solutions of the variational inequality for an inverse-
strongly-monotone mapping in a Hilbert space. Then we show that the sequence converges strongly to
a common element of two sets. Using this result, we consider the problem of finding a common element
of the set of zeros of a maximal monotone mapping and the set of zeros of an inverse-strongly-monotone
mapping and the problem of finding a common element of the closed convex set and the set of zeros of
the gradient of a continuously Fréchet differentiable convex functional.
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1. Introduction

Let C be a closed convex subset of a real Hilbert space H. A mapping S of C into H is
called nonexpansive if

‖Sx− Sy‖ ≤ ‖x− y‖

for all x, y ∈ C. We denote by F (S) the set of fixed points of S. A mapping A of C into
H is called monotone if for all x, y ∈ C, 〈x− y, Ax−Ay〉 ≥ 0. The variational inequality
problem is to find a u ∈ C such that

〈v − u,Au〉 ≥ 0

for all v ∈ C. The set of solutions of the variational inequality is denoted by V I(C,A). A
mapping A of C into H is called inverse-strongly-monotone if there exists a positive real
number α such that

〈x− y, Ax− Ay〉 ≥ α‖Ax− Ay‖2

for all x, y ∈ C; see [5] and [13]. For such a case, A is called α-inverse-strongly-monotone.

ISSN 0944-6532 / $ 2.50 c© Heldermann Verlag



70 H. Iiduka, W. Takahashi / Strong Convergence Theorems for Nonexpansive ...

In this paper, we introduce an iterative scheme for finding a common element of the
set of fixed points of a nonexpansive nonself-mapping and the set of solutions of the
variational inequality for an inverse-strongly-monotone mapping in a real Hilbert space.
Then we show that the sequence converges strongly to a common element of two sets.
Using this result, we consider the problem of finding a common element of the set of zeros
of a maximal monotone mapping and the set of zeros of an inverse-strongly-monotone
mapping and the problem of finding a common element of the closed convex set and the
set of zeros of the gradient of a continuously Fréchet differentiable convex functional.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, and let C be a
closed convex subset of H. We write xn ⇀ x to indicate that the sequence {xn} converges
weakly to x. xn → x implies that {xn} converges strongly to x. For every point x ∈ H,
there exists a unique nearest point in C, denoted by PCx, such that ‖x−PCx‖ ≤ ‖x− y‖
for all y ∈ C. PC is called the metric projection of H onto C. We know that PC is a
nonexpansive mapping of H onto C. It is also known that PC satisfies

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2 (1)

for every x, y ∈ H. Moreover, PCx is characterized by the properties: PCx ∈ C and
〈x−PCx, PCx−y〉 ≥ 0 for all y ∈ C. In the context of the variational inequality problem,
this implies that

u ∈ V I(C,A) ⇐⇒ u = PC(u− λAu), ∀λ > 0. (2)

It is also known that H satisfies Opial’s condition [16], i.e., for any sequence {xn} with
xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

holds for every y ∈ H with y 6= x.

We state some examples for inverse-strongly-monotone mappings. If A = I − T , where
T is a nonexpansive mapping of C into itself and I is the identity mapping of H, then
A is 1/2-inverse-strongly-monotone and V I(C,A) = F (T ); see [11]. A mapping A of
C into H is called strongly monotone if there exists a positive real number η such that
〈x − y, Ax − Ay〉 ≥ η‖x − y‖2 for all x, y ∈ C. In such a case, we say that A is η-
strongly monotone. If A is η-strongly monotone and κ-Lipschitz continuous, i.e., ‖Ax −
Ay‖ ≤ κ‖x − y‖ for all x, y ∈ C, then A is η/κ2-inverse-strongly-monotone. Let f be a
continuously Fréchet differentiable convex functional on H and let ∇f be the gradient of
f . If ∇f is 1/α-Lipschitz continuous, then ∇f is α-inverse-strongly-monotone; see [1].

If A is an α-inverse-strongly-monotone mapping of C into H, then it is obvious that A is
1/α-Lipschitz continuous. We also have that for all x, y ∈ C and λ > 0,

‖(I − λA)x− (I − λA)y‖2 = ‖(x− y)− λ(Ax− Ay)‖2

= ‖x− y‖2 − 2λ〈x− y, Ax− Ay〉+ λ2‖Ax− Ay‖2

≤ ‖x− y‖2 + λ(λ− 2α)‖Ax− Ay‖2. (3)

So, if λ ≤ 2α, then I − λA is a nonexpansive mapping of C into H.
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A set-valued mapping T : H → 2H is called monotone if for all x, y ∈ H, f ∈ Tx and
g ∈ Ty imply 〈x − y, f − g〉 ≥ 0. A monotone mapping T : H → 2H is maximal if the
graph G(T ) of T is not properly contained in the graph of any other monotone mapping.
It is known that a monotone mapping T is maximal if and only if for (x, f) ∈ H × H,
〈x− y, f − g〉 ≥ 0 for every (y, g) ∈ G(T ) implies f ∈ Tx. Let A be an inverse-strongly-
monotone mapping of C into H and let NCv be the normal cone to C at v ∈ C, i.e.,
NCv = {w ∈ H : 〈v − u,w〉 ≥ 0,∀u ∈ C}, and define

Tv =

{

Av +NCv, v ∈ C,
∅, v /∈ C.

(4)

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ V I(C,A); see Theorem 3 of
[17].

3. Strong Convergence Theorem

In this section, we prove the main theorem in this paper. To prove it, we use the following
lemma [14]:

Lemma 3.1. Let C be a closed convex subset of a real Hilbert space H. Let S be a
nonexpansive nonself-mapping of C into H such that F (S) 6= ∅. Then F (S) = F (PCS).

Now we can state a strong convergence theorem.

Theorem 3.2. Let C be a closed convex subset of a real Hilbert space H. Let A be an
α-inverse-strongly-monotone mapping of C into H and let S be a nonexpansive nonself-
mapping of C into H such that F (S) ∩ V I(C,A) 6= ∅. Suppose x1 = x ∈ C and {xn} is
given by

xn+1 = PC(αnx+ (1− αn)SPC(xn − λnAxn))

for every n = 1, 2, . . ., where {αn} is a sequence in [0, 1) and {λn} is a sequence in [0, 2α].
If {αn} and {λn} are chosen so that λn ∈ [a, b] for some a, b with 0 < a < b < 2α,

lim
n→∞

αn = 0,
∞
∑

n=1

αn = ∞,
∞
∑

n=1

|αn+1 − αn| < ∞ and
∞
∑

n=1

|λn+1 − λn| < ∞,

then {xn} converges strongly to PF (S)∩V I(C,A)x.

Proof. Put yn = PC(xn−λnAxn) for every n = 1, 2, . . .. Let u ∈ F (S)∩V I(C,A). Since
I − λnA is nonexpansive and u = PC(u− λnAu) from (2), we have

‖yn − u‖ = ‖PC(xn − λnAxn)− PC(u− λnAu)‖
≤ ‖(xn − λnAxn)− (u− λnAu)‖
≤ ‖xn − u‖
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for every n = 1, 2, . . .. Then we have

‖x2 − u‖ = ‖PC(α1x+ (1− α1)Sy1)− PCu‖
≤ ‖α1x+ (1− α1)Sy1 − u‖
≤ α1‖x− u‖+ (1− α1)‖Sy1 − u‖
≤ α1‖x− u‖+ (1− α1)‖y1 − u‖
≤ α1‖x− u‖+ (1− α1)‖x− u‖
= ‖x− u‖.

If ‖xk −u‖ ≤ ‖x−u‖ holds for some k ∈ N, we can similarly show ‖xk+1−u‖ ≤ ‖x−u‖.
Therefore, {xn} is bounded. Hence {yn}, {Syn} and {Axn} are also bounded. Since
I − λnA is nonexpansive, we also have

‖yn+1 − yn‖ = ‖PC(xn+1 − λn+1Axn+1)− PC(xn − λnAxn)‖
≤ ‖(xn+1 − λn+1Axn+1)− (xn − λnAxn)‖
= ‖(xn+1 − λn+1Axn+1)− (xn − λn+1Axn) + (λn − λn+1)Axn‖
≤ ‖(xn+1 − λn+1Axn+1)− (xn − λn+1Axn)‖+ |λn − λn+1|‖Axn‖
≤ ‖xn+1 − xn‖+ |λn − λn+1|‖Axn‖ (5)

for every n = 1, 2, . . .. So, we obtain

‖xn+1 − xn‖ = ‖PC(αnx+ (1− αn)Syn)− PC(αn−1x+ (1− αn−1)Syn−1)‖
≤ ‖(αnx+ (1− αn)Syn)− (αn−1x+ (1− αn−1)Syn−1)‖
= ‖(αn − αn−1)(x− Syn−1) + (1− αn)(Syn − Syn−1)‖
≤ |αn − αn−1|‖x− Syn−1‖+ (1− αn)‖Syn − Syn−1‖
≤ |αn − αn−1|‖x− Syn−1‖+ (1− αn)‖yn − yn−1‖
≤ |αn − αn−1|‖x− Syn−1‖+ (1− αn)(‖xn − xn−1‖+ |λn−λn−1|‖Axn−1‖)
≤ (1− αn)‖xn − xn−1‖+M |λn − λn−1|+ L|αn − αn−1|

for every n = 1, 2, . . ., where L = sup{‖x−Syn‖ : n ∈ N} and M = sup{‖Axn‖ : n ∈ N}.
By mathematical induction, we have

‖xn+m+1−xn+m‖ ≤
n+m−1
∏

k=m

(1−αk+1)‖xm+1−xm‖+M
n+m−1
∑

k=m

|λk+1−λk|+L
n+m−1
∑

k=m

|αk+1−αk|

for every n,m = 1, 2, . . .. So, we obtain

lim sup
n→∞

‖xn+1 − xn‖ = lim sup
n→∞

‖xn+m+1 − xn+m‖

≤ M
∞
∑

k=m

|λk+1 − λk|+ L
∞
∑

k=m

|αk+1 − αk|

for every m = 1, 2, . . .. Since
∑∞

n=1 |αn+1 − αn| < ∞ and
∑∞

n=1 |λn+1 − λn| < ∞, we
obtain

lim sup
n→∞

‖xn+1 − xn‖ ≤ 0
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and hence
lim
n→∞

‖xn+1 − xn‖ = 0.

From (5) and
∑∞

n=1 |λn+1 − λn| < ∞, we also obtain ‖yn+1 − yn‖ → 0. Since

‖xn − PCSyn‖ ≤ ‖xn − PCSyn−1‖+ ‖PCSyn−1 − PCSyn‖
≤ αn−1‖x− Syn−1‖+ ‖yn−1 − yn‖,

we have ‖xn − PCSyn‖ → 0. For u ∈ F (S) ∩ V I(C,A), from (3), we obtain

‖xn+1 − u‖2 = ‖PC(αnx+ (1− αn)Syn)− PCu‖2

≤ ‖αnx+ (1− αn)Syn − u‖2

≤ αn‖x− u‖2 + (1− αn)‖Syn − u‖2

≤ αn‖x− u‖2 + (1− αn)‖yn − u‖2

≤ αn‖x− u‖2 + (1− αn){‖xn − u‖2 + λn(λn − 2α)‖Axn − Au‖2}
≤ αn‖x− u‖2 + ‖xn − u‖2 + (1− αn)a(b− 2α)‖Axn − Au‖2.

Therefore, we have

−(1−αn)a(b−2α)‖Axn−Au‖2 ≤ αn‖x− u‖2 + ‖xn − u‖2 − ‖xn+1 − u‖2

= αn‖x− u‖2 + (‖xn − u‖+ ‖xn+1 − u‖)
×(‖xn − u‖ − ‖xn+1 − u‖)

≤ αn‖x− u‖2 + (‖xn − u‖+ ‖xn+1 − u‖)‖xn− xn+1‖.

Since αn → 0 and ‖xn+1 − xn‖ → 0, we obtain ‖Axn − Au‖ → 0. From (1), we have

‖yn − u‖2 = ‖PC(xn − λnAxn)− PC(u− λnAu)‖2

≤ 〈(xn − λnAxn)− (u− λnAu), yn − u〉

=
1

2
{‖(xn − λnAxn)− (u− λnAu)‖2 + ‖yn − u‖2

−‖(xn − λnAxn)− (u− λnAu)− (yn − u)‖2}

≤ 1

2
{‖xn − u‖2 + ‖yn − u‖2 − ‖(xn − yn)− λn(Axn − Au)‖2}

=
1

2
{‖xn − u‖2 + ‖yn − u‖2 − ‖xn − yn‖2

+2λn〈xn − yn, Axn − Au〉 − λ2
n‖Axn − Au‖2}.

So, we obtain

‖yn − u‖2 ≤ ‖xn − u‖2 − ‖xn − yn‖2 + 2λn〈xn − yn, Axn − Au〉 − λ2
n‖Axn − Au‖2

and hence

‖xn+1 − u‖2 = ‖PC(αnx+ (1− αn)Syn)− PCu‖2

≤ ‖αnx+ (1− αn)Syn − u‖2

≤ αn‖x− u‖2 + (1− αn)‖Syn − u‖2

≤ αn‖x− u‖2 + (1− αn)‖yn − u‖2

≤ αn‖x− u‖2 + ‖xn − u‖2 − (1− αn)‖xn − yn‖2

+2(1− αn)λn〈xn − yn, Axn − Au〉 − (1− αn)λ
2
n‖Axn − Au‖2.
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Since αn → 0, ‖xn+1 − xn‖ → 0 and ‖Axn − Au‖ → 0, we obtain ‖xn − yn‖ → 0. Since
‖PCSyn − yn‖ ≤ ‖PCSyn − xn‖+ ‖xn − yn‖, we obtain ‖PCSyn − yn‖ → 0.

Next we show that
lim sup
n→∞

〈x− z0, xn − z0〉 ≤ 0,

where z0 = PF (S)∩V I(C,A)x. To show it, choose a subsequence {xni
} of {xn} such that

lim sup
n→∞

〈x− z0, xn − z0〉 = lim
i→∞

〈x− z0, xni
− z0〉.

As {xni
} is bounded, we have that a subsequence {xnij

} of {xni
} converges weakly to z.

We may assume without loss of generality that xni
⇀ z. Since ‖xn − yn‖ → 0, we obtain

yni
⇀ z. Then we can obtain z ∈ F (S)∩V I(C,A). In fact, let us first show z ∈ V I(C,A).

Let

Tv =

{

Av +NCv, v ∈ C,
∅, v /∈ C.

Then T is maximal monotone. Let (v, w) ∈ G(T ). Since w − Av ∈ NCv and yn ∈ C, we
have

〈v − yn, w − Av〉 ≥ 0.

On the other hand, from yn = PC(xn − λnAxn), we have 〈v − yn, yn − (xn − λnAxn)〉 ≥ 0
and hence

〈

v − yn,
yn − xn

λn

+ Axn

〉

≥ 0.

Therefore, we have

〈v − yni
, w〉 ≥ 〈v − yni

, Av〉

≥ 〈v − yni
, Av〉 −

〈

v − yni
,
yni

− xni

λni

+ Axni

〉

=
〈

v − yni
, Av − Axni

− yni
− xni

λni

〉

= 〈v − yni
, Av − Ayni

〉+ 〈v − yni
, Ayni

− Axni
〉

−
〈

v − yni
,
yni

− xni

λni

〉

≥ 〈v − yni
, Ayni

− Axni
〉 −

〈

v − yni
,
yni

− xni

λni

〉

.

Hence we obtain 〈v − z, w〉 ≥ 0 as i → ∞. Since T is maximal monotone, we have
z ∈ T−10 and hence z ∈ V I(C,A). Let us show z ∈ F (PCS). Assume z /∈ F (PCS). From
Opial’s condition, we have

lim inf
i→∞

‖yni
− z‖ < lim inf

i→∞
‖yni

− PCSz‖

= lim inf
i→∞

‖yni
− PCSyni

+ PCSyni
− PCSz‖

= lim inf
i→∞

‖PCSyni
− PCSz‖

≤ lim inf
i→∞

‖yni
− z‖.
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This is a contradiction. Thus, we obtain z ∈ F (PCS). By Lemma 3.1, we obtain z ∈ F (S).
Then we have

lim sup
n→∞

〈x− z0, xn − z0〉 = lim
i→∞

〈x− z0, xni
− z0〉

= 〈x− z0, z − z0〉 ≤ 0.

Therefore, for any ε > 0, there exists m ∈ N such that

〈x− z0, xn − z0〉 ≤ ε

for all n ≥ m. On the other hand, since

PC(αnx+ (1− αn)Syn)− PC(αnx+ (1− αn)z0) = xn+1 − z0 + αn(z0 − x),

we have

‖PC(αnx+ (1− αn)Syn)− PC(αnx+ (1− αn)z0)‖2

≥ ‖xn+1 − z0‖2 + 2αn〈z0 − x, xn+1 − z0〉.

This implies

‖xn+1 − z0‖2 ≤ 2αn〈x− z0, xn+1 − z0〉+ (1− αn)
2‖Syn − z0‖2

≤ 2αn〈x− z0, xn+1 − z0〉+ (1− αn)‖xn − z0‖2

for every n = 1, 2, . . .. For all n ≥ m, we have

‖xn+1 − z0‖2 ≤ 2αnε+ (1− αn)‖xn − z0‖2

= 2ε(1− (1− αn)) + (1− αn)‖xn − z0‖2.

By mathematical induction, we obtain

‖xn+1 − z0‖2 ≤ 2ε(1−
n
∏

k=m

(1− αk)) +
n
∏

k=m

(1− αk)‖xm − z0‖2.

Therefore, we have
lim sup
n→∞

‖xn+1 − z0‖2 ≤ 2ε.

Since ε > 0 is arbitrary, we have lim supn→∞ ‖xn+1 − z0‖2 ≤ 0 and hence xn → z0.

4. Applications

In this section, we prove some theorems in a real Hilbert space by using Theorem 3.2.
Let C be a closed convex subset of a real Hilbert space H. Then a mapping T : C → C
is called strictly pseudocontractive if there exists k with 0 ≤ k < 1 such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(I − T )x− (I − T )y‖2

for all x, y ∈ C. Put A = I − T . Then A is (1− k)/2-inverse-strongly-monotone. For the
proof, see [23]. Using Theorem 3.2, we first prove a strong convergence theorem for finding
a common fixed point of a nonexpansive nonself-mapping and a strictly pseudocontractive
mapping.
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Theorem 4.1. Let C be a closed convex subset of a real Hilbert space H. Let T be a
k-strictly pseudocontractive mapping of C into itself and let S be a nonexpansive nonself-
mapping of C into H such that F (S)∩F (T ) 6= ∅. Suppose x1 = x ∈ C and {xn} is given
by

xn+1 = PC(αnx+ (1− αn)S((1− λn)xn + λnTxn))

for every n = 1, 2, . . ., where {αn} is a sequence in [0, 1) and {λn} is a sequence in [0, 1−k].
If {αn} and {λn} are chosen so that λn ∈ [a, b] for some a, b with 0 < a < b < 1− k,

lim
n→∞

αn = 0,
∞
∑

n=1

αn = ∞,
∞
∑

n=1

|αn+1 − αn| < ∞ and
∞
∑

n=1

|λn+1 − λn| < ∞,

then {xn} converges strongly to PF (S)∩F (T )x.

Proof. Put A = I−T . Then A is (1−k)/2-inverse-strongly-monotone. We have F (T ) =
V I(C,A) and PC(xn−λnAxn) = (1−λn)xn+λnTxn. So, by Theorem 3.2, we obtain the
desired result.

Using Theorem 3.2, we also have the following theorem which was obtained by [14].

Theorem 4.2. Let C be a closed convex subset of a real Hilbert space H. Let S be a
nonexpansive nonself-mapping of C into H such that F (S) 6= ∅. Suppose x1 = x ∈ C and
{xn} is given by

xn+1 = PC(αnx+ (1− αn)Sxn)

for every n = 1, 2, . . ., where {αn} is a sequence in [0, 1). If {αn} is chosen so that

lim
n→∞

αn = 0,
∞
∑

n=1

αn = ∞ and
∞
∑

n=1

|αn+1 − αn| < ∞,

then {xn} converges strongly to PF (S)x.

Proof. In Theorem 3.2, put Ax = 0 for all x ∈ C. Then A is inverse-strongly-monotone.
We have C = V I(C,A) and SPC(xn−λnAxn) = Sxn. So, by Theorem 3.2, we obtain the
desired result.

Using Theorem 3.2, we have the following:

Theorem 4.3. Let H be a real Hilbert space. Let A be an α-inverse-strongly-monotone
mapping of H into itself and let B : H → 2H be a maximal monotone mapping such that
A−10 ∩B−10 6= ∅. Let JB

r be the resolvent of B for each r > 0. Suppose x1 = x ∈ H and
{xn} is given by

xn+1 = αnx+ (1− αn)J
B
r (xn − λnAxn)

for every n = 1, 2, . . ., where {αn} is a sequence in [0, 1) and {λn} is a sequence in [0, 2α].
If {αn} and {λn} are chosen so that λn ∈ [a, b] for some a, b with 0 < a < b < 2α,

lim
n→∞

αn = 0,
∞
∑

n=1

αn = ∞,
∞
∑

n=1

|αn+1 − αn| < ∞ and
∞
∑

n=1

|λn+1 − λn| < ∞,

then {xn} converges strongly to PA−10∩B−10x.
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Proof. We have A−10 = V I(H,A) and F (JB
r ) = B−10. So, putting PH = I, by Theorem

3.2, we obtain the desired result.

Remark. For finding an element of (A + B)−10, Nakajo and Takahashi [15] considered
Mann’s type iteration: x1 = x ∈ H and

xn+1 = αnxn + (1− αn)J
B
λn
(xn − λnAxn)

and obtained that the sequence {xn} converges weakly to z ∈ (A+B)−10.

Let A : H → 2H be a maximal monotone mapping on H, let JA
r denote the resolvent

for r > 0 and let Ar = 1/r(I − JA
r ) be the corresponding Yosida approximation. Then

Ar : H → H is r-inverse-strongly-monotone. For the proof, see [11]. Using Theorem 4.3,
we have the following:

Corollary 4.4. Let H be a real Hilbert space. Let A : H → 2H be a maximal monotone
mapping and let B : H → 2H be a maximal monotone mapping such that A−10∩B−10 6= ∅.
Suppose x1 = x ∈ H and {xn} is given by

xn+1 = αnx+ (1− αn)J
B
r ((1− βn)xn + βnJ

A
r xn)

for every n = 1, 2, . . ., where {αn} is a sequence in [0, 1) and {βn} is a sequence in [0, 2].
If {αn} and {βn} are chosen so that βn ∈ [c, d] for some c, d with 0 < c < d < 2,

lim
n→∞

αn = 0,
∞
∑

n=1

αn = ∞,
∞
∑

n=1

|αn+1 − αn| < ∞ and
∞
∑

n=1

|βn+1 − βn| < ∞,

then {xn} converges strongly to PA−10∩B−10x.

Proof. Since Ar is r-inverse-strongly-monotone and A−1
r 0 = F (JA

r ) = A−10, we have
xn − λnArxn = (1 − βn)xn + βnJ

A
r xn, where βn = λn/r. So, by Theorem 4.3, we obtain

the desired result.

Using Theorem 3.2, we have the following:

Theorem 4.5. Let C be a closed convex subset of a real Hilbert space H. Let f be a
continuously Fréchet differentiable convex functional on H and let ∇f be the gradient of
f such that C ∩ (∇f)−10 6= ∅. Suppose ∇f is 1/α-Lipschitz continuous, x1 = x ∈ H and
{xn} is given by

xn+1 = αnx+ (1− αn)PC(xn − λn∇f(xn))

for every n = 1, 2, . . ., where {αn} is a sequence in [0, 1) and {λn} is a sequence in [0, 2α].
If {αn} and {λn} are chosen so that λn ∈ [a, b] for some a, b with 0 < a < b < 2α,

lim
n→∞

αn = 0,
∞
∑

n=1

αn = ∞,
∞
∑

n=1

|αn+1 − αn| < ∞ and
∞
∑

n=1

|λn+1 − λn| < ∞,

then {xn} converges strongly to PC∩(∇f)−10x.

Proof. We know from [1] that ∇f is an α-inverse-strongly-monotone mapping and
(∇f)−10 = V I(H,∇f). We also have C = F (PC). So, putting PH = I, by Theorem
3.2, we obtain the desired result.
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Note. We consider the initial value problem:

du(t)

dt
+ Tu(t) 3 0, t > 0, (6)

u(0) = x,

where T is a maximal monotone mapping in H and x ∈ D(T ). If T : H → 2H is a
maximal monotone mapping defined by (4), then (6) implies the following:

−du(t)

dt
− Au(t) ∈ NC(u(t)).

We know that if intT−10 6= ∅, then {u(t)} converges weakly to some element of T−10 =
V I(C,A); see [6]. On the other hand, from Theorem 3.2, the sequence {xn} generated by
x1 = x ∈ C and

xn+1 = αnx+ (1− αn)PC(xn − λnAxn)

converges strongly to PT−10x. We do not know the relation between {u(t)} and {xn}.
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