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We prove the following extension of a classical theorem due to Bartle and Graves. Let a set-valued
mapping F : X →→ Y , where X and Y are Banach spaces, be metrically regular at x̄ for ȳ and with the
property that the mapping whose graph is the restriction of the graph of the inverse F−1 to a neighborhood
of (ȳ, x̄) is convex and closed valued. Then for any function G : X → Y with lipG(x̄) · regF (x̄ | ȳ)) < 1,
the mapping (F +G)−1 has a continuous local selection x(·) around (ȳ +G(x̄), x̄) which is also calm.
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1. Introduction

The classical inverse function theorem stated for a function f : X → Y , with X and Y
Banach spaces, assumes that f is continuously differentiable in a neighborhood of a given
reference point x̄ and, most importantly, the Fréchet derivative ∇f(x̄) has a linear and
bounded inverse; then the theorem claims that there exist neighborhoods U of x̄ and V
of ȳ := f(x̄) such that the mapping

V 3 y 7→ f−1(y) ∩ U (1)

is single valued (a function defined on V ) which is moreover continuously differentiable
(C1) in V and whose derivative is the inverse of ∇f . The mapping in (1) is obtained by
restricting the graph of f−1 to a “box" around (ȳ, x̄), that is, the product of neighborhoods
of x̄ and ȳ respectively, and is called graphical localization of f−1 around (ȳ, x̄). The
inverse function theorem then says that the invertibility of ∇f(x̄) implies (actually, it is
equivalent) to the existence of a single-valued graphical localization of f−1 around (ȳ, x̄)
which is C1.

An inverse function type theorem may be obtained in Hilbert spaces when the Jacobian
∇f(x̄) is merely surjective. Indeed, in this case the mapping (1), although in general
set-valued, has a local single-valued selection x(·), that is, a function x(·) exists with
x(y) ∈ f−1(y) ∩ U for all y ∈ V, which is continuously differentiable in V . The precise
result is as follows:
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Theorem 1.1. Let X and Y be Hilbert spaces and let f : X → Y be a function which
is C1 around x̄ and such that the derivative B := ∇f(x̄) is surjective. Then there exist a
neighborhood V of ȳ := f(x̄) and a C1 function x : V → X such that

x(ȳ) = x̄ and f(x(y)) = y for every y ∈ V,

and moreover ∇x(ȳ) = (B∗B)−1B∗.

Proof. In terms of the adjoint operator B∗ consider the mapping

(x, u) 7→ g(x, u) :=

(

x+B∗u
f(x)

)

,

which satisfies g(x̄, 0) = (x̄, ȳ) and whose Jacobian is

J =

(

I B∗

B 0

)

.

It is well known that, in Hilbert spaces, if B is surjective than the operator J is invertible
in the sense that J−1 is linear and bounded from X × Y into itself. Hence, by the
classical inverse function theorem, the mapping g−1 has a single-valued and continuously
differentiable graphical localization (v, y) 7→ (ξ(v, y), η(v, y)) around ((x̄, ȳ), (x̄, 0)). In
particular, for some neighborhoods U of x̄ and V of ȳ, the function x(y) := ξ(x̄, y) satisfies
y = f(x(y)) for y ∈ V . It remains to observe that B∗B is invertible and, from the equation
B∗f(x(y)) = B∗y, the derivative of x(·) with respect to y satisfies B∗B∇x(ȳ) = B∗.

If X and Y are arbitrary Banach spaces, the surjectivity of the Jacobian implies the
existence of a selection of (1) which is merely continuous and calm. This follows from a
classical theorem by Bartle and Graves, Theorem 6 in [1]. Up to some minor adjustments
and simplifications, the Bartle-Graves theorem in question is as follows:

Theorem 1.2. Let X and Y be Banach spaces and let f : X → Y be a function which
is strictly differentiable at x̄ and such that the strict derivative ∇f(x̄) is surjective. Then
there exist a neighborhood V of ȳ := f(x̄), a continuous function x : V → X and a
constant γ > 0 such that for every y ∈ V

f(x(y)) = y and ‖x(y)− x̄‖ ≤ γ‖y − ȳ‖.

In other words, the surjectivity of the strict derivative implies that a graphical localization
of f−1 around the point (ȳ, x̄) has a selection which is continuous and calm. A function
g : X → Y is said to be calm at x̄ when there exist a neighborhood

V of x̄ and a constant γ > 0 such that

‖g(x)− g(x̄)‖ ≤ γ‖x− x̄‖ for every x ∈ V. (2)

The infimum of γ for which (2) holds is called modulus of calmness and is denoted by
clm g(x̄).

As noted in [3], p. 300, in contrast to the smooth local selection in Theorem 1.1 for Hilbert
spaces, the selection in Bartle-Graves theorem even for a linear and bounded mapping f
may be not Lipschitz continuous anywhere near x̄.
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The purpose of this paper is to generalize Theorem 2.1 to set-valued mappings that
cover in particular systems of inequalities and variational inequalities. First, we describe
the notation and terminology we use, which is consistent with the book [9], and briefly
discuss some related results. Throughout, unless stated otherwise, X and Y are real
Banach spaces with norms ‖ · ‖ and closed unit balls IB; a ball centered at a with radius
r is denoted IBr(a). The distance from a point x to a set A is denoted by d(x,A). The
notation F : X →→ Y means that F is a set-valued mapping from X to the subsets of
Y ; if F is a function, that is, for each x ∈ X the set of values F (x) consists of no
more than one element, then we write F : X → Y . The domain of F is defined as
domF = {x ∈ X | F (x) 6= ∅} while its range as rgeF = {y ∈ Y | y ∈ F (x), x ∈ domF}.
The graph of F is gphF = {(x, y) | y ∈ F (x)} and its inverse F−1 is defined as
x ∈ F−1(y) ⇐⇒ y ∈ F (x). A mapping F : X →→ Y with (x̄, ȳ) ∈ gphF has a local
selection around (x̄, ȳ) if there exist neighborhoods U of x̄ and V of ȳ, respectively, and
a function s : U → V such that s(x̄) = ȳ and s(x) ∈ F (x) ∩ V for all x ∈ U . Recall that
the Lipschitz modulus lip g(x̄) of a function g : X → Y at a point x̄ is defined as

lip g(x̄) := lim sup
x,x′→x̄
x6=x′

‖g(x′)− g(x)‖
‖x′ − x‖

.

A mapping F : X →→ Y is said to be metrically regular at x̄ for ȳ if there exists a constant
κ > 0 such that

d(x, F−1(y)) ≤ κd(y, F (x)) for all (x, y) close to (x̄, ȳ). (3)

The infimum of κ for which (3) holds is the modulus of metric regularity which we denote
by regF (x̄| ȳ). Metric regularity of F at x̄ for ȳ is signaled by regF (ȳ | ȳ) < ∞.

The concept of metric regularity has its roots in the Banach open mapping theorem: a
linear and bounded mapping L : X → Y is metrically regular if and only if it is surjective.
The modulus of metric regularity of such an L is the same for all points in its graph and

regL = sup
y∈IB

d(0, L−1(y)).

In particular, if L is invertible, which is the case when X = Y = IRn, then regL = ‖L−1‖.
The metric regularity of a set-valued mapping F : X →→ Y at x̄ for ȳ implies the existence
of neighborhoods U of x̄ and V of ȳ such that F−1(y)∩U 6= ∅ for all y ∈ V . Further, the
metric regularity is preserved when F is perturbed by a function with a small Lipschitz
constant. Specifically, we have

Theorem 1.3 ([5], Theorem 3.3). Consider a mapping F : X →→ Y with (x̄, ȳ) ∈ gphF
and let gphF be closed locally around (x̄, ȳ). Consider also a function G : X → Y . If
regF (x̄| ȳ) < κ < ∞ and lipG(x̄) < λ < κ−1, then

reg(F +G)(x̄| ȳ +G(x̄)) <
κ

1− λκ
.

For single-valued mappings that are nonlinear but differentiable, the property of the metric
regularity described in Theorem 1.3 goes back to classical theorems by Lyusternik and
Graves.
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Theorem 1.4 (Lyusternik-Graves). For a function f : X → Y which is continuously
differentiable near x̄, one has

reg f(x̄|f(x̄)) = reg∇f(x̄).

A generalization in a different direction of the Banach open mapping theorem is a result
by Robinson and Ursescu:

Theorem 1.5 (Robinson-Ursescu). For a mapping F : X → Y and (x̄, ȳ) ∈ gphF , if
F has closed and convex graph, then F is metrically regular at x̄ for ȳ if and only if
ȳ ∈ int rgeF .

In finite dimensions, more can be said about metrically regular mappings. If f : IRn → IRn

is continuously differentiable around x̄, then the metric regularity of f at x̄ simply means
that the Jacobian ∇f(x̄) is a nonsingular matrix and then the graphical localization of
f−1 around the point (f(x̄), x̄) is single-valued and C1. The equivalence of the metric
regularity with the Lipschitz continuous single-valued graphical localization of f−1 is ac-
tually valid for more general set-valued mappings of the form f +NC where f is a smooth
function and NC is the normal cone mapping to a convex polyhedral set C. This in-
verse function theorem for variational inequalities was established in [4] together with a
formula for the Lipschitz modulus of the localization. Here the theory of inverse func-
tion for metrically regular mappings merges with another fundamental result, due to S.
Robinson [8], regarding the “stability under linearizationÔ of the property of existence of
a Lipschitz continuous single-valued graphical localization. A discussion of various de-
velopments around the concept of metric regularity has recently been given by Ioffe [7],
details are also available in [5] and [9].

In this paper we prove a generalization of the Battle-Graves theorem (Theorem 3.1) of
the following form: Let a set-valued mapping F : X →→ Y be metrically regular at x̄ for
ȳ and with the property that a graphical localization of the inverse F−1 around (ȳ, x̄) is
convex and closed valued. Then F−1 has a continuous local selection x(·) around (ȳ, x̄)
which is calm. Moreover, for any function G : X → Y with lipG(x̄) · regF (x̄| ȳ)) < 1,
the mapping (F +G)−1 has a continuous local selection x(·) around (x̄, ȳ +G(x̄)) which
is calm.

2. Aubin continuity and continuous local selections

It is well documented, see [9], Section 9G, that F is metrically regular at x̄ for ȳ if and
only if F−1 has the so-called Aubin property at ȳ for x̄: there exist κ ∈ (0,∞) together
with neighborhoods U of x̄ and V of ȳ such that

F−1(y′) ∩ U ⊂ F−1(y) + κ‖y′ − y‖IB for all y, y′ ∈ V ; (4)

moreover, the modulus regF (x̄, ȳ) is also the infimum of all κ for which (4) holds.

Recall that a mapping A : T →→ X is (sequentially) lower semicontinuous on T ⊂ Y if for
every t ∈ T , every x ∈ A(t) and every sequence tk ∈ T, tk → t, there exist xk ∈ T (tk)
for k = 1, 2, . . ., with xk → x. In our setting, sequential lower semicontinuity and lower
semicontinuity coincide.
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The Aubin property (4) is a local property of a mapping around a point in its graph,
which is preserved for a graphical localization of the mapping around the reference point.
However, such a localization may not be lower semicontinuous, in general. In the following
lemma we show that if a set-valued mapping A is convex and closed valued locally around
the reference point, then the mapping obtained by truncation of A with a ball centered at
x̄ with radius proportional to the distance to ȳ is lower semicontinuous in a neighborhood
of ȳ.

Lemma 2.1. Consider a mapping A : Y →→ X and any (ȳ, x̄) ∈ gphA and suppose
that A is Aubin continuous at ȳ for x̄ with a constant κ. Let, for some c > 0, the sets
A(y) ∩ IBc(x̄) be convex and closed for all y ∈ IBc(ȳ). Then for any α > κ there exists
β > 0 such that the mapping

IBβ(ȳ) 3 y 7→ M0(y) := {x ∈ A(y) | ‖x− x̄‖ ≤ α‖y − ȳ‖}

is nonempty, closed and convex valued, and lower semicontinuous.

Proof. Let IBa(x̄) and IBb(ȳ) be the balls centered at x̄ and ȳ, respectively, that are
associated with the Aubin continuity of A (metric regularity of A−1) with a constant κ.
Without loss of generality, let a < c. Choose α > κ and β such that

0 < β ≤ min{ a
α
,
c

2α
, b, c}.

For such a β the mapping M0 has nonempty closed convex values. It remains to show
that M0 is lower semicontinuous on IBβ(ȳ).

Let (x, y) ∈ gphM0 and yk → y, yk ∈ IBβ(ȳ). First, let y = ȳ. Then M0(y) = x̄ and
from the Aubin continuity of A there exists a sequence xk ∈ A(yk) such that ‖xk − x̄‖ ≤
κ‖yk − ȳ‖. Then xk ∈ M0(yk), xk → x as k → ∞ and we are done in this case.

Now let y 6= ȳ. From the Aubin property of A there exists x̌k ∈ A(yk) such that

‖x̌k − x̄‖ ≤ κ‖yk − ȳ‖

and also there exists x̃k ∈ A(yk) such that

‖x̃k − x‖ ≤ κ‖yk − y‖.

Because of the choice of β, both x̌k and x̃k are from IBc(x̄). Let

εk =
(α+ κ)‖yk − y‖

(α− κ)‖yk − ȳ‖+ (α+ κ)‖yk − y‖
. (5)

Then 0 ≤ εk < 1 and εk → 0 as k → ∞. Let xk = εkx̌k + (1 − εk)x̃k. Then xk ∈ A(yk).
Moreover, we have

‖xk − x̄‖ ≤ εk‖x̌k − x̄‖+ (1− εk)‖x̃k − x̄‖
≤ εkκ‖yk − ȳ‖+ (1− εk)(‖x̃k − x‖+ ‖x− x̄‖)
≤ εkκ‖yk − ȳ‖+ (1− εk)κ‖yk − y‖+ (1− εk)α‖y − ȳ‖
≤ εkκ‖yk − ȳ‖+ (1− εk)κ‖yk − y‖+ (1− εk)α‖yk − ȳ‖+ (1− εk)α‖yk − y‖
≤ α‖yk − ȳ‖ − εk(α− κ)‖yk − ȳ‖+ (1− εk)(α+ κ)‖yk − y‖ ≤ α‖yk − ȳ‖,

where in the last inequality we take into account the formula (5) for εk. Thus xk ∈ M0(yk)
and since xk → x, the proof is complete.
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Adapted to our setting, the Michael selection theorem says that any set-valued mapping
acting from a closed ball in Y to X, which is nonempty, closed and convex valued and
lower semicontinuous, has a continuous selection. Lemma 2.1 allows us to apply the
Michael theorem to the mapping M0 obtaining, in terms of a metrically regular mapping
F , the following result:

Theorem 2.2. Consider a mapping F : X →→ Y which is metrically regular at x̄ for ȳ.
Let, for some c > 0, the sets F−1(y) ∩ IBc(x̄) be convex and closed for all y ∈ IBc(ȳ).
Then the mapping F−1 has a continuous local selection x(·) around (ȳ, x̄) which is calm
at ȳ with

clmx(ȳ) ≤ regF (x̄| ȳ). (6)

Proof. Choose α and κ such that α > κ > regF (x̄| ȳ) and apply the Michael selection
theorem to the mapping M0 in Lemma 2.1 for A = F−1. The obtained continuous local
selection is calm with a constant α. Since α could be arbitrarily close to regF (x̄| ȳ), we
obtain (6).

In the following section we will show that on the same assumptions for a set-valued
mapping F , the conclusion of this theorem holds when F is perturbed by a function G
with a sufficiently small Lipschitz constant.

In their paper [1], Bartle and Graves proved several theorems that are related but different.
Perhaps the most known corollary of their work is the following:

Theorem 2.3 ([3], Lemma 3.2, p. 299). For any bounded linear mapping T from X onto
Y , there exists a continuous mapping B such that TBy = y for every y ∈ Y .

Proof. By the Banach open mapping principle, the mapping T−1 is Lipschitz continuous,
hence it lower semicontinuous on X. Since it is convex and closed valued, applying the
Michael selection theorem completes the proof.

For an extension of the main Theorem 4 in [1] (also stated on p. 85 of [6]), see the recent
paper [2].

3. The local selection theorem

In this section we show that if a mapping F satisfies the assumptions of Theorem 2.2, and
hence F−1 has a continuous and calm local selection around (ȳ, x̄), then for any function
G : X → Y with lipG(x̄) < 1/ regF (x̄| ȳ), the mapping (F +G)−1 has a continuous and
calm local selection around (ȳ + G(x̄), x̄). We will prove this result by repeatedly using
an argument similar to the proof of Lemma 2.1 in a way which resembles the proofs in
the classical works of Lyusternik and Graves, a procedure which goes back to Newton’s
method.

Theorem 3.1. Consider a mapping F : X →→ Y which is metrically regular at x̄ for ȳ.
Let for some c > 0 the mapping IBc(ȳ) 3 y 7→ F−1(y)∩ IBc(x̄) be closed and convex valued
and let G : X → Y satisfy lipG(x̄) · regF (x̄| ȳ) < 1. Then the mapping (G+ F )−1 has a
continuous local selection x(·) around (ȳ +G(x̄), x̄) which is calm at ȳ +G(x̄) with

clmx(ȳ +G(x̄)) ≤ regF (x̄| ȳ)
1− lipG(x̄) · regF (x̄| ȳ)

. (7)
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Proof. The proof consists of two steps. In the first step, we use induction to obtain a
Cauchy sequence of continuous functions z0, z1, · · · , such that zn is a continuous and calm
selection of F−1(·−G(zn−1(·))). Then we show that this sequence has a limit in the space
of continuous functions acting from a fixed ball around ȳ to the space X and equipped
with the supremum norm, and this limit is the selection whose existence is claimed.

Choose a constant γ that is greater than the right hand side of (7) and let κ, α and λ
be such that regF (x̄| ȳ) < κ < α < 1/λ, λ > lipG(x̄) and κ/(1− αλ) ≤ γ. Without loss
of generality, we assume that G(x̄) = 0. Let IBa(x̄) and IBb(ȳ) be the neighborhoods of
x̄ and ȳ, respectively, that are associated with the assumed properties of the mapping F
and the function G. Specifically,

1) For every y, y′ ∈ IBb(ȳ) and x ∈ F−1(y) ∩ IBa(x̄) there exists x′ ∈ F−1(y′) with

‖x′ − x‖ ≤ κ‖y′ − y‖;

2) For every y ∈ IBb(ȳ) the set F−1(y) ∩ IBa(x̄) is nonempty, closed and convex;

3) The function G is Lipschitz continuous on IBa(x̄) with a constant λ.

From Lemma 2.1 and Theorem 2.2, there exist a constant β, 0 < β ≤ b, and a continuous
function z0 : IBβ(x̄) → X such that

F (z0(y)) 3 y and ‖z0(y)− x̄‖ ≤ κ‖y − ȳ‖

for all y ∈ IBβ(ȳ). Choose a positive τ such that

τ ≤ (1− αλ)min{a, a

2κ
, β} (8)

and consider the mapping

IBτ (ȳ) 3 y 7→ M1(y) :=
{

x ∈ F−1(y −G(z0(y))) | ‖x− z0(y)‖ ≤ αλ‖z0(y)− x̄‖
}

.

Clearly, (ȳ, x̄) ∈ gphM1 and also for any y ∈ IBτ (ȳ), using (8), we have

‖y −G(z0(y))− ȳ‖ ≤ τ + λ‖z0(y)− x̄‖ ≤ τ + λκτ ≤ β ≤ b.

Then from the Aubin property of F−1 there exists x ∈ F−1(y −G(z0(y))) with

‖x− z0(y)‖ ≤ κ‖G(z0(y))−G(x̄)‖ ≤ αλ‖z0(y)− x̄‖,

and hence x ∈ M1(y). Thus M1 is nonempty valued. Further, if (x, y) ∈ gphM1, we have

‖x− x̄‖ ≤ ‖x− z0(y)‖+ ‖z0(y)− x̄‖ ≤ (1 + αλ)κτ ≤ a.

Then, from the choice of τ in (8) and from the property 2) above, since for y ∈ IBτ (ȳ)
the set M1(y) is the intersection of a closed ball with a closed convex set, the mapping
M1 is closed and convex valued in its domain. We will show that this mapping is lower
semicontinuous in IBτ (ȳ).

Let y ∈ IBτ (ȳ) and x ∈ M1(y), and let yk ∈ IBτ (ȳ), yk → y as k → ∞. If z0(y) = x̄ then
M1(y) = {x̄} and therefore x = x̄. Any xk ∈ M1(yk) 6= ∅ satisfies

‖xk − z0(yk)‖ ≤ αλ‖z0(yk))− x̄‖.
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From the continuity of the functions z0 we obtain that xk → z0(y) = x̄ = x, thus M1 is
lower semicontinuous.

Now let z0(y) 6= x̄. Since z0(yk) ∈ F−1(yk −G(x̄)) ∩ IBa(x̄), the Aubin continuity of F−1

yields the existence of x̌k ∈ F−1(yk −G(z0(yk))) such that

‖x̌k − z0(yk)‖ ≤ κ‖G(z0(yk))−G(x̄)‖ ≤ κλ‖z0(yk)− x̄‖ ≤ αλ‖z0(yk)− x̄‖. (9)

Then x̌k ∈ M1(yk) and in particular, x̌k ∈ IBa(x̄). Further, the inclusion x ∈ F−1(y −
G(z0(y)))∩ IBa(x̄) and the Aubin continuity of F−1 yield that there exists x̃k ∈ F−1(yk −
G(z0(yk))) such that

‖x̃k − x‖ ≤ κ(‖yk − y‖+ λ‖z0(yk)− z0(y)‖) → 0 as k → ∞. (10)

Let

εk :=
(1 + αλ)‖z0(yk)− z0(y)‖+ ‖x̃k − x‖
αλ‖z0(y)− x̄‖ − κλ‖z0(yk)− x̄‖

.

Note that, for k → ∞, the nominator in the definition of εk goes to zero because of the
continuity of z0 and (10), while the denominator converges to (α − κ)λ‖z0(y) − x̄‖ > 0,
therefore εk → 0 as k → ∞. Let

xk = εkx̌k + (1− εk)x̃k.

Since x̃k → x and εk → 0, we obtain xk → x as k → ∞ and also, since F−1 is convex
valued near (x̄, ȳ), we have xk ∈ F−1(yk − G(z0(yk))) for large k. From (9), (10), the
assumption that x ∈ M1(y), and the choice of εk, we have

‖xk − z0(yk)‖ ≤ εk‖x̌k − z0(yk)‖+ (1− εk)‖x̃k − z0(yk)‖
≤ εkκλ‖z0(yk)− x̄‖+ (1− εk)(‖x̃k − x‖+ ‖x− z0(y)‖

+‖z0(y)− z0(yk)‖)
≤ εkκλ‖z0(yk)− x̄‖+ ‖x̃k − x‖+ (1− εk)αλ‖z0(y)− x̄‖

+‖z0(y)− z0(yk)‖
≤ αλ‖z0(yk)− x̄‖+ αλ‖z0(yk)− z0(y)‖

+‖x̃k − x‖+ ‖z0(y)− z0(yk)‖ − εkαλ‖z0(y)− x̄‖+ εkκλ‖z0(yk)− x̄‖
≤ αλ‖z0(yk)− x̄‖+ ‖x̃k − x‖+ (1 + αλ)‖z0(y)− z0(yk)‖

−εk(αλ‖z0(y)− x̄‖ − κλ‖z0(yk)− x̄‖)
= αλ‖z0(yk)− x̄‖.

We obtain that xk ∈ M1(yk) and since xk → x, the mappingM1 is lower semicontinuous in
its domain IBτ (ȳ). Hence, by the Michael selection theorem it has a continuous selection
z1(·) : IBτ (ȳ) → X; that is, there exists a continuous function z1 which satisfies

z1(y) ∈ F−1(y −G(z0(y))) and ‖z1(y)− z0(y)‖ ≤ αλ‖z0(y)− x̄‖ for all y ∈ IBτ (ȳ).

Then for y ∈ IBτ (ȳ),

‖z1(y)− x̄‖ ≤ ‖z1(y)− z0(y‖+ ‖z0(y)− x̄‖ ≤ (1 + κλ)‖y − ȳ‖ ≤ γ‖y − ȳ‖.
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The induction step is somewhat parallel to the first step. Let z0 and z1 be as above and
suppose we have also found functions z2, z3, · · · , zn, such that each zj, j = 2, · · · , n, is a
continuous selection of the mapping

IBτ (ȳ)3 y 7→ Mj(y) :=
{

x ∈ F−1(y−G(zj−1(y))) | ‖x−zj−1(y)‖ ≤ αλ‖zj−1(y)−zj−2(y)‖
}

.

Then for y ∈ IBτ (ȳ) we obtain

‖zj(y)− zj−1(y)‖ ≤ (αλ)j−1‖z1(y)− z0(y)‖ ≤ (αλ)j‖z0(y)− x̄‖, j = 2, · · · , n.

Therefore,

‖zj(y)− x̄‖ ≤
j

∑

i=1

(αλ)i‖zi(y)− zi−1(y)‖+ ‖z0(y)− x̄‖

≤
j

∑

i=0

(αλ)i‖z0(y)− x̄‖

≤ κ

1− αλ
‖y − ȳ‖ ≤ γ‖y − ȳ‖.

Hence, from (8), for j = 2, · · · , n,

‖zj(y)− x̄‖ ≤ a (11)

and also

‖y −G(zj(y))− ȳ‖ ≤ τ + λ‖zj(y)− x̄‖ ≤ τ +
κλτ

1− αλ
≤ β ≤ b. (12)

Consider the mapping

IBτ (ȳ) 3 y 7→ Mn+1(y) :=
{

x ∈ F−1(y−G(zn(y))) | ‖x− zn(y)‖ ≤ αλ‖zn(y)− zn−1(y)‖
}

.

As in the first step, we obtain that Mn+1 is nonempty, closed and convex valued. Let y ∈
IBτ (ȳ) and x ∈ Mn+1(y), and let yk ∈ IBτ (ȳ), yk → y as k → ∞. If zn−1(y) = zn(y) then
Mn+1(y) = {zn(y)} and hence x = zn(y), and from zn(yk) ∈ F−1(yk−G(zn−1(yk)))∩IBa(x̄)
and yk − G(zn−1(yk)) ∈ IBb(ȳ), using the Aubin property of F−1, we obtain that there
exists xk ∈ F−1(yk −G(zn(yk))) such that

‖xk − zn(yk)‖ ≤ κ‖G(zn(yk))−G(zn−1(yk))‖ ≤ αλ‖zn(yk)− zn−1(yk)‖.

Therefore xk ∈ Mn+1(yk), xk → z1(y) = x as k → ∞, and hence Mn+1 is lower semicon-
tinuous for the case considered.

Let zn(y) 6= zn−1(y). From (11) and (12) for y = yk, since

zn(yk) ∈ F−1(yk −G(zn−1(yk))) ∩ IBa(x̄),

the Aubin continuity of F−1 implies the existence of x̌k ∈ F−1(yk −G(zn(yk))) such that

‖x̌k − z1(yk)‖ ≤ κ‖G(zn(yk))−G(zn−1(yk))‖ ≤ κλ‖zn(yk)− zn−1(yk)‖.
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Similarly, since x ∈ F−1(y − G(zn(y))) ∩ IBa(x̄), there exists x̃k ∈ F−1(yk − G(zn(yk)))
such that

‖x̃k − x‖ ≤ κ(‖yk − y‖+ ‖G(zn(yk))−G(zn(y))‖)
≤ κ(‖yk − y‖+ λ‖zn(yk)− zn(y)‖) → 0 as k → ∞.

Let

εk :=
αλ‖zn−1(y)− zn−1(yk)‖+ (1 + αλ)‖zn(y)− zn(yk)‖+ ‖x̃k − x‖

αλ‖zn(y)− zn−1(y)‖ − κλ‖zn(yk)− zn−1(yk)‖
.

Then εk → 0 as k → ∞. Taking

xk = εkx̌k + (1− εk)x̃k,

we obtain that xk ∈ F−1(yk −G(zn(yk))) for large k. Further, we estimate ‖xk − zn(yk)‖
in the same way as in the first step, that is,

‖xk − zn(yk)‖ ≤ εk‖x̌k − zn(yk)‖+ (1− εk)‖x̃k − zn(yk)‖
≤ εkκλ‖zn(yk)− zn−1(yk)‖

+(1− εk)(‖x̃k − x‖+ ‖x− zn(y)‖+ ‖zn(y)− zn(yk)‖)
≤ εkκλ‖zn(yk)− zn−1(yk)‖+ ‖x̃k − x‖

+(1− εk)αλ‖zn(y)− zn−1(y)‖+ ‖zn(y)− zn(yk)‖
≤ αλ‖zn(yk)− zn−1(yk)‖+αλ‖zn(yk)− zn(y)‖+ αλ‖zn−1(yk)− zn−1(y)‖

+‖x̃k − x‖+ ‖zn(y)− zn(yk)‖ − εkαλ‖zn(y)− zn−1(y)‖
+εkκλ‖zn(yk)− zn−1(yk)‖

≤ αλ‖zn(yk)− zn−1(yk)‖
+‖x̃k − x‖+ (1 + αλ)‖zn(y)− zn(yk)‖+ αλ‖zn−1(y)− zn−1(yk)‖
−εk(αλ‖zn(y)− zn−1(y)‖ − κλ‖zn(yk)− zn−1(yk)‖)

= αλ‖zn(yk)− zn−1(yk)‖.

We conclude that xk ∈ Mn+1(yk) and since xk → x as k → ∞, the mapping Mn+1 is
lower semicontinuous in IBτ (ȳ). Hence, the mapping Mn+1 has a continuous selection
zn+1(·) : IBτ (ȳ) → X, that is,

zn+1(y) ∈ F−1(y −G(zn(y))) and ‖zn+1(y)− zn(y)‖ ≤ αλ‖zn(y)− zn−1(y)‖.

Thus
‖zn+1(y)− zn(y)‖ ≤ (αλ)(n+1)‖z0(y)− x̄‖.

The induction step is complete. We obtain an infinite sequence of bounded continuous
functions z0, · · · , zn, · · · such that for all y ∈ IBτ (ȳ) and for all n,

‖zn(y)− x̄‖ ≤
n

∑

i=0

(αλ)i‖z0(y)− x̄‖ ≤ κ

1− αλ
‖y − ȳ‖ ≤ γ‖y − ȳ‖

and moreover,

sup
y∈IBτ (ȳ)

‖zn+1(y)− zn(y)‖ ≤ (αλ)n sup
y∈IBτ (ȳ)

‖z0(y)− x̄‖ ≤ (αλ)nκτ for n ≥ 1.
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The sequence {zn} is a Cauchy sequence in the space of functions that are continuous and
bounded on IBτ (ȳ) equipped with the supremum norm. Then this sequence has a limit
x(·) which is a continuous function in IBτ (ȳ) and satisfies

x(y) ∈ F−1(y −G(x(y))) and ‖x(y)− x̄‖ ≤ κ

1− αλ
‖y − ȳ‖ ≤ γ‖y − ȳ‖

for all y ∈ IBτ (ȳ). Hence x is a continuous local selection of (G + F )−1 and has the
calmness property (7).

Proof of Theorem 1.2. Apply Theorem 3.1 with F = ∇f(x̄) and G(x) = f(x) −
∇f(x̄)x. Metric regularity of F is equivalent to the surjectivity of ∇f(x̄) and F−1 is
convex and closed valued. The mapping G has lipG(x̄) = 0 and finally F +G = f .

Note that Theorem 2.2 follows from Theorem 3.1 with G the zero function.

4. Applications

Theorems 3.1 can be also stated in a corresponding “implicit function" form as follows:

Theorem 4.1. Let X, Y be Banach spaces and Z be a metric space. Consider a mapping
F : X →→ Y and (x̄, ȳ) ∈ gphF which satisfies the conditions in Theorem 3.1. Consider
also a function G : X×Z → Y which satisfies G(x̄, p̄) = 0 for some p̄ ∈ Z and lipx G(x̄, p̄)·
regF (x̄| ȳ) < 1, and is continuous in a neighborhood of (x̄, p̄) (here the Lipschitz modulus
of G(x, p) is with respect to x where lim sup is also with respect to p → p̄). Then there
exist neighborhoods U of x̄ and P of p̄, a continuous function x(·) : P → U , and a constant
γ such that

ȳ ∈ G(x(p), p) + F (x(p)) and ‖x(p)− x̄‖ ≤ γ‖G(x̄, p)‖ for every p ∈ P.

Sketch of proof. The proof is parallel to the proof of Theorem 3.1. First we choose κ,
α and λ such that regF (x̄| ȳ) < κ < α < 1/λ and λ > lipx G(x̄, p̄) and neighborhoods of
x̄, ȳ and p̄ that are associated with the metric regularity of F at x̄ for ȳ with constant
κ and G is Lipschitz continuous with respect to x with constant λ uniformly in p. By
appropriately choosing a sufficiently small radius τ of a ball around p̄, we construct an
infinite sequence of continuous and bounded functions zj : IBτ (p̄) → X, j = 0, 1, · · · ,
that is uniformly in IBτ (p̄) convergent to a function x(·) satisfying the conclusion of the
theorem. The first z0 satisfies

z0(p) ∈ F−1(ȳ −G(x̄, p)) and ‖z0(p)− x̄‖ ≤ κ‖G(x̄, p)‖.

For j = 1, 2, · · · , the functions zj is a continuous selection of the mapping

IBτ (p̄) 3 p 7→ Mj(p)

:=
{

x ∈ F−1(ȳ −G(zj−1(p), p)) | ‖x− zj−1(p)‖ ≤ αλ‖zj−1(p)− zj−2(p)‖
}

,

where z−1(p) = G(x̄, p). Then for all p ∈ IBτ (p̄) we obtain

zj(p) ∈ F−1(ȳ −G(zj−1(p), p)) and ‖zj(p)− zj−1(p)‖ ≤ (αλ)j‖z0(p)−G(x̄, p)‖,
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hence,

‖zj(y)− x̄‖ ≤ κ

1− αλ
‖G(x̄, p)‖.

We obtain a Cauchy sequence of continuous and bounded function which is convergent
with respect to the supremum norm. Passing to the limit with j → ∞ we obtain a
selection with the desired properties.

If a mapping F : X →→ Y has convex and closed graph, then, by the Robinson-Ursescu
theorem (Theorem 1.5), the metric regularity of F at x̄ for ȳ is equivalent to the condition
ȳ ∈ int rgeF . For such mapping we obtain the following corollary of Theorem 3.1:

Corollary 4.2. Let F : X →→ Y have convex and closed graph, let f : X → Y be strictly
differentiable at x̄ and let (x̄, ȳ) ∈ gph(f + F ). Let the strict derivative ∇f(x̄) together
with F satisfy the condition

ȳ ∈ int rge(f(x̄) +∇f(x̄)(· − x̄) + F (·)). (13)

Then there exist neighborhoods U of x̄ and V of ȳ, a continuous function x(·) : V → U ,
and a constant γ such that

(f + F )(x(y)) 3 y and ‖x(y)− x̄‖ ≤ γ‖y − ȳ‖ for every y ∈ V.

An implicit function version of the above corollary easily follows from Theorem 4.1.

As a more specific application we consider the following controlled boundary value prob-
lem:

Úx(t) = f(x(t), u(t)), x(0) = 0, x(1) = b, (14)

where f : IRn × IRm → IRn is a smooth function, the control u(t) ∈ U where U is
convex and compact subset of IRm. The pair (x, u) is a feasible solution of (14) when
it satisfies the differential equation and u(t) ∈ U for almost every t ∈ [0, 1], and also
x ∈ W 1,∞

0 ([0, 1], IRn), the space of all Lipschitz continuous functions x with values in IRn

and with x(0) = 0, and u ∈ L∞([0, 1], IRm), the space of all essentially bounded and
measurable functions with values in IRm. We equip L∞ with the essential supremum
norm ‖u‖∞ and W 1,∞

0 with the norm ‖x‖1,∞ = ‖ Úx‖∞. For simplicity, we assume that
f(0, 0) = 0 and 0 ∈ U and take (0, 0) as the reference solution.

We apply Corollary 4.2 with the following specifications: X = W 1,∞
0 ([0, 1], IRn)×L∞([0, 1],

IRm) and Y = L∞([0, 1], IRn)× IRn,

F (x, u) =

{

(Ax+Bu− Úx, x(1)) for u ∈ L∞, u(t) ∈ U a.e.
∅ otherwise,

where A = ∇xf(0, 0), B = ∇uf(0, 0), G(x, u) = (f(x, u) − Ax − Bu, 0). Then (G +
F )(x, u) = (f(x, u)− Úx, x(1)) for u ∈ L∞, u(t) ∈ U a.e. Clearly, F has convex and closed
graph. The condition (13) is equivalent to the following: there exists an ε > 0 such that
for any (y, b), y ∈ L∞([0, 1], IRn) and b ∈ IRn with ‖y‖∞ + ‖b‖ < ε, there exists a feasible
solution (x, u) of the linearized boundary value problem

Úx(t) = Ax(t) +Bu(t)− y(t), x(0) = 0, x(1) = b
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The latter condition in turn is equivalent to the existence of a feasible solution of

Úx(t) = Ax(t) +Bu(t), x(0) = 0, x(1) = b (15)

for all b with sufficiently small norm. This property of the linear control system (15) is
the so-called null-controllability and can be equivalently written as

0 ∈ int

∫ 1

0

eAtBUdt,

where the integral is in the sense of Aumann. If 0 ∈ intU , the null-controllability is
equivalent to the rank condition rank[B,AB, · · · , An−1B] = n.

Summarizing, if the linearization Úx(t) = Ax(t) +Bu(t) of (14) is null-controllable for L∞

controls with values in U , then there is a continuous function b 7→ (x(b), u(b)) from a
neighborhood V of zero in IRn to the product W 1,∞

0 ([0, 1], IRn)×L∞([0, 1], IRm) such that
for each b ∈ V , (x(b), u(b)) is a solution of the controlled boundary value problem (14)
and moreover the function (x(·), u(·)) is calm at zero.
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This paper was largely inspired by Robert G.Bartle who passed away Sept. 18, 2002. He was
able to see the previous paper [2] published and read a preliminary version of the present paper.
Shortly before he died he sent the author a letter where he, among other things, wrote the
following:

“Your results are inded, an impressive and far-reaching extension of the theorem that Professor

Graves and I published over a half-century ago. I was a student in a class of Graves in which he

presented the theorem in the case that the parameter domain is the interval [0, 1]. He expressed

the hope that it could be generalized to a more general domain, but said that he didn’t see how

to do so. By a stroke of luck, I had attended a seminar a few month before given by André Weil,

which he titled “On a theorem of Stone.” I (mis)understood that he was refereeing to M.H.

Stone, rather than A.H. Stone, and attended. Fortunately, I listened carefully enough to learn

about para compactness and continuous partitions of unity (which were totally new to me) and

which I found to be useful in extending Graves’ proof. So the original theorem was entirely due

to Graves; I only provided an extension of his proof, using methods that were not known to

him. However, despite the fact that I am merely a “middleman”, I am pleased that this result

has been found to be useful.”
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