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We study a variational problem that has been introduced to describe step-terraces on surfaces of so-called
“unorthodox” crystals. Motivated by physical considerations, we use Γ-convergence to derive a simplified
model that can be solved explicitly.
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1. Introduction

For the understanding of crystalline growth processes, the form of step-terraces on the
crystalline surface plays an important role (see e.g. [5]). The edges of these steps usually
form oscillations in space that become larger when the equilibrium temperature rises. This
behaviour is called “orthodoxÔ and had been explained by Herring, Mullins and others
(see e.g. [7]) by thermodynamical effects. However, recently crystals have been studied
which are “unorthodoxÔ in the sense that lower temperatures lead to larger oscillations
and the step profile takes a saw-tooth structure for low temperatures (Fig. 1.1a) and not a
straight line (Fig. 1.1b) as the classical theory would predict [3]. To describe this situation,
a refined model has been suggested by Hannon, Marcus and Mizel [4]. To state it we first
need some definitions:
Let θ ∈ W 1,2((0, S), [−π

2
,+π

2
]) describe the angle of the step profile relative to a straight

line profile. Let β ∈ C1[−π
2
,+π

2
] with minβ = β(π

2
) = β0 > 0 and β(α) = β(−α) for all

α ∈ [−π
2
,+π

2
]. Define

X(s) :=

∫ s

0

cos θ(τ) dτ, (1)

Y (s) := y0 +

∫ s

0

sin θ(τ) dτ, (2)

∗Supported by the DFG Graduiertenkolleg “Analysis, Geometrie und ihre Verbindung zu den Naturwis-
senschaften”
†Supported by the Center for Nonlinear Analysis under NSF Grant DMS-9803791.

ISSN 0944-6532 / $ 2.50 c© Heldermann Verlag



60 M. Kurzke, M. O. Rieger / A Relaxed Model for Step-Terraces on Crystalline...

Figure 1.1: Experimental pictures [3] and schematic sketches of step terraces on the
surface of an unorthodox crystal for high (a) and low (b) temperatures.

and let L, ρ and σ be positive constants. Minimize the energy

E(θ) :=

∫ S

0

ρ|θ′|2 + β(θ) + σY 2 ds, (3)

subject to the constraints
∫ S

0

cos θ(τ) dτ = L,

∫ S

0

sin θ(τ) dτ = 0, (4)

in S ≥ L and θ. The step profile can be described by the graph (X(s), Y (s))s∈[0,S].
The first constraint in (4) expresses that the profile has to extend to (0, L) in the x-
direction, while the second constraint ensures the boundary condition Y (0) = Y (S) (com-
pare Fig. 1.2).
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Figure 1.2: The graph of a typical function θ.

The energy (3) consists of three parts, the last two are physically well motivated, whereas
the first one has purely a technical reason: Without this term the problem would not
admit a minimizer in a classical sense [4].
The minimization problem (3)–(4) admits a solution as has been shown in [4]. However
there are still difficulties in calculating a solution that originate in the fact that Y cannot
be written as a function of x, since the graph (X, Y ) may have vertical parts, and in the
unusual side constraints.
Our attempt was to consider a certain Γ-limit of this problem. This gives us a simplified
energy functional that can be easily minimized and that reflects the relevant physical
features of the problem. Additionally the solutions of this relaxed problem may give some
insight into the solutions of the original problem.
In the next section we reformulate the problem above to derive its Γ-limit. In Section 3
we will calculate explicit solutions for the limit problem.
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2. The Γ-limit

First we need the notion of piecewise Sobolev functions as given in the following straight-
forward definition:

Definition 2.1 (Piecewise Sobolev functions). Let q ≥ 1. Let ∆k be the set of all
strictly increasing (xi)i=0,...k with x0 = 0 and xk = L. A function u ∈ L1(0, L) is a
piecewise Sobolev function W 1,q

p (0, L) if there exists k ∈ N and (xi) ∈ ∆k, such that
u|(xi,xi+1) ∈ W 1,q(xi, xi+1) for i = 0, · · · k − 1.
We say that a sequence (un) ⊂ W 1,q

p (0, L) converges to a function u ∈ W 1,q
p (0, L) whenever

||un − u||∞ → 0 and

lim
n→∞

inf
k

inf
(xi)∈∆k

{

n−1
∑

i=0

||un − u||W 1,q(xi,xi+1)

}

= 0.

(Here we define ||v||W 1,q := ∞ for all v 6∈ W 1,q.)

Reformulation of the problem
We want to derive an expression corresponding to (3) for W 1,q

p functions depending on
X rather than on s. First we consider subintervals J ⊂ [0, L] where the (X(s), Y (s))
corresponding to θ(s) has no vertical parts and is hence a classical graph y(x). With
y = Y (s), x = X(s) and hence y(x) = Y (X−1(s)) we calculate (denoting Ú = d

ds
, ′ = d

dx
):

y′(x) =
ÚY
ÚX
(X−1(x)) = tan θ(X−1(x))

and

y′′(x) = (1 + tan2 θ) Úθ(X−1(x))
1

ÚX(X−1(x))
=

1 + tan2 θ

cos θ
Úθ = ±(1 + tan2 θ)3/2 Úθ.

With the line element ds transforming like

ds =
√

1 + |y′|2dx,

we obtain the expression for the energy contribution in J as

∫

J

(

ρ
y′′2

(1 + y′2)3
+ β(arctan y′) + σy2

)

√

1 + |y′|2dx.

On the vertical parts we have Úθ = 0 hence we get the energy contribution simply as

∫ s2

s1

β(±π

2
) + σY 2(s) ds.

For Y (s1) = y(x−) and Y (s2) = y(x+), y1 = min(y(x−), y(x+)), y2 = max(y(x−),
y(x+)) we can write this (using arc-length parametrization) as

∫ y2

y1

β0 + σt2dt = β0(y2 − y1) +
σ

3
(y32 − y31),
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so the contribution of a jump at x is

β0|y(x+)− y(x−)|+ σ

3
|y(x+)3 − y(x−)3|.

Collecting all terms, we arrive at the new energy functional given by

E(y) =
∑

i

∫

Ji

(

ρ
y′′2

(1 + y′2)3
+ β(arctan y′) + σy2

)

√

1 + |y′|2dx

+
∑

jumps

β0|y(x+)− y(x−)|+ σ

3
|y(x+)3 − y(x−)3|. (5)

Renormalization and statement of Γ-limit
In order to derive a Γ-limit, we assume that ρ and σ have the following scaling property
with respect to an additional parameter ε:

ρ = ρ0ε
2, σ = σ0ε.

Then we can determine the asymptotic behaviour of 1
ε
Eε as ε → 0. Since inf

(

β(arctan y′)
√

1 + y′2
)

> 0, we have to renormalize the energy by subtracting this infimum, so we

define
B(z) := β(arctan z)

√
1 + z2 − inf

z∈R

(

β(arctan z)
√
1 + z2

)

, (6)

and get the new functional

Hε(y) :=
∑

i

∫

Ji

(

ερ0
y′′2

(1 + y′2)3
+ σy2)

√

1 + |y′|2 + 1

ε
B(y′)

)

dx

+
∑

jumps

1

ε
β0|y(x+)− y(x−)|+ σ

3
|y(x+)3 − y(x−)3| (7)

To simplify our exposition, we will only treat the (generic) case where B−1(0) = {±α}
for some α > 0.
In the following we denote the discontinuity set of a function v by Sv and the number of
points in a set X by H0(X). Then we can formulate the following result for the limit of
the functionals Hε:

Theorem 2.2 (Γ-limit). For ε → 0 the functionals Hε Γ-converge in the W 1,1
p ∩ L∞

topology to

H(y) =











σ
√
1 + α2

∫ L

0
y2dx+KH0(Sy′) if y ∈ W 1,1(0, L) and

y′ ∈ BV ([0, L], {±α}),
+∞ else,

(8)

where K is given by

K :=
√
ρ0 K0 (9)

:= 2
√
ρ0

∫ α

−α

B(t)1/2

(1 + t2)5/4
dt (10)

and Su denotes the jump set of a BV function u.
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We observe that the term of (7) which accounts for the energy of jumps in y vanishes
in the limit. The reason for this is simply that a jump in y coresponds to an infinite
derivative of y, and hence an infinite limit energy.

Proof of the Theorem.
We first consider the functional for the highest order terms:

Fε(y) :=

∫

I

ερ0
|y′′|2

(1 + |y′|2)5/2
+

1

ε
B(y′)dx, (11)

for all y ∈ A where

A :=

{

y ∈ W 1,2
p (0, L),

|y′′|2

(1 + |y′|2)5/2
∈ L1(0, L), y(0) = y(L) = y0

}

.

If the first term was just ερ0|y′′|2, then (11) would describe a standard Modica-Mortola
functional (see [6] or [2]). But the more complicated problem can still be treated with the
same methods, following the ideas of Alberti [1]. The only difference is that due to the lack
of an adequate growth condition on B, we cannot prove compactness, i.e. equicoercivity.
However, we can still prove Γ-convergence to the limit functional

F (y) :=

{

KH0(Sy′) if y ∈ W 1,1(0, L) and y′ ∈ BV (I, {±α})
+∞ else.

(12)

Lemma 2.3 (Lower bound inequality). Let yε → y in the strong W 1,1 topology. Then
F (y) ≤ lim infε→0 Fε(yε).

Proof. We can assume w.l.o.g. that Fε(yε) ≤ M < ∞. Using the inequality εa2 + 1
ε
b2 ≥

2ab we calculate

Fε(yε) ≥ 2
√
ρ0

∫

I

B(y′)1/2

(1 + |y′|2)5/4
|y′′|dx. (13)

Setting h(t) := 2
√
ρ
0

B(t)1/2

(1+t2)5/4
and H(t) =

∫ t

0
h(s)ds and using the chain rule, (13) leads to

Fε(yε) ≥
∫

I

h(y′ε)|y′′ε |dx =

∫

I

∣

∣

∣

∣

d

dx
H(y′ε)

∣

∣

∣

∣

dx = |H(y′ε)|BV (I). (14)

(There is no problem at the discontinuities of yε, since limz→±∞H(z) = 0.)
As (at least for a subsequence) H(y′ε) → H(y′) in L1, the lower semicontinuity of the total
variation yields

|H(y′)|BV (I) ≤ lim inf
ε→0

Fε(yε). (15)

From B(y′ε) → B(y′) in L1 (for a subsequence) and M ≥ 1
ε

∫

I
B(y′ε)dx we deduce

∫

I
B(y′)dx = 0 and thus y′ ∈ {±α} a.e. in I. This implies H(y′) ∈ {H(±α)} a.e.,

so the total variation of H(y′) is given by the number of jumps of y′ multiplied with
|H(α)−H(−α)| = K. £
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Before we prove the upper bound inequality, we note that Fε really depends only on the
derivative of y, apart from the boundary condition. We thus set

Gε(u, J) :=

∫

J

ερ0
|u′|2

(1 + u2)5/2
+

1

ε
B(u)dx, (16)

a functional that also depends (as a positive measure) on the integration domain and has
(if we define uε(x) = u(εx)) the scaling property

Gε(u, εJ) = G1(uε, J). (17)

This scaling helps us to determine the optimal profile.

Lemma 2.4 (The optimal profile problem).

inf{G1(u,R) : u ∈ C1(R, [−α, α]), lim
x→−∞

u(x) = −α, lim
x→∞

u(x) = α}

is attained at a function γ and is equal to K. We can choose γ such that γ(x) = −γ(−x).

Proof. This follows in the same way as in Proposition 2 of [1]. The symmetry of γ follows
easily from the symmetry of B. £

Lemma 2.5 (The upper bound). Let y be a function with F (y) < ∞. Then there is
a sequence yε → y in W 1,1 with limε→0 Fε(yε) = F (y).

Proof. As F (y) < ∞, y is a saw-tooth function with slopes ±α. We choose a δ > 0 such
that 3δ < min{|a− b| : a 6= b ∈ Sy′} and define yε as y outside Bδ+ε(Sy′) (see Fig. 2.1).

PSfrag replacements

2δ ε1ε1

ε2ε2

+α

−α

Figure 2.1: The function y′ (thick line) and two approximating functions where δ is fixed,
but ε takes the values ε1 (simple line) and ε2 (dotted line). For ε → 0 the approximations
converge to y′.

Let x0 ∈ Sy′ , w.l.o.g. x0 = 0. Define yε(x) := y(0)+
∫ x

0
γ(t/ε)dt+ ηε inside Bδ(0). On the

remaining part, we define the function by linear interpolation of the derivative (and then



M. Kurzke, M. O. Rieger / A Relaxed Model for Step-Terraces on Crystalline... 65

integrating), this also defines ηε → 0 which is to be chosen such that everything matches.
Following [1], we finally get yε → y in W 1,1

p and Fε(yε) → F (y).

Lower order terms
Now we consider the lower order terms in the functional (7). We prove that they are
continuous with respect to the W 1,1

p -convergence, and hence can be handled as an inde-
pendent perturbation of the functional while taking the Γ-limit.
We define

I1(y) :=

∫ L

0

σy2
√

1 + |y′|2 dx, (18)

and

Iε2(y) :=
∑

jumps

(

1

ε
β0|y(x−)− y(x+)|+ σ

3
|y(x+)3 − y(x−)3|

)

. (19)

Let yn → y in W 1,1
p with Fε(yn) uniformly bounded in n. We show that this leads to

I1(yn) → I1(y) and Iε2(yn) → Iε2(y).
For I1 we can prove this by the following estimate:

I1(yn)− I1(y) = σ

∫ L

0

(

y2n
√

1 + |y′n|2 − y2
√

1 + |y′|2
)

dx

≤ ||y2n − y2||∞(1 + ||y′n||L1)

+||y2||∞
∫ L

0

(
√

1 + |y′n|2 −
√

1 + |y′|2
)

dx

≤ ||y2n − y2||∞
︸ ︷︷ ︸

→0

(1 + ||y′n||L1)
︸ ︷︷ ︸

bounded

+ ||y2||∞
︸ ︷︷ ︸

bounded

||y′n − y′||L1
︸ ︷︷ ︸

→0

.

For Iε2 it follows from the convergence of yn in the L∞-norm ensuring that

|yn(x−)− yn(x+)| − |y(x−)− y(x+)| → 0.

We can now add the limit terms to F and get the Γ-limit of the complete functional. This
proves the theorem. £

3. Explicit solutions

Let σ̃ := σ
√
1 + α2 and ρ̃ := K. Then we can write the limit problem in the generic case

as follows:

Minimize E(y) :=

∫ L

0

σ̃y2 + ρ̃H0(Sy′), (20)

for y ∈ H1(0, L) subject to the side constraints y(0) = y(L) = 0 and |y′| = α > 0 a.e.
Let y be a minimizer of (20). We assume that y′ has N ∈ N jumps (xi)i=1,...,N . By
applying Jensen’s inequality we see that xi = L(i− 1/2)/N . For a given N this gives an
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Figure 3.1: The function y for N = 6 and α = 1

implicit formula for y (up to the sign), see Fig. 3.1.
We calculate its energy EN as follows:

EN = 2N

∫ L/2N

0

σ̃α2x2 dx+ ρ̃N

= σ̃α2 L3

4N2
+ ρ̃N.

To compute the optimal N , we take the derivative of EN with respect to N .

d

dN
EN = ρ̃− σ̃α2 L3

2N3
.

This becomes zero if

N0 = 2−1/3α2/3L 3

√

σ̃

ρ̃
. (21)

Since limN→0EN = limN→+∞EN = +∞, we see that EN is minimal at N0. – More
precisely we need N ∈ N, so the N we are looking for is one of the two natural numbers
closest to N0.
This completely characterizes the minimizer. The saw-tooth structure of the result is in
good correspondence with the physical experiments (see Fig. 1.1). The optimal number
of oscillations depends only on α and on the quotient of σ̃ and ρ̃ (which itself depends on
β). This is consistent with the underlying physics.
If we take into account the definition of K and that (for sufficiently large slopes α) we
have

√
1 + α2 ≈ α, then we get the simplified formula

N0 ≈ 2−1/3αK
−1/3
0 Lσ1/3ρ

−1/6
0 .

SinceK0 is likely to increase with increasing α, this predicts thatN0 is growing slower than
α (assuming that σ and ρ0 do not change significantly). We can confirm this prediction
by taking a closer look to experimental data obtained by Hannon et al.[3], where in an
unorthodox crystal α and N0 are both increasing with decreasing temperature, but α is
growing much faster than N0. It would be interesting to verify this prediction in a more
quantitative way or to perform physical experiments with different values for σ1/3ρ

−1/6
0 .
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