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We prove that for a large class of convex and lower semi-continuous biavariate functions defined over
IRN , epi-convergence in one variable implies epi-convergence in both variables. We also show that for
closed-valued and graph-convex mappings with domains with non empty interiors, pointwise convergence
implies graph convergence. We provide a number of applications for both results.
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Introduction

Consider the following sequence of convex functions fn : IRN×IRM → IR, n ≥ 0. Suppose,
moreover, that ∀y ∈ IRM , fn(·, y) converge continuously to f0(·, y). Then, it is well known
that fn(·, ·) converge continuously to f0(·, ·) [6, Corollary 7.18]. More specifically, ∀xn → x
and ∀yn → y , we have

lim
n

fn(xn, yn) = f0(x, y).

A natural question then is to see if, for convex and lsc functions fn : IRN × IRM → IR,
n ≥ 0, the following statement is valid: ∀y ∈ IRM , fn(·, y) epi-converge to f0(·, y) implies
that fn(·, ·) epi-converge to f0(·, ·).
Moreover, a set valued map from IRN to IRM whose graph is convex possesses strong
continuity properties in the interior of its domain [6, corollary 9.38]. This fact leads us
to suspect that there is a strong relationship between pointwise convergence and graph
convergence of closed-valued, graph-convex maps with domains with non empty interiors.
In this short paper, we show that under very mild conditions the answer to our first ques-
tion is affirmative. We also show that this result, despite its simplicity, has a wide range
of applications. One of these application is a theorem showing that pointwise convergence
implies graph convergence for set-valued maps with convex graphs and domains with non
empty interiors.
Other applications in areas such as differential inclusion, parametric optimization, and
metric regularity also follow from our result.
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1. The main result

Throughout this paper, we will consider functions with values in IR = IR ∪ {+∞}. (our
functions are not allowed to take the value −∞). Therefore, we say a function is proper
if, and only if, it is not identically equal to +∞. We use lsc to indicate a lower semi-
continuous function. Recall the definition of epi-convergence [6, Proposition 7.2]: A
sequence of functions {hn : IRn → IR} epi-converges to h : IRn → IR, if for all x ∈ IRn,

(i) ∀xn → x, lim infhn(xn) ≥ h(x),

(ii) ∃xn → x, lim suphn(xn) ≤ h(x).

When we know a priori that h is lsc, a sequence of functions {hn : IRn → IR} epi-converges
to an lsc function h : IRn → IR, if for all x ∈ IRn,

(i) ∀xn → x, lim infhn(xn) ≥ h(x),

(ii) ∀x ∈ D,∃xn → x, lim suphn(xn) ≤ h(x),

where D is the projection on IRn of some countable and dense subset of epih [5, Corollary
2.5].

For a sequence of functions, we will use →p and →e to indicate pointwise convergence
and epi-convergence respectively.

The following theorem is our main result.

Theorem 1.1. Consider a sequence of convex, lsc functions fn : IRN × IRM → IR, n ≥ 0.
Assume:

(i) there exists ȳ and a neighborhood V (ȳ) such that ∀y′ ∈ V (ȳ) there exists some x
such that f0(x, y

′) < +∞.

(ii) there exists a set D ⊂ IRM that is the projection of some countable and dense subset
of epi f0, such that ∀y ∈ D, fn(·, y) are uniformly minorized and

fn(·, y)→e f0(·, y).

Then,

fn(·, ·)→e f0(·, ·).

The idea of the proof of the main result is similar to an argument used in [5] in a completely
different setting: condition (ii) of epi-convergence is easy to verify. We verify condition (i)
of epi-convergence for a sequence of regularized functions fλ

n , we then use the properties
of the regularized sequence to show that condition (i) holds for fn.

Remark 1.2. Recall that a sequence hn : IRN → IR is uniformly minorized, if ∃γ > 0
such that ∀n, hn(x) ≥ −γ(||x||+ 1),∀x ∈ IRN .

Remark 1.3. In assumption (ii), if fn(·, y)→e f0(·, y) and f0(·, y) is proper, then the
uniform minorization condition is automatically satisfied [6, proposition 7.34].

Remark 1.4. Assumption (i) is weaker than requiring that int dom f(·, ·) is not empty
in IRN × IRM .

Remark 1.5. When fn ≡ f0, the joint epi-convergence of f can lead to a type of conti-
nuity that is related to, but not the same as epi-continuity [6, Sec. 7.F].
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We start with two simple lemmas.

Lemma 1.6. Suppose f : IRN × IRM → IR is proper, convex and lsc. Then

fλ(x, y) := inf
u∈IRN

{f(u, y) + 1
2λ

‖ u− x ‖2n}

is convex and lsc (jointly in x and y) for all λ > 0.

Proof. The fact fλ is convex and proper is a direct result of Proposition 2.22 in [6] and
the fact that f(u, y) + 1

2λ
‖ u − x ‖2n is convex jointly in x, y, and u. Let || · ||n and

|| · ||m denote the norms in IRN and IRM , respectively, and let Bn and Bm denote balls
in IRN and IRM respectively. In light of Theorem 1.17 in [6], we only need to show that
f(u, y) + 1

2λ
||u− x||2n is level bounded in u locally uniformly in (x, y). Therefore, we need

to show that for any (x̄, ȳ) ∈ IRN × IRM , for any α > 0, there exist ρ > 0 and δ > 0 such
that ∀x′ ∈ Bn(x̄, ρ), and ∀y′ ∈ Bm(ȳ, ρ), we have

u ∈ {u|f(u, y′) + 1

2λ
||u− x′||2n ≤ α} =⇒ ||u||n < δ.

Fix α > 0. Since f is convex and proper, ∃γ > 0 such that ∀u ∈ IRN and ∀y′ ∈ Bm(ȳ, ρ),
we have

f(u, y′) > −γ(||u||n + ρ1)− γ, (1)

where ρ1 = ||ȳ||m + ρ. To see that (1) is valid, let u = (u1, · · · , un) and y′ = (y1, · · · , ym).
Then, by Ex. 7.34 in [6], we have

f(u, y′) > −γ
√

u2
1 + · · ·+ u2

n + y21 + · · ·+ y2m − γ, (2)

However,

√

u2
1 + · · ·+ u2

n + y21 + · · ·+ y2m <
√

u2
1 + · · ·+ u2

n +
√

y21 + · · ·+ y2m.

Now (2) and the fact that y′ ∈ Bm(ȳ, ρ) imply that

f(u, y′) > −γ(||u||n + ρ1)− γ.

Because of (1), we have

f(u, y′) +
1

2λ
||u− x′||2n > −γ(||u||n + ρ1)− γ +

1

2λ
||u− x′||2n. (3)

Since y′ ∈ Bm(ȳ, ρ) and x′ ∈ Bn(x̄, ρ), f(u, y
′) + 1

2λ
||u− x′||2n ≤ α implies that

−γ(||u||n + ρ1)− γ +
1

2λ
||u− x′||2n ≤ α,

which implies that ||u||n is bounded by the same bound for all x′ ∈ Bn(x̄, ρ) and y′ ∈
Bm(ȳ, ρ).
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Note that, in general, it is possible that a function f : IRN × IRM → IR is proper, convex,
and lsc, yet g(x) = infy f(x, y) is not lsc. Take for example the function f : IR2 → IR
where f(x, y) = 0 for x > 0, y > 0, xy ≥ 1, and f(x, y) = +∞ otherwise. Clearly,
g(x) = 0 on (0,+∞) and g(x) = +∞ otherwise, is not lsc.

Remark 1.7. When f(·, y) is a proper function for every y, the proof of Lemma 1.2
becomes much simpler. In this case, fλ is convex and finite valued, and hence it is
continuous on IRN × IRM .

Lemma 1.8. Suppose that a sequence hn : IRN → IR of convex lsc functions that epi-
converges to a function h0 : IR

N → IR. Assume further that hn are uniformly minorized.
For n ≥ 0, let

hλ
n(x) = inf

u∈IRN
{hn(u) +

1

2λ
||u− x||2}.

Then hλ
n→p hλ

0 , ∀λ > 0.

Proof. When h0 is proper, the lemma holds by a classical result (Theorem 7.37 in [6]).
If h0 is not proper, then h0 ≡ +∞ implies that hλ

0 ≡ +∞. Suppose that the claim
of pointwise convergence of our lemma does not hold. Then, there exist x, M , and a
subsequence nk such that

hλ
nk
(x) < M. (4)

Then, the uniform minorization condition implies that hλ
nk

are equi-coercive (using equa-
tion similar to (3) of the last part of the proof of Lemma 1.2). Hence, ∃unk

such that
unk

→ u0 for some u0 ∈ IRN . Hence,

lim inf
k

hλ
nk
(x) = lim inf

k
{hnk

(unk
) +

1

2λ
||unk

− x||2} ≥ h0(u0) +
1

2λ
||u0 − x||2 = +∞,

which contradicts (4).

Lemma 1.9. Consider a convex lsc function h : IRN → IR. Then,

lim
λ→0+

hλ = h.

Proof. Again, in the case h is proper, this result is classic [6, Theorem 1.25]. If h ≡ +∞,
then hλ ≡ +∞, and the conclusion of the lemma still holds.

Finally, the proof of Theorem 1.1:

Proof of Theorem 1.1. Since f0 is lsc, condition (ii′), i.e. the “limsupÔ part of the
definition of epi-convergence, clearly holds because of assumption (ii) in our theorem.
More precisely, let D̃ be a countable dense subset of epif0. Let D1 be the projection of
D̃ on IRN × IRM and let D be the projection of D̃ on IRM . Assumption (ii) implies that
∀(x, y) ∈ D1, ∃xn → x such that lim sup fn(x, y) ≤ f(x, y). To prove the “liminfÔ part,
consider the following functions:

fλ
n (x, y) = inf

u∈IRN
{fn(u, y) +

1

2λ
||u− x||2}
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fλ
0 (x, y) = inf

u∈IRN
{f0(u, y) +

1

2λ
||u− x||2},

where || · || is the norm in IRN . Then, the function fλ
0 is proper and int dom fλ

0 6= ∅ by
assumption (i). Moreover, fλ

0 and fλ
n are convex (Proposition 2.22 in [6]). Furthermore,

fλ
n →p fλ

0 on IRN ×D by Lemma 1.3. The function fλ
0 is lsc on IRN × IRM by Lemma 1.2.

Therefore, fλ
n →e fλ

0 on IRN × IRM by Theorem 7.17 in [6]. Hence, ∀(x, y) ∈ IRN × IRM ,
∀xn → x and ∀yn → y, we have

lim inf
n

fn(xn, yn) ≥ lim inf
n

fλ
n (xn, yn) ≥ fλ

0 (x, y). (5)

Hence, by taking the limit of (5) as λ → 0, and using Lemma 1.4, we obtain

lim inf
n

fn(xn, yn) ≥ f0(x, y).

Using Remark 1.3, we obtain

Corollary 1.10. Consider a sequence of convex lsc functions fn : IRN × IRM → IR, for
n ≥ 0. Assume:

(i) there exist ȳ and a neighborhood V (ȳ) such that ∀y ∈ V (ȳ) there exists an x such
that f0(x, y) < ∞.

(ii) there exists a set D ⊆ IRM that is the projection of some countable dense subset of
epi f0, such that ∀y ∈ D, f0(·, y) is proper and

fn(·, y)→e f0(·, y).

Then,
fn(·, ·)→e f0(·, ·).

When f0(·, y) is proper, for all y, condition (i) of Theorem 1.1 is not needed:

Corollary 1.11. Consider a sequence of convex lsc functions fn : IRN × IRM → IR, for
n ≥ 0. Assume:

(i) ∀y, f0(·, y) is proper.
(ii) there exists a set D ⊆ IRM that is the projection of some countable dense subset of

epi f0 such that ∀y ∈ D,
fn(·, y)→e f0(·, y).

Then,
fn(·, ·)→e f0(·, ·).

Proof. When f0(·, y) is proper, fλ
0 is continuous by Remark 1.7. Hence, we have, for all

y ∈ D,
fλ
n (·, y)→p fλ

0 (·, y).
The rest of the proof is the same as the proof of Theorem 1.1.

The following corollary relates the pointwise convergence to the epi-convergence of bivari-
ate convex functions.
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Corollary 1.12. Consider a sequence of convex lsc functions fn : IRN × IRM → IR,
converging pointwise to a convex function f0. Assume:

(i) ∀y, f0(·, y) is lsc and int dom f0(·, y) 6= ∅.
Then,

fn(·, ·)→e f0(·, ·).

Proof. By [6, Theorem 7.17], fn(·, y)→e f0(·, y), for all y. The conclusion of the Lemma
follows from Corollary 1.5.

Recall that a sequence hn of functions is called equi-lower semicontinuous, or equi-lsc, if
∀x, ∀ε >, there exists a neighborhood V of x such that for all n, we have

inf
x′∈V

hn(x
′) ≥ min{hn(x)− ε, ε−1}

Corollary 1.13. Consider a sequence of convex lsc functions fn : IRN × IRM → IR,
converging pointwise to a proper and convex function f0. Assume:

(i) ∀y ∈ IRN , fn(·, y) are equi-lsc and proper.
Then, fn are equi-lsc on IRN × IRM .

Proof. Corollary 1.6 and Theorem 7.10 in [6].

The following corollary shows that in the case of convex bivariate functions, lower semi-
continuity in one variable implies lower semicontinuity in both variables.

Corollary 1.14. If f : IRN × IRM → IR is a convex function such that f(·, y) is proper
and lsc for all y ∈ IRM , then f is lsc.

Proof. By Remark 1.7, fλ is convex and finite, and hence it is continuous on IRN × IRM .
Therefore, ∀(x, y) ∈ IRN × IRM , ∀xn → x, and ∀yn → y, we have

lim inf
n

f(xn, yn) ≥ lim inf
n

fλ(xn, yn) ≥ fλ(x, y). (6)

Since ∀y ∈ IRM , f(·, y) is proper, convex, and lsc, we have by Lemma 1.3

lim
λ→0+

fλ(x, y) → f(x, y). (7)

Thus, by taking the limit of (6) as λ → 0+ and using (7), we get

lim inf
n

f(xn, yn) ≥ f(x, y).

Thus, f is lsc.

Remark 1.15. It is easy to construct examples where the claim of the above corollary
is not correct if we have f(·, y) ≡ +∞ for some y ∈ IRM .

Finally, we emphasize here that Theorem 1.1 is finite dimensional by nature since its proof
depends on [6, Theorem 7.17], which does not hold in infinite dimensional spaces.
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2. Set-Valued Analysis

In this section, we provide a natural application of Theorem 1.1 in set-valued analysis.
We start by reviewing basic notions of convergence for set-valued maps. A sequence Cn

of closed sets in IRN converges to a closed subset C of IRN , if

C = lim sup
n

Cn = lim inf
n

Cn.

For the definition of the limsup and liminf for sets, as well as the for the definitions of
various notions of continuity for set valued maps, see [6].
A sequence Sn : IRN →→ IRM of set-valued maps converges pointwise to S : IRN →→ IRM , if
for every x, we have limn Sn(x) = S(x). The sequence Sn converges to S graphically, if
lim gphSn = gphS, where

gphS = {(x, y) ∈ IRN × IRM |y ∈ S(x)}.

S is outer semi-continuous, or osc, if ∀x ∈ IRN , for any compact set B ⊂ IRM , and for
any ε > 0, there is a neighborhood V (x) of x such that ∀x′ ∈ V (x), we have

S(x′) ∩B ⊂ εS(x),

where εC = {x ∈ IRN |d(x,C) ≤ ε}.
Remark 2.1. S : IRN →→ IRM has closed graph in IRN × IRM if, and only if, S is osc [6,
Theorems 5.7].

Finally, the sequence Sn is equi-outer semi-continuous, or equi-osc, if ∀x ∈ IRN , for any
compact set B ⊂ IRM , and for any ε > 0, there is a neighborhood V (x) of x such that
∀x′ ∈ V (x), we have

Sn(x
′) ∩B ⊂ εSn(x).

Theorem 2.2. Consider a sequence of set-valued functions Sn : IRN →→ IRM that converge
pointwise to a set-valued map S with a closed and convex graph. Assume ∀x,

lim
n

Sn(x) = S(x),

and assume int domS 6= ∅.
Then,

lim
n

gphSn = gphS.

Proof. Apply Theorem 1.1 to the indicator functions of the graphs of Sn and S. Hence,
for a fixed x,

δSn(x)(·)→e δS(x)(·).

Moreover, by our assumption on the domS, there is x̄ and V (x̄) such that ∀x′ ∈ V (x̄),
there exists y such that δS(x′)(x

′, y) is finite. Note also that the indicator functions are
uniformly minorized. Hence, by Theorem 1.1, we have

δSn(·)(·)→e δS(·)(·),

which implies that Sn converges to S graphically.
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Corollary 2.3. Consider a sequence of set valued maps Sn. Suppose that Sn converges
pointwise to S and Sn, S are closed-valued and graph-convex. If we further assume
int domS 6= ∅, then Sn are equi-osc.

Proof. Theorem 2.1 and Theorem 3.3 in [3].

Theorem 2.4. Consider a set valued map S : IRN →→ IRM that is closed-valued, graph-
convex, and domS = IRN . Then, gphS is closed.

Proof. Same as Theorem 2.1, except that we use Corollary 1.9 instead of Theorem 1.1.

The above theorem has many immediate applications. In all the following results, the
set-valued maps are closed-valued, have convex graphs, and their domain is the entire
space. Therefore, these maps are osc by Theorem 2.3 and Remark 2.1.
Recall that a set-valued map is locally bounded at x̄, if there exists a neighborhood V of
x̄ such the set S(V ) = ∪x′∈V S(x

′) is bounded.

Corollary 2.5. Let S be as in Theorem 2.3. Suppose that there is x̄ such that S(x̄) is
bounded, then S is locally bounded on IRN .

Proof. Theorem 2.3, [6, Theorem 5.18], and Remark 2.1.

Corollary 2.6. Let S be as in Theorem 2.3. Suppose that there is x̄ such intS(x̄) 6= ∅,
then int gphS 6= ∅.

Proof. Theorem 2.3, [6, Theorem 5.9], and Remark 2.1.

We finally mention the following metric regularity result

Corollary 2.7. Let S be as in Corollary 2.3. Let ȳ ∈ intS(x̄) for some x̄. Then, ∃ε > 0
along with coefficients α, β in IR+ such that

d(x, S−1(u)) ≤ (α|x− x̄|+ β)d(u, S(x)),

when |u− ū| ≤ ε.

Proof. Corollary 2.4 and [6, Theorems 5.7, 9.48].

3. Differential Inclusions

We now apply the results of the previous section to problems in differential inclusions.
Consider the following differential inclusion DI over [0, 1]:

x′(t) ∈a.e. A(x(t))

x(t) ∈a.e. K

x ∈ W 1,1([0, 1]; IRn).

Consider also the approximating inclusions DIn over [0, 1]

x′(t) ∈a.e. An(x(t))
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x(t) ∈a.e. Kn

x ∈ W 1,1([0, 1]; IRN),

where Kn are closed convex subset in IRN , and An : IRn →→ IRN are set-valued maps that
are closed and convex valued.

Proposition 3.1. (Proposition 10.1 in [3]) Suppose that the inclusions DI and DIn are
defined as above. Suppose that An converges pointwise to A, K = limKn. Suppose further
that An are equi-osc. Let xn be sequence of solutions for DIn. Let x0 be a cluster point
in W 1,1 of such sequence, then x0 is a solution to DI.

We now obtain a result that generalizes Corollary 10.3 and 10.5 in [3].

Theorem 3.2. Suppose the inclusions DI and DIn are defined as above. Suppose An

converges pointwise to A, K = limKn. Suppose that An and A are closed-valued and
graph-convex. Assume further that int domA 6= ∅. Let xn be sequence of solutions for
DIn. Let x0 be a cluster point in W 1,1 of such sequence, then x0 is a solution to DI.

Proof. Corollary 2.2 and Proposition 3.1.

Remark 3.3. Note that in the results of [3], An are assumed to be sublinear (convex
processes). Moreover, they are also assumed to satisfy the following condition:

∀x, sup
n

d(0, An(x)) < +∞, (8)

which implies that domA 6= ∅. Therefore, it is clear that the assumptions of Theorem 3.2
are weaker than those of Corollary 10.3 in [3]. In fact, (6) and the convexity of the graphs
of each An can be used to show that An are equi-lipschitzian, which is much stronger than
the equi-osc requirement of Proposition 3.1.

If we weaken the requirement that xn converges to x0 in W 1,1([0, 1]), we can still obtain
the following result.

Theorem 3.4. Suppose the inclusions DI and DIn are defined as above. Suppose An

converge pointwise to A, K = limKn. Suppose further that An and A are locally bounded,
closed valued and graph-convex. Moreover, assume int domA 6= ∅. Let xn be a sequence
of solutions for DIn. Suppose there is a subsequence xnk

such that xnk
converges to x0 in

L1 and that x′
nk

converges to x′
0 weakly in L1. Then, x0 is a solution to DI.

Proof. Theorem 10.4 in [3] yields the same conclusion provided that An are equi-lsc,
which is in fact the case due to Corollary 2.2.

Remark 3.5. When int domA = IRN , and ∃x̄ such that A(x̄) is bounded, Corollary 2.4.
can be used to to show that A is locally bounded. In this case, the graphic convergence
of An to A and the the fact that A and An are graph-convex, along with Corollary 2.4,
will imply that An are eventually locally bounded.
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4. Level sets of convex functions

There are many results in the literature that relate the epi-convergence of functions to
the convergence of their level sets. For example, see [2], Chapter 1 in [4], and Proposition
7.7 in [6]. In this section, we use Theorem 2.1 to provide a simple proof for a result along
the same lines.
Recall that given a function h : IRN → IR and α ∈ IR, the level set Levαh is the set

Levαh = {x ∈ IRN |h(x) ≤ α}.

Theorem 4.1. Consider a sequence of proper, convex, and lsc functions hn : IRN → IR.
The following are equivalent:

(i) hn→e h0

(ii) there is a set D that is the projection of a countable dense subset of epih0, such that
∀α ∈ D and

Levαhn → Levαh0.

Proof. The fact that (i) implies (ii) is a well known result [6, Theorems 7.7]. To show that
(ii) implies (i) we use Theorem 2.1 by considering the level set as images of a set-valued
map γn : IR →→ IRN , where

γn(α) = Levαhn.

Note that the graphs of such maps are the epigraphs of hn. Now the conclusion follows
again from Theorem 1.1 and Theorem 2.1.

The above theorem is similar to Theorem 2.3 in [4]. On one hand, the underlying space
of Soueycatt’s result is any metric space. On the other hand, his assumptions on the
sequence hn and the corresponding level sets are stronger.

5. Epi-Convergence of perspective functions

Let f : IRN → IR be a proper convex, lsc function. Let u > 0, and d ∈ IRN , and
x0 ∈ int dom f . Consider the difference quotient :

∆f(d, u) = u[f(x0 +
d

u
)− f(x0)].

We use the above quotient to define a perspective function f̃ : IRN ×IR → IR of f (Section
2.2 in [1]):

f̃(d, u) =











u[f(x0 +
d
u
)− f(x0)] , u > 0

f+∞(d) , u = 0

+∞ , u < 0

where

f+∞(d) = lim
u→0+

u[f(x0 +
d

u
)− f(x0)]

is the horizon function of f . Note that f̃ is convex, proper, and lsc (see Example 3.2.3.
in [1]).
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Now consider a sequence of proper convex lsc functions fn that converges to a proper
convex lsc function f . Let

f̃n(d, u) =











u[fn(x0 +
d
u
)− fn(x0)] , u > 0

f+∞
n (d) , u = 0

+∞ , u < 0

Then, we have the following result:

Proposition 5.1. Let f̃n and f̃ be a sequence of functions defined as above. Suppose
fn→e f , then

f̃n→e f̃ .

Proof. We know that fn(x0) → f(x0) since x0 ∈ dom f . Hence, it is clear that ∀u 6= 0,
we have f̃n(·, u)→e f̃(·, u). Thus, the conclusion of this proposition follows from Theorem
1.1.

The above theorem allows us to approximate f+∞ using difference quotients of fn. The
definition of epi-convergence yields the following corollary:

Corollary 5.2. For all d ∈ IRn, ∃un → 0+ and ∃dn → d such that

lim
n

un[fn(x0 +
dn
un

)− fn(x0)] = f+∞(d).

6. Convex parametric minimization

Corollary 1.5 has further consequences in parametric minimization:

Theorem 6.1. Consider a sequence of convex lsc functions fn : IRN × IRM → IR, for
n ≥ 0. Assume:

(i) there exist ȳ and a neighborhood V (ȳ) such that ∀y ∈ V (ȳ) there exists an x such
that f0(x, y) < ∞,

(ii) there exists a dense set D ⊆ IRM that is the projection of a countable dense subset
of epi f0, such that ∀y ∈ D, f0(·, y) is proper and

fn(·, y)→e f0(·, y),

(iii) there exists an α > 0 and a real number β such that for any x 6= 0, we have

f0(x, 0) ≥ α||x||+ β.

Then,

pn(y) = inf
x
fn(x, y)→e p(y) = inf

x
f0(x, y).

Moreover, if Pn(y) = argmin
x

fn(x, y) for n ≥ 0, then

lim sup
n

Pn(y) ⊂ P0(y).
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Proof. Corollary 1.5 and Proposition 7.57 in [6] imply pn→e p0. The statement about Pn

follows from the epi-convergence of pn and the definition of Pn.

The above theorem slightly generalizes Theorem 7.41 in [6]. We also note that condition
(ii) can be expressed as f+∞(x, 0) > 0, for all x 6= 0 [6, Corollary 7.43].

Acknowledgements. The autor is grateful to an anonymous referee for a correction in the
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