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This paper is concerned with the finite convex integration problem which for a given finite family of pairs
of points {(xi, x

∗
i )}, consists in finding a convex function f such that x∗

i ∈ ∂f(xi) for all i.

1. Introduction

Assume that we are given a finite family {(xi, x
∗
i )}i∈I ⊂ X×X∗, where X = X∗ = Rn (but

the analysis works in a more general setting, for instance in Hilbert or Banach spaces).
We are concerned with the following problem :

Find a convex function f : X → R such that x∗
i ∈ ∂f(xi) ∀ i ∈ I (Int)

where ∂f(x) denotes the Fenchel-subdifferential of f at x. Clearly, this problem is a finite
version of the continuous integrability problem (for more details, see Rockafellar [1]):
given a convex subset C of X and a point-to-set map Γ : C → X∗:

Find a convex function f : C → R such that Γ(x) ⊂ ∂f(x) ∀ x ∈ C (Intc)

If f is a solution of one of these problems, its lsc-regularization (that is to say the greatest
lower semi-continuous (lsc in short) function bounded from above by f) is also a solution.
For this reason, we shall only retain the solutions which are lower semi-continuous.

Given a solution f of (Int), then any function of type f + K where K is constant is
a solution as well. Thus, we consider an additional initial-type condition: fix a couple
(x0, x

∗
0) in the family and λ0 ∈ R , consider only the lower semi-continuous convex functions

that satisfy
f(x0) = λ0 and x∗

i ∈ ∂f(xi) ∀ i ∈ I.

We denote by F the set of all such functions. In both cases (continuous or finite), this
solution set F is empty unless a cyclic-monotonicity type condition, that we call (CM),
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holds. However, when F is not empty, F is not necessarily a singleton as shown by the
following example: X = X∗ = R , the family is {(0, 0), (1, 2), (−1,−2)} and the initial
condition is f(0) = 0. Then, the two following functions f1(x) = x2 and f2(x) = 2|x|
belong to F .

We shall show, in Sections 3 and 4, that there are two functions f− and f+ in F such
that f− ≤ f ≤ f+ for all f ∈ F . In Section 5, we describe algorithms for computing
these two functions f− and f+. The gap between f− and f+ is studied in Section 6. In
Section 7, we consider the case where the initial condition f(x0) = λ0 is replaced by the
condition f(x̄) = λ̄ where x̄ is an arbitrary point in X.

Finally, we conclude this paper with the particular case where X = R .

The notation is the classical notation of convex analysis used in the tutorial book of
Rockafellar [1].

2. The cyclic monotonicity property

A necessary condition for the existence of a solution of the continuous integrability prob-
lem (Intc) is that the point-to-set map Γ enjoys a cyclic monotonicity property (see for
instance Rockafellar [1]). When transposed to the finite case, the property is as below.

Definition 2.1. The family {(xi, x
∗
i )}i∈I is said to be cyclically monotone if for all j0, j1,

. . . , jk, jk+1 ∈ I with j0 = jk+1, the following inequality holds:
∑

l=0,··· ,k

〈x∗
jl
, xjl+1

− xjl〉 ≤ 0. (CM)

This condition is necessary for the existence of solutions in our problem. The proof is the
same as for the continuous problem and for the sake of completeness, we briefly reproduce
it below. Assume that f ∈ F . Then, because x∗

i ∈ ∂f(xi) for all i ∈ I, we have

f(xj1) ≥ f(xj0) + 〈x∗
j0
, xj1 − xj0〉,

f(xj2) ≥ f(xj1) + 〈x∗
j1
, xj2 − xj1〉,

...

f(xjk) ≥ f(xjk−1
) + 〈x∗

jk−1
, xjk − xjk−1

〉,
f(xjk+1

) ≥ f(xjk) + 〈x∗
jk
, xjk+1

− xjk〉.

Condition (CM) follows by adding these inequalities and from the equality xjk+1
= xj0 .

3. Construction of a minimal function

Let us define the set J as the collection of all ordered subsets J = {j0, · · · , jk} of I such
that j0 = 0. We precise in this definition that jr 6= js when r 6= s.

Next, for each J ∈ J , let us define, as in Rockafellar [1] p.238, the function on X

fJ(x) := 〈x∗
j0
, xj1 − xj0〉+ · · ·+ 〈x∗

jk−1
, xjk − xjk−1

〉+ 〈x∗
jk
, x− xjk〉, (1)

and then the function f− as

f−(x) := λ0 +max
J∈J

fJ(x). (2)
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Each function fJ is affine by construction. Hence, f− is finite, convex and continuous on
X since it is the maximum of a finite number of affine functions. In the following lemma,
we are interested in the values of the function f− at points xi, i ∈ I.

Lemma 3.1. Assume that condition (CM) holds. Let i ∈ I, then there exists J =
{j0, · · · , jk} ∈ J with jk = i such that

f−(xi) = λ0 + fJ(xi). (3)

In particular
f−(x0) = λ0.

Proof. It results from (CM) that fJ(x0) ≤ 0 for all J ∈ J . Hence f−(x0) = λ0 because
the maximum in (2) is reached for J = {0}. Next, for i 6= 0, let J = {j0, · · · , jk} ∈ J be
such that

f−(xi) = λ0 + fJ(xi). (4)

If i /∈ J = {j0, · · · , jk}, change J into J = {j0, · · · , jk, i}, then J still belongs to J and
(4) holds as well. If i ∈ J but i 6= jk, i.e., if J is of the form J = {j0, · · · , jl−1, jl =
i, jl+1, · · · , jk}, then

fJ(xi) =
∑

r=0,··· ,l−1

〈x∗
jr , xjr+1 − xjr〉+

∑

r=l,··· ,k

〈x∗
jr , xjr+1 − xjr〉

with jk+1 = i. Since jl = jk+1 = i and (CM) holds, the second sum is less or equal to 0.
Change J into J = {j0, · · · , jl−1, jl = i}, then J ∈ J and (4) still holds.

In general, for a given i ∈ I, there does not exist a unique J ∈ J for which (3) holds.
Moreover these J do not have necessarily the same cardinality. This motivates the fol-
lowing definition.

Definition 3.2. Given i ∈ I, we denote by J (i) the family of the ordered sets with the
smallest cardinality J = {j0, · · · , jk = i} ∈ J for which (3) holds. That cardinality,
denoted by r(i), is called the rank of i.

It follows that r(0) = 1 and 2 ≤ r(i) ≤ card(I) for all i 6= 0. The following proposition is
crucial for the construction of the function f−.

Proposition 3.3. Let i ∈ I, i 6= 0 and J = {j0, j1, · · · , jk−1, jk = i} ∈ J (i). Then

f−(xi) = f−(xjk−1
) + 〈x∗

jk−1
, xi − xjk−1

〉.

Moreover,
r(i) = r(jk−1) + 1.

Proof. The assumptions imply that r(i) = k + 1 and

f−(xi) = [λ0 +
∑

r=0,··· ,k−2

〈x∗
jr , xjr+1 − xjr〉 ] + 〈x∗

jk−1
, xi − xjk−1

〉.

By definition of f− and since {j0, j1, · · · , jk−1} ∈ J , we have

f−(xi) ≤ f−(xjk−1
) + 〈x∗

jk−1
, xi − xjk−1

〉. (5)
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Taking then some ÝJ = {Ýj0, Ýj1, · · · , Ýjr−1, Ýjr = jk−1} ∈ J (jk−1), we consider two cases in
succession.

• i /∈ ÝJ . Then {Ýj0, Ýj1, · · · , Ýjr−1, Ýjr = jk−1, Ýjr+1 = i} ∈ J and therefore

f−(xjk−1
) + 〈x∗

jk−1
, xi − xjk−1

〉 = λ0 +
∑

l=0,··· ,r

〈x∗
Ýjl
, xÝjl+1

− xÝjl
〉 ≤ f−(xi). (6)

The equality follows from the definition of J (jk−1) and the inequality, from the def-
inition of f−(xi). Gathering (5) and (6), we obtain f−(xi) = f−(xjk−1

)+ 〈x∗
jk−1

, xi−
xjk−1

〉 and r(i) ≤ r(jk−1) + 1. Then, by definition of r(i), r(i) = r(jk−1) + 1.

• i ∈ ÝJ . Then ÝJ is of the form

ÝJ = {Ýj0, · · · , Ýjs−1, Ýjs = i, Ýjs+1, · · · , Ýjr = jk−1}.

In order to prove that this case never occurs, set

A = λ0 +
∑

l=0,··· ,s−1

〈x∗
Ýjl
, xÝjl+1

− xÝjl
〉

and
B =

∑

l=s,··· ,r

〈x∗
Ýjl
, xÝjl+1

− xÝjl
〉+ 〈x∗

jk−1
, xi − xjk−1

〉.

Inequality (5) implies f−(xi) ≤ A + B. Condition (CM) implies B ≤ 0. Finally,
A ≤ f−(xi) because the ordered set {Ýj0, · · · , Ýjs−1, Ýjs = i} belongs to J . It results
first that B = 0 and A = f−(xi); next

r(i) ≤ s+ 1 < k + 1 = r(i)

which is not possible.

The proof is complete.

Now, we can state the main result of this section.

Theorem 3.4. Assume that Condition (CM) holds for the family {(xi, x
∗
i )}i∈I . Then f−

satisfies the following properties:

i) f− is convex and continuous on X;

ii) f−(x0) = λ0;

iii) x∗
i ∈ ∂f−(xi) ∀ i ∈ I;

iv) f−(x) = max i∈I [ f
−(xi) + 〈x∗

i , x− xi〉 ] ∀ x ∈ X;

v) g(x) ≥ f−(x) for all g ∈ F and x ∈ X.

Proof. i) and ii) have already been shown.

iii) Let x ∈ X and i ∈ I. Take J = {j0, j1, · · · , jk = i} ∈ J (i). Using (1), (2) and the
definition of J (i), we obtain

f−(x) ≥ λ0 +
∑

r=0,··· ,k−1

〈x∗
jr , xjr+1 − xjr〉+ 〈x∗

i , x− xi〉,

f−(x) ≥ f−(xi) + 〈x∗
i , x− xi〉.
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Thus, x∗
i ∈ ∂f−(xi).

iv) Given x ∈ X, let J = {j0, j1, · · · , jk} ∈ J be such that

f−(x) = λ0 + fJ(x)

= [λ0 +
∑

r=0,··· ,k−1

〈x∗
jr , xjr+1 − xjr〉] + 〈x∗

jk
, x− xjk〉

≤ f−(xjk) + 〈x∗
jk
, x− xjk〉.

Combining these relations with iii), we obtain iv).

v) Assume that g ∈ F . First, let us prove that g(xi) ≥ f−(xi) for all i. We proceed by
induction on the ranks of the elements of I. If r(i) = 1, i.e., if i = 0 then, by definition,
g(x0) = f−(x0) and the inequality holds. Assume that it holds for all i of rank less or
equal to p and let any i of rank p + 1. Let J = {j0, j1, · · · , jk, jk+1 = i} ∈J(i). Then,
since x∗

jk
∈ ∂g(xjk), we have

g(xi) ≥ g(xjk) + 〈x∗
jk
, xi − xjk〉.

Proposition 3.3 implies that, on the first hand, jk is of rank p and thereby g(xjk) ≥ f−(xjk)
and on the other hand f−(xi) = f−(xjk) + 〈x∗

jk
, xi − xjk〉. Hence v) holds for x = xi.

Next, let any x ∈ X. By iv) we know that there exists i ∈ I such that f−(x) =
f−(xi) + 〈x∗

i , x − xi〉. On another hand g(x) ≥ g(xi) + 〈x∗
i , x − xi〉 because x∗

i ∈ ∂g(xi).
Hence g(x) ≥ f−(x) because g(xi) ≥ f−(xi).

Thus, in view of iv), the minimal function f− of F is completely determined when the
values f−(xi) are known at points xi. The following proposition shows that these values
are the optimal solutions of a linear program.

Proposition 3.5. The quantities f−(xi) are the optimal solutions of the following linear
program:

min
λ

[
∑

i∈I,i6=0

λi : λj − λi ≥ 〈x∗
i , xj − xi〉 ∀ i, j ∈ I ]. (LP−)

(recall that λ0 is fixed.)

Proof. i) Let λ̄ ∈ RI be defined by λ̄i = f−(xi) for all i ∈ I. Since f− is convex and
x∗
i ∈ ∂f−(xi), then λ̄ is a feasible solution of (LP−).

ii) Next, let λ be a feasible solution of (LP−). Define the following function p on X:

p(x) = max
i∈I

{λi + 〈x∗
i , x− xi〉}.

By construction, p is finite and convex on X. Moreover,

p(xj) ≥ λj + 〈x∗
j , xj − xj〉 = λj.

Assume, for contradiction, that p(xj) 6= λj for some j. Then, there exists an index i such
that

p(xj) = λi + 〈x∗
i , xj − xi〉 > λj
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in contradiction with λ being feasible. Thus, p(xj) = λj for all j. Next, for all x ∈ X

p(x) ≥ λi + 〈x∗
i , x− xi〉 = p(xi) + 〈x∗

i , x− xi〉

and therefore p ∈ F . Finally, since f− is minimal in F , p ≥ f− and in particular

∑

i∈I

λi =
∑

i=∈I

p(xi) ≥
∑

i∈I

f−(xi) =
∑

i∈I

λ̄i.

Thus, the construction of f− is equivalent to finding the optimal solution of the linear
program (LP−). Since the existence of f− depends on Condition (CM), that condition is
related to the feasibility of (LP−).

Proposition 3.6. (CM) holds if and only if (LP−) is feasible.

Proof. i) Assume that λ is feasible for (LP−) and let J = {j0, · · · , jk, jk+1} ⊂ I with
jk+1 = j0. Then,

λj1 ≥ λj0 + 〈x∗
j0
, xj1 − xj0〉,

λj2 ≥ λj1 + 〈x∗
j1
, xj2 − xj1〉,

...

λjk+1
≥ λjk + 〈x∗

jk
, xjk+1

− xjk〉.

Adding these inequalities, and using the fact that λjk+1
= λj0 , we get immediately Con-

dition (CM).

ii) Next, assume that (CM) holds. Then f− exists. Take, as in the proof of the last
proposition, λ̄i = f−(xi) for all i. We have seen that such λ̄ is a feasible (and even
optimal) solution for (LP−).

Although a classical simplex algorithm for linear programming can be used to compute
the optimal solution of (LP−), we shall design a special algorithm in Section 5.

4. Construction of a maximal function

We begin this section by noticing that the variables xi and x∗
i play a symmetric role in

Condition (CM). This is the object of the following proposition:

Proposition 4.1. The family {(xi, x
∗
i )}i∈I considered as a subset of X × X∗ satisfies

Condition (CM) if and only if the family {(x∗
i , xi)}i∈I considered as a subset of X∗ ×X

satisfies (CM) too.

Proof. Assume that (CM) holds inX×X∗. Let J = {j0, · · · , jk, jk+1} ⊂ I with jk+1 = j0.
We must prove that the quantity

A =
∑

r=0,··· ,k

〈x∗
jr+1

− x∗
jr , xjr〉

is nonnegative. Rearranging the terms, we have
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A = 〈x∗
j1
, xj0〉+ 〈x∗

j2
, xj1〉+ · · ·+ 〈x∗

jk+1
, xjk〉

−〈x∗
j0
, xj0〉 − 〈x∗

j1
, xj1〉 − · · · − 〈x∗

jk
, xjk〉.

Take I = {i0, · · · , ik, ik+1} ⊂ I where is = jk+1−s for s = 0, 1 · · · , k + 1. Then ik+1 = i0
and

A = 〈x∗
i0
, xi1〉+ 〈x∗

i1
, xi2〉+ · · ·+ 〈x∗

ik
, xik+1

〉
−〈x∗

i0
, xi0〉 − 〈x∗

i1
, xi1〉 − · · · − 〈x∗

ik
, xik〉.

Condition (CM) implies A ≤ 0. By symmetry, (CM) for X∗ × X implies (CM) for
X ×X∗.

Assume that (CM) holds (it is no more necessary to precise if it holds for X ×X∗ or for
X∗ ×X). Set λ∗

0 = 〈x0, x
∗
0〉 − λ0 and define H as the collection of lower semi-continuous

convex functions on X∗ such that

h(x∗
0) = λ∗

0 and xi ∈ ∂h(x∗
i ) ∀ i ∈ I.

It is easy to see that a function f belongs to F if and only if its Fenchel-conjugate belongs
to H. On the other hand, Theorem 3.4 implies the existence of a minimal function h− in
H. Define the function f+ as the Fenchel-conjugate of h−. Then we have the following
result.

Proposition 4.2. f+ is maximal in F , i.e., f ≤ f+ for all f ∈ F .

Proof. We have already seen that f+ belongs to F . Let any f ∈ F , then its conjugate f ∗

belongs to H and therefore h− ≤ f ∗. Passing to the conjugates we obtain (h−)∗ ≥ f .

The next theorem shows that f+ is completely characterized by its values at points xi.

Theorem 4.3. The maximal function f+ of F is given by

f+(x) = inf
r
{
∑

riµi : r ∈ RI , ri ≥ 0,
∑

ri = 1,
∑

rixi = x}

where µi = f+(xi) = 〈xi, x
∗
i 〉 − λ∗

i and λ∗
i = h−(x∗

i ).

In particular, f+(x) = +∞ for all x not in the convex hull of the points xi.

Proof. Recall that, for a lower semi-continuous convex function f ,

x∗ ∈ ∂f(x) ⇐⇒ f(x) + f ∗(x∗) = 〈x, x∗〉.

Hence, if µi = f+(xi) and λ∗
i = h−(x∗

i ) and because h− is the conjugate of f+,

λ∗
i + µi = 〈xi, x

∗
i 〉.

Next, since h− is minimal in H and in view of Theorem 3.4,

h−(x∗) = max
i∈I

[ h−(x∗
i ) + 〈xi, x

∗ − x∗
i 〉 ]

= min
t

[t : t ∈ R , λ∗
i + 〈xi, x

∗ − x∗
i 〉 ≤ t ∀ i ∈ I ].
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Hence,

f+(x) = sup
x∗∈X∗

[〈x, x∗〉 − h−(x∗)]

= sup
x∗,t

[〈x, x∗〉 − t : 〈xi, x
∗〉 − t ≤ 〈xi, x

∗
i 〉 − λ∗

i ∀ i ∈ I]

= inf
r
[
∑

riµi : r ∈ RI , ri ≥ 0,
∑

ri = 1,
∑

rixi = x ∀ i ∈ I ].

Clearly, f+ takes the value +∞ outside the convex hull of points xi.

We have seen that the quantities λi = f−(xi) correspond to the optimal solution of a
linear program. This is also the case for the quantities µi = f+(xi).

Proposition 4.4. The quantities µi are the optimal solutions of the following linear pro-
gram:

max
µ

[
∑

i∈I,i6=0

µi : µj − µi ≥ 〈x∗
i , xj − xi〉 ∀ i, j ∈ I ]. (LP+)

where µ0 = λ0 is fixed.

Proof. Because h− is minimal in H, the quantities λ∗
i = h−(x∗

i ) are the optimal solutions
of the linear program

min
λ∗

[
∑

i∈I,i6=0

λ∗
i : λ∗

i − λ∗
j ≥ 〈x∗

i − x∗
j , xj〉 ∀ i, j ∈ I ]. (LP+)

where λ∗
0 = 〈x∗

0, x0〉 − λ0 is fixed. On the other hand, λ∗
i + µi = 〈x∗

i , xi〉 for all i, hence
replacing λ∗

i by its value in term of µi, the problem is equivalent to

A = min
µ

[
∑

i∈I,i6=0

(〈xi, x
∗
i 〉 − µi) : µj − µi ≥ 〈x∗

i , xj − xi〉 ∀i, j ∈ I ],

i.e.,

A =
∑

i∈I,i6=0

〈xi, x
∗
i 〉 −max

µ
[
∑

i∈I,i6=0

µi : µj − µi ≥ 〈x∗
i , xj − xi〉 ∀i, j ∈ I ].

As the first term is constant in µ, the result follows.

It is worth noticing that the feasibility domains of (LP+) and (LP−) are the same. Here
again, we shall give, in the next section, a specially designed algorithm for computing the
values µi.

Thus, we have shown in this section and the previous one the existence of a maximal and
a minimal function in F . We resume that below.

Theorem 4.5. Assume that the family {(xi, x
∗
i )}i∈I satisfies Condition (CM). Then

there exist two functions f−, f+ ∈ F such that

f− ≤ f ≤ f+ for all f ∈ F .

Furthermore dom(f−) = X and dom(f+) = co(xi, i ∈ I).
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Remark 4.6. A geometrical remark on f− and f+.

In view of Theorems 3.4 and 4.3, the epigraphs of f− and f+ are two convex polyhe-
dral sets. The first one is formulated as an intersection of a finite collection of closed
convex half-spaces while the second one as a finitely generated convex set, the two dual
formulations of convex polyhedra.

5. Algorithms

We have seen that f− is completely determined when the quantities λi = f−(xi) are
known. We have also seen that these λi are the optimal solutions of a linear program and
thereby they can be computed by the simplex algorithm. However, we propose a specially
designed algorithm based on the result on the ranks in Proposition 3.3. In order to ease
the understanding of the algorithm, explanations are included in the description of the
algorithm.

An algorithm for computing the values f−(xi).

The data are the family {(xi, x
∗
i )}i∈I with I = {0, 1, · · · , n} and the value λ0. The

algorithm computes the values λi = f−(xi) for i 6= 0 when Condition (CM) holds or says
that Condition (CM) does not hold.

Step k=1: Initialization

• For i = 1, · · · , n do

λi = λ0 + 〈x∗
0, xi − x0〉 and m(i) = 1.

• Do c(1) = 1.
• Do k = 2, go to the next step.

Explanations:

• m(i) = 1 means that λi has been modified during the step.

• c(1) = 1 means that some λi have been modified during step k = 1.

• In case where (CM) holds, the inequality λi ≤ f−(xi) holds for all i with equality for
all i of rank less or equal to 2.

Step k (for k ≥ 2)

At the beginning of the step, in case where (CM) holds, then the inequality λi ≤ f−(xi)
holds for all i with equality for all i of rank less or equal to k.

• Do c(k) = 0.
• For i = 1, 2, · · · , n do

– If m(i) = 0: go to the next i.
– If m(i) = 1 and λi + 〈x∗

i , x0 − xi〉 > λ0: STOP, (CM) does not hold.
– If m(i) = 1 and λi + 〈x∗

i , x0 − xi〉 ≤ λ0:
∗ Do m(i) = 0.
∗ For all j = 1, · · · , n such that λj < λi + 〈x∗

i , xj − xi〉
· Do λj = λi + 〈x∗

i , xj − xi〉.
· Do m(j) = 1 and c(k) = 1.

• If c(k) = 0: STOP, (CM) holds, f−(xi) = λi for all i.
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• If c(k) = 1 and k = n+ 2: STOP, (CM) does not hold.
• If c(k) = 1 and k < n+ 2: Do k = k + 1, and go to step k.

Explanations:

• One works only on those i which have been modified since their last passage (m(i) =
1).

• In case where (CM) holds, the quantity λj stays less or equal to f−(xj).

• In view of the last item, it is clear that if λi+〈x∗
i , x0−xi〉 > λ0, then it is not possible

to construct f−. Hence (CM) does not hold.

• At the end of step k, λj = f−(xj) for all i of rank less or equal to k + 1.

• If c(k) = 0, then no modifications on the λi have been done during step k. This
means that λj ≥ λi + 〈x∗

i , xj − xi〉 for all i, j = 0, 1, · · · , n. λ is feasible for (LP-)
and since λj ≤ f−(xj) we have got the optimal solution.

• Since the rank of each xi cannot exceed the cardinality of I, the condition k = n+ 2
means that it is not possible to construct f−.

The finite convergence of the algorithm, when (CM) holds, follows from Proposition 3.3.

Because the symmetry between the minimal functions f− and h− of F and H respectively,
the same algorithm can be used to compute the values λ∗

i = h−(x∗
i ). Then the values

µi = f+(xi) = 〈x∗
i , xi〉 − λ∗

i are determined. Still, we can resume these two steps in one
algorithm formulated directly in terms of µi.

An algorithm for computing the values f+(xi).

Step k=1: Initialization

• For i = 1, · · · , n do

µi = µ0 + 〈x∗
i , xi − x0〉 and m(i) = 1.

• Do c(1) = 1.
• Do k = 2, go to the next step.

Step k (for k ≥ 2)

• Do c(k) = 0.
• For i = 1, 2, · · · , n do

– If m(i) = 0: go to the next i.
– If m(i) = 1 and µi + 〈x∗

0, x0 − xi〉 < µ0: STOP, (CM) does not hold.
– If m(i) = 1 and µi + 〈x∗

0, x0 − xi〉 ≥ µ0:
∗ Do m(i) = 0.
∗ For all j = 1, · · · , n such that µj > µi + 〈x∗

j , xj − xi〉:
· Do µj = µi + 〈x∗

j , xj − xi〉.
· Do m(j) = 1 and c(k) = 1.

• If c(k) = 0: STOP, (CM) holds, f+(xi) = 〈x∗
i , xi〉 − λ∗

i for all i.
• If c(k) = 1 and k = n+ 2: STOP, (CM) does not hold.
• If c(k) = 1 and k < n+ 2: Do k = k + 1, and go to step k.
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6. The gap between f− and f+

In this section, we turn our interest to the gap [f−(x), f+(x)]. Because f+(x) = +∞
outside C = co(xi, i ∈ I), we only consider the case where x ∈ C. We start the study
with the particular case where x is one of the xi.

Let us define
εi = f+(xi)− f−(xi) = µi − λi.

By construction, ε0 = 0.

Proposition 6.1. For all i, j ∈ I,

|εi − εj| ≤ 〈x∗
i − x∗

j , xi − xj〉.

Proof. We have seen that

〈x∗
j , xi − xj〉 ≤ λi − λj

〈x∗
i , xj − xi〉 ≤ µj − µi.

Hence,
〈x∗

j − x∗
i , xi − xj〉 ≤ εj − εi.

Next, by symmetry,
|εi − εj| ≤ 〈x∗

i − x∗
j , xi − xj〉.

Since ε0 = 0, it follows directly that for all i

εi ≤ 〈x∗
i − x∗

0, xi − x0〉. (7)

However, a better upper bound can be obtained. For that, define Ýε0 = 0 and for i 6= 0,

Ýεi = min
J

[

∑

k=0,··· ,p

〈x∗
jk+1

− x∗
jk
, xjk+1

− xjk〉 :
J = {j0, j1, · · · , jp+1}

j0 = 0, jp+1 = i

]

. (8)

Next, set Ýε = maxi Ýεi. The following upper bound is a consequence of Proposition 6.1.

Proposition 6.2. For all i ∈ I, εi ≤ Ýεi ≤ Ýε.

Proof. Let i ∈ I and let J = {j0, · · · , jp+1} with j0 = 0 and jp+1 = i. Then, since ε0 = 0,

εi ≤ |εi − εjp |+ · · ·+ |εj1 − ε0|

≤
∑

k=0,··· ,p

〈x∗
jk+1

− x∗
jk
, xjk+1

− xjk〉.

Since J is arbitrary, the proof is complete.

An algorithm similar to those described in Section 5 can be designed for computing the
values of the upper bounds Ýεi of εi. These upper bounds are more efficient than those
given by the inequalities (7). To see that, consider the following example:
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Example 6.3. X = R , the family is {( i
q
, i
q
)}i=0,1,··· ,q.

The upper bound obtained from inequality (7) is εq ≤ 1, and from Proposition 6.2,
εq ≤ Ýεq =

1
q
.

Next, we consider some x ∈ C. Then x is a convex combination of the points xi, i.e.,
there are K ⊆ I and tk ≥ 0 , k ∈ K such that

x =
∑

k∈K

tkxk, and
∑

k∈K

tk = 1.

Define Ck as the convex hull of points xk, k ∈ K.

For x ∈ Ck, it follows from Theorems 3.4 and 4.3 that

f+(x)− f−(x) ≤ min
i∈K

[
∑

k∈K

tkµk − λi − 〈x∗
i , x− xi〉],

≤ min
i∈K

[
∑

k∈K

tk(µk − λi − 〈x∗
i , xk − xi〉)].

On the other hand,

µk + 〈x∗
k, xi − xk〉 ≤ µi,

µk + 〈x∗
i , xi − xk〉 ≤ µi + 〈x∗

i − x∗
k, xi − xk〉.

It follows that

f+(x)− f−(x) ≤ min
i∈K

[
∑

k∈K

tk (µi − λi + 〈x∗
i − x∗

k, xi − xk〉)]

and finally

f+(x)− f−(x) ≤ min
i∈K

[ εi +
∑

k∈K

tk〈x∗
i − x∗

k, xi − xk〉]. (9)

Let us define
σK = max

i,k∈K
〈x∗

i − x∗
k, xi − xk〉.

Then, we have the following upper bound for f+(x)− f−(x):

Proposition 6.4. For all x ∈ Ck,

f+(x)− f−(x) ≤ σK +min
i∈K

εi.

Proof. The proof is a direct consequence of inequality (9).

When X = Rn, for any x ∈ C, there exists some K with cardinality less or equal to n+1
such that x ∈ Ck. As in finite element methods, C can be recovered by a finite collection
of such Ck. By increasing the cardinality of I, it is possible to decrease the size of the
subsets Ck and thereby the values of σK leading to a reduction of the gap [f−(x), f+(x)].
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7. Changing the initial condition

In the previous study, we have considered for initial condition the equality f(x0) = λ0 with
λ0 fixed. We change this condition into the condition f(x̄) = λ̄ where x̄ is an arbitrary
point in X. Namely we consider the problem:

Find a lsc convex function g s.t. g(x̄) = λ̄ and x∗
i ∈ ∂g(xi) ∀ i ∈ I

where λ̄ ∈ R is fixed. We denote by G the set of such functions.

It is clear that, given g ∈ G, the function f defined by

f(x) = g(x) + λ0 − g(x0)

belongs to F . Conversely, given f ∈ F , the function g defined by

g(x) = f(x) + λ̄− f(x̄)

belongs to G. It follows that Condition (CM) is a necessary and sufficient condition for
G to be not empty.

Through this section, we assume that (CM) holds. Let us define the following functions
g+, g− : X → [−∞,+∞] by

g+(x) = sup
g∈G

g(x) and g−(x) = inf
g∈G

g(x).

Take some g ∈ G, and let f be defined by f(x) = g(x) + λ0 − g(x0). Since f ∈ F , the
following inequalities hold for all x ∈ X :

f−(x) + g(x0)− λ0 ≤ g(x) ≤ f+(x) + g(x0)− λ0.

On the other hand, since x∗
0 ∈ ∂g(x0),

g(x0) + 〈x∗
0, x̄− x0〉 ≤ g(x̄) = λ̄.

It follows that for all x ∈ X,

g(x) ≤ f+(x) + (λ̄− λ0)− 〈x∗
0, x̄− x0〉. (10)

We can now prove the following result.

Theorem 7.1. Assume that (CM) holds. Then g+ ∈ G. Furthermore the domain of g+

is the convex hull of the points x̄ and xi , i ∈ I.

Proof. g+ is convex and lsc as the supremum of such functions. It is clear that Inequal-
ity (10) holds for g+ as well. Hence, dom(g+) ⊇ dom(f+) = co(x̄;xi, i ∈ I). It is clear
that g+(x̄) = λ̄ and, because g+(xi) is finite, that for all x ∈ X and i ∈ I

g+(xi) + 〈x∗
i , x− xi〉 ≤ g+(x).

Hence g+ ∈ G. Finally, define Ýg by Ýg(x) = g+(x) if x ∈ co(x̄;xi, i ∈ I) and Ýg(x) =
+∞ otherwise. Then Ýg belongs to G and therefore coincides with g+. It follows that
dom(g+) = co(x̄;xi, i ∈ I).
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The function g− may not be convex when x̄ is not one of the points xi, as shown by the
following examples:

Example 7.2. X = R , the family is {(−1,−1), (1, 1)}, the initial condition is g(0) = 0.

Then, it is easily seen that

g+(x) =

{

|x| if |x| ≤ 1,
+∞ otherwise

and g−(x) =

{

−|x| if |x| ≤ 1,
−∞ otherwise

Example 7.3. X = R , the family is {(1, 1), (2, 2)}, the initial condition is g(0) = 0.

Here, we obtain

g+(x) =







x if 0 ≤ x ≤ 1,
2x− 1 if 1 ≤ x ≤ 2,
+∞ otherwise

and g−(x) =

{

x if x ≤ 0,
−∞ otherwise

The function g+ is completely determined when the quantities ξi = g+(xi) are known.
Indeed, since g+ is maximal in G, its epigraph is the polyhedral convex set of X × R
generated from the points (x̄, λ̄), (xi, ξi), i ∈ I and the direction (0, 1). Then, it is easily
seen that the quantities ξi are the optimal solutions of the linear program:

max

[

∑

i∈I

ξi :
ξj − ξi ≥ 〈x∗

i , xj − xi〉 ∀ i, j ∈ I
λ̄− ξi ≥ 〈x∗

i , x̄− xi〉 ∀ i ∈ I

]

.

8. The particular case of one real variable

Within this section, we assume that X = X∗ = R . We shall show that in this case the
cyclic monotonicity reduces to the following classical monotonicity condition

〈x∗
i − x∗

j , xi − xj〉 ≥ 0 for all i, j ∈ I. (M)

The set R , unlike Rn, is totally ordered so that we can assume that

x0 ≤ x1 ≤ · · · ≤ xp

where I = {0, 1, · · · , p}. Then (M) is equivalent to the condition

x∗
i ≤ x∗

i+1 for i = 0, 1, · · · , p− 1.

We consider for initial condition g(x̄) = λ̄ where x̄ = xk with k ∈ {0, 1, · · · , p}. The case
where x̄ is not one of the points xi is left to the reader (then g− can be not convex). For
simplicity, we set x−1 = x∗

−1 = −∞ and xp+1 = x∗
p+1 = +∞. Assume that (M) holds and

g ∈ G, then necessarily

∂g(x) ⊆
{

[x∗
i , x

∗
i+1] if xi < x < xi+1, i = −1, 0, · · · , p

[x∗
i−1, x

∗
i+1] if x = xi, i = 0, 1, · · · , p (11)
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∂g−(x) =

{

x∗
i+1 if xi < x < xi+1 ≤ xk,

x∗
i if xk ≤ xi < x < xi+1,

(12)

∂g+(x) =

{

x∗
i if xi < x < xi+1 ≤ xk,

x∗
i+1 if xk ≤ xi < x < xi+1.

(13)

Clearly, ∂g− and ∂g+ are monotone. Hence they are the subdifferentials of two con-
vex functions g+ and g− such that g(x̄) = λ̄. These two functions are piecewise linear
functions, and are determined by to their values at the points xi. Since, by definition
g+(xk) = g−(xk) = λ̄, we obtain for i = k, k + 1, · · · , p− 1

g+(xi+1) = g+(xi) + x∗
i+1(xi+1 − xi),

g−(xi+1) = g−(xi) + x∗
i (xi+1 − xi),

and for i = k, k − 1, · · · , 1

g+(xi−1) = g+(xi) + x∗
i−1(xi−1 − xi),

g−(xi−1) = g−(xi) + x∗
i (xi−1 − xi).

Finally, for x 6= xi,

g+(x) =







+∞ if x < x0 or xp < x
g+(xi) + x∗

i−1(x− xi) if x0 ≤ xi−1 < x < xi ≤ xk,
g+(xi) + x∗

i+1(x− xi) if xk ≤ xi < x < xi+1 ≤ xp,

and

g−(x) =

{

g−(xi) + x∗
i (x− xi) if −∞ ≤ xi−1 < x < xi ≤ xk,

g−(xi) + x∗
i (x− xi) if xk ≤ xi < x < xi+1 ≤ +∞.

These two functions belong to G, hence (CM) holds. Thus (M) is equivalent to (CM)
when X = R . It results from (11), (12) and (13) that g− ≤ g ≤ g+ for any g ∈ G.
We close this section with a few words on the gap [f−(x), f+(x)] when the initial condition
is f(x0) = λ0. Let t ∈ [0, 1] and xt = txi + (1− t)xi+1. Then xt ∈ [xi, xi+1] and

tf−(xi) + (1− t)f−(xi+1) ≤ f(xt) ≤ tf+(xi) + (1− t)f+(xi+1).

Thus, we are lead to consider the quantities ei = f+(xi) − f−(xi). By induction, for
i = 0, 1, · · · , p− 1, and the fact that e0 = 0, we have

ei+1 = [f+(xi+1)− f+(xi)] + [f+(xi)− f−(xi)] + [f−(xi)− f−(xi+1)]

≤ 〈x∗
i+1, xi+1 − xi〉+ ei + 〈x∗

i , xi − xi+1〉
≤ ei + 〈x∗

i+1 − x∗
i , xi+1 − xi〉

...

≤
∑

j=0,··· ,i

(x∗
j+1 − x∗

j)(xj+1 − xj).

It is worth noticing the similarity of these two constructions with the Euler method for or-
dinary differential equation problems with initial conditions (see, for instance, Henrici [2]).
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