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1. Introduction

Let Ω be a bounded connected and simply connected open subset of R2, let K be a
compact subset of Ω and let g ∈ W 1,p(Ω). We consider the following variational problem:

(P ) min
w=g on ∂DΩ\K

∫
Ω\K

f(x,∇w) dx,

where ∂DΩ is a non-empty part of the boundary of Ω with a finite number of connected
components and the function f : Ω × R2 → R is a Borel function which satisfies the
following assumptions: there exist positive constants α, β, γ such that, for almost every
x ∈ Ω and for every ξ ∈ R2

α|ξ|p ≤ f(x, ξ) ≤ β|ξ|p + γ; (1)

f(x, ·) is strictly convex. (2)

Our purpose in this paper is to study the asymptotic behaviour of the solutions uK of
the problem (P ) with respect to the variations of the compact set K in the Hausdorff
metric. This problem has been recently studied in [15] for f(x, ξ) = |ξ|2/2 in order to
give a precise mathematical formulation for the quasi-static growth of brittle fractures,
following Griffith’s criterion of crack growth.
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The study of the asymptotic behaviour of solutions of variational problems with respect to
domain variations is also related to some shape optimization problems, where very often
the nonexistence of solutions is due to the non stability of the state equation. By stability
of problem (P ), more precisely stability of a given compact set K along a sequence (Kh)
converging to K in the Hausdorff distance, we mean the convergence in a suitable topology
of the sequence of solutions (uKh

) of (P ) to the function uK . It is known that a necessary
condition for stability is the convergence of the two-dimensional Lebesgue measure |Kn|
of Kn to the two-dimensional Lebesgue measure |K| of K (see [12]).

If f(x, ·) is differentiable, then the solution uK solves a nonlinear mixed type boundary
value problem. In the literature there are various results on the asymptotic behaviour
of solutions of elliptic PDE with purely Dirichlet boundary conditions, with respect to
domains variations. In this case the type of limit problem is known even when there is
no stability (see for instance [13], [7], [14]).

Concerning stability results for purely Neumann problems, we can mention for instance
the papers [9], [8], [5], [2], [3], [12], where the families of domains satisfy suitable structural
assumptions. In the literature there are well known examples showing that without these
structural assumptions some additional term (typically depending on jumps on the limit
set K) may appear in the limit problem (see [26], [17], [10]). However, unlike Dirichlet
problems, there is not a general characterization of the limit problem with Neumann
conditions.

In the first part of this paper we prove the following stability result using the duality
argument of convex optimization.

Theorem 1.1. Let (Kh) be a sequence of compact subsets of Ω which converges to a
compact set K in the Hausdorff metric. Assume that Kh has a uniformly bounded number
of connected components, |Kh| converges to |K|, and that the intersection of the limits of
two different connected components of Kh ∪ (∂Ω \ ∂DΩ) is either empty or has positive
(1, q)-capacity, where q is the conjugate exponent of p. Then the compact set K is stable
for the problem (P ) along the sequence (Kh).

When p ≤ 2 the stability result follows immediately from [12, Theorem 6.3] even when Ω
is not simply connected.

The approach by duality consists in proving the stability of the limit set K for problem
(P ) from its stability for the dual problem, which is more easy. Indeed, unlike problem
(P ), the admissible functions in the dual problem for the approximating sequence (Kh)
belong all to the same space W 1,q(Ω), with the constraint that these functions are constant
on every connected components of Kh ∪ (∂Ω \ ∂DΩ). Then the assumptions of Theorem
1.1 give the same constraint for the limit set K.

In the second part of the paper we study several examples of non stability in the case
p > 2, using the tool of Γ-convergence. For instance, Example 5.2 shows that without
the capacitary assumption in Theorem 1.1, we may have non stability even when Kh has
just two connected components. In the case of non stability, we do not yet have a general
characterization of the limit problem. However, in Example 5.6, we are able to find the
limit problem under some geometrical assumptions on the sequence (Kh).
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2. Notation and preliminaries

Let Ω be a bounded connected and simply connected open subset of R2 with Lipschitz
continuous boundary ∂Ω. Let ∂DΩ ⊂ ∂Ω be a (non-empty) relatively open subset of ∂Ω
composed of a finite number of connected components and ∂NΩ := ∂Ω \ ∂DΩ.

Let K(Ω) be the class of compact subsets of Ω and Km(Ω) be the subset of K(Ω) whose
elements have at most m connected components.

For any x ∈ Ω and ρ > 0, Bρ(x) denotes the open ball of R2 centered at x with radius ρ.
For any subset E of R2, 1E is the characteristic function of E, Ec is the complement of E,
and |E| is the Lebesgue measure of E. Given a subset F of some vectorial space X, IF

will denote the indicator function of F , i.e., IF (x) is equal 0 if x ∈ F and +∞ otherwise.

Throughout the paper B is an open ball containing Ω and p and q are real numbers, with
1 < p, q < +∞ and p−1 + q−1 = 1.

2.1. Conjugate function and duality argument in optimization

In this section we recall the concept of duality for the minimization of convex functionals.
For more details, the reader is referred to [20].

Let X be a reflexive Banach space and let X∗ be its topological dual. Given a function
F : X → R convex, lower semicontinuous and proper, the conjugate function F ∗ : X∗ → R
of F is defined by:

F ∗(u∗) := sup
u∈X

{〈u, u∗〉 − F (u)} ∀u∗ ∈ X∗

where 〈·, ·〉 denotes the duality brackets between X and X∗.
We recall that for functionals of the type F (u) =

∫
Ω

f(x, u(x)) dx, defined in Lp(Ω, R2),
where f satisfies for instance the assumptions (8)-(9) below, the following formula holds
(see for instance [20, Proposition 2.1])

F ∗(u∗) =

∫
Ω

f ∗(x, u∗(x)) dx ∀u∗ ∈ Lq(Ω, R2). (3)

Now we consider the following minimization problem

(P ) min
u∈X

F (u).

Let Y be a Banach space and let Y ∗ be its topological dual. The duality argument in the
study of Problem (P ) is described as follows. We consider a family of perturbations of
Problem (P ):

(Pξ) min
u∈X

Φ(u, ξ)

where Φ : X × Y → R is a convex, lower semicontinuous and proper function such that

Φ(u, 0) = F (u) ∀u ∈ X.

The dual problem of (P ) with respect to Φ is given by:

(P ∗) sup
ξ∗∈Y ∗

{−Φ∗(0, ξ∗)}.

The following proposition is proved in [20, Proposition 2.4].
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Proposition 2.1. Assume that infX F is finite, that F is coercive and that there exists
u0 ∈ X such that ξ → Φ(u0, ξ) takes values in R and is continuous in 0.

Then the problems (P ) and (P ∗) each have at least one solution. Moreover

inf
u∈X

F (u) = sup
ξ∗∈Y ∗

{−Φ∗(0, ξ∗)} (4)

and the following relation is satisfied

Φ(ū, 0) + Φ∗(0, ξ̄∗) = 0, (5)

where ū is a solution of (P ) and ξ̄∗ is a solution of (P ∗).

Conversely, if ū ∈ X and ξ̄∗ ∈ Y ∗ satisfy (5), then ū is a solution of (P ) and ξ̄∗ is a
solution of (P ∗).

In this paper, we will deal with functionals Φ of this type:

Φ(u, ξ) = F1(u) + F2(Au− ξ), (6)

where F1 : X → R and F2 : Y → R are convex lower semicontinuous functions and
A : X → Y is a linear continuous operator. In this case, we have that

Φ∗(0, ξ∗) = F ∗
1 (A∗ξ∗) + F ∗

2 (−ξ∗). (7)

where A∗ : Y ∗ → X∗ denotes the transpose of the operator A.

2.2. Deny-Lions spaces

Given an open subset U of R2, the Deny-Lions space is defined by

L1,p(U) := {u ∈ Lp
loc(U) : ∇u ∈ Lp(U, R2)}.

It is well-known that L1,p(U) coincides with the Sobolev space W 1,p(U) whenever U
is bounded and has a Lipschitz continuous boundary. It is also known that the set
{∇u : u ∈ L1,p(U)} is a closed subspace of Lp(U, R2). The Deny-Lions spaces L1,p are
usually involved in minimization problems of the type (10) below in non-smooth domains,
where Poincaré inequalities do not hold in general. For further properties of the spaces
L1,p we refer the reader to [18] and [25].

2.3. The minimization problem

Let f : Ω× R2 → R be a Borel function which satisfies the following assumptions: there
exist positive constants α, β, γ such that, for almost every x ∈ Ω and for every ξ ∈ R2

α|ξ|p ≤ f(x, ξ) ≤ β|ξ|p + γ; (8)

f(x, ·) is strictly convex. (9)
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Given K ∈ K(Ω) and a function g ∈ W 1,p(Ω), we consider the following minimization
problem

min
w

{∫
Ω\K

f(x,∇w) dx : w ∈ L1,p(Ω \K) , w = g on ∂DΩ \K

}
(10)

whose solution exits from direct methods of the calculus of variations and is unique in the
sense of gradients.

2.4. Γ-convergence

Let us recall the definition of De Giorgi’s Γ-convergence in metric spaces. Let (X, d) be
a metric space. We say that a sequence Fh : X → [−∞, +∞] Γ-converges to F : X →
[−∞, +∞] (as h →∞) if for all u ∈ X we have

(i) (lower limit inequality) for every sequence (uh) converging to u in X,

lim inf
h→∞

Fh(uh) ≥ F (u);

(ii) (existence of a recovery sequence) there exists a sequence (uh) converging to u in X,
such that

lim sup
h→∞

Fh(uh) ≤ F (u).

The function F is called Γ-limit of (Fh) (with respect to d), and we write F = Γ- limh Fh.
The peculiarity of this type of convergence is its variational character explained in the
following proposition.

Proposition 2.2. Assume that {Fh} Γ-converges to F and that there exists a compact
set K ⊆ X such that

inf
u∈K

Fh(u) = inf
u∈X

Fh(u) ∀h ∈ N.

Then

(i) infX Fh converges as h → ∞ to minX F and any limit point of any sequence (uh)
such that

lim
h→∞

(
Fh(uh)− inf

u∈X
Fh(u)

)
= 0

is a minimizer of F .

(ii) (Fh + G) Γ-converges to F + G for any G : X →]−∞, +∞[ continuous.

We refer the reader to [11] for an exhaustive treatment of this topic.

2.5. Hausdorff convergence

The Hausdorff distance between two closed subsets K1 and K2 of Ω is defined by

dH(K1, K2) := max

{
sup
x∈K1

dist (x, K2) , sup
x∈K2

dist (x, K1)

}
,

with the conventions dist (x, ∅) = diam (Ω) and sup ∅ = 0, so that

dH(∅ , K) =

{
0 if K = ∅,
diam (Ω) if K 6= ∅.
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Let (Kh) be a sequence of compact subsets of Ω. We say that (Kh) converges to K in the
Hausdorff metric if dH(Kh , K) converges to 0. It is well-known (see e.g., [22, Blaschke’s
Selection Theorem]) that K(Ω) and Km(Ω) are compact with respect to the Hausdorff
convergence.

In order to study the continuity of the solution u of (10) with respect to the variations of
the compact set K, we should be able to compare two solutions defined in two different
domains. This is why, throughout this paper, given a function u ∈ L1,p(Ω\K), we extend
∇u in Ω by setting ∇u = 0 in Ω ∩K.

2.6. Capacity

Let 1 < r < ∞. We recall that B is a fixed open ball containing Ω. For every subset E
of B, the (1, r)-capacity of E in B, denoted by Cr(E, B) or simply by Cr(E) (when there
is no ambiguity), is defined as the infimum of

∫
B
|∇u|r dx over the set of all functions

u ∈ W 1,r
0 (B) such that u ≥ 1 a.e. in a neighborhood of E. If r > 2, then Cr(E) > 0

for every nonempty set E. On the contrary, if r = 2 there are nonempty sets E with
Cr(E) = 0 (for instance, Cr({x}) = 0 for every x ∈ B).

We say that a property P(x) holds Cr-quasi everywhere (abbreviated Cr-q.e.) in a set
E if it holds for all x ∈ E except a subset N of E with Cr(N) = 0. We recall that the
expression almost everywhere (abbreviated a.e.) refers, as usual, to the Lebesgue measure.

A function u : E → R is said to be quasi-continuous if for every ε there exists Aε ⊂ E,
with Cr(Aε) < ε, such that the restriction of u to E\Aε is continuous. If r > 2 every quasi-
continuous function is continuous, while for r = 2 there are quasi-continuous functions
that are not continuous. It is well known that, for every open subset U with U ⊂ B,
any function u ∈ L1,r(U) has a quasi-continuous representative u : U ∪ ∂LU → R which
satisfies

lim
ρ→0+

−
∫

Bρ(x)∩U

|u(y)− u(x)| dy = 0 for Cr-q.e. x ∈ U ∪ ∂LU,

where ∂LU denotes the Lipschitz part of the boundary ∂U of U . We recall that if uh

converges to u strongly in W 1,r(U), then a subsequence of uh converges to u pointwise
Cr-q.e. on U ∪ ∂LU . To simplify the notation we shall always identify throughout the
paper each function u ∈ L1,r(U) with its quasi-continuous representative u.

For these and other properties on quasi-continuous representatives the reader is referred
to [21], [24], [25], [27].

The following lemma is proved in [15, Lemma 4.1] for p = 2. The case p 6= 2 can be
proved in the same way.

Lemma 2.3. Let (Kh) be a sequence in K(Ω) which converges to a compact set K in
the Hausdorff metric. Let uh ∈ L1,p(Ω \Kh) be a sequence such that uh = 0 Cp-q.e. on
∂DΩ\Kh and (∇uh) is bounded in Lp(Ω, R2). Then, there exists a function u ∈ L1,p(Ω\K)
with u = 0 Cp-q.e. on ∂DΩ \K such that, up to a subsequence, ∇uh converges weakly to
∇u in Lp(A, R2) for every A ⊂⊂ Ω \K. If in addition |Kh| converges to |K|, then ∇uh

converges weakly to ∇u in Lp(Ω, R2).

The following lemma will be crucial in the proof of our main results.
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Lemma 2.4. Let (Kh) ⊂ Km(Ω) be a sequence which converges to a compact set K in
the Hausdorff metric, and let (vh) be a sequence in W 1,q(Ω) which converges to a function
v weakly in W 1,q(Ω). Assume that the intersection of the limits of two different connected
components of Kh is either empty or has positive Cq-capacity and that every function vh

is constant Cq-q.e. in each connected component of Kh. Then v is constant Cq-q.e. in
each connected component of K.

Proof. By extending both functions vh and v in the open ball B containing Ω such that
vh ⇀ v weakly in W 1,q(B) and arguing as in [12, Lemma 3.5] we obtain that v is constant
Cq-q.e. in the limit of each connected component of Kh. Now using the assumption that
the intersection of the limits of two different connected components of Kh is either empty
or has positive Cq-capacity, we get that v is constant Cq-q.e. in each connected component
of K.

The following lemma will be used in order to get the strong convergence of solutions in
our main results.

Lemma 2.5. Let f : Ω×R2 → R be a Borel function which satisfies the assumptions (8)
and (9), and let (ξh) be a sequence in Lp(Ω, R2) weakly converging to some ξ ∈ Lp(Ω, R2).
If

∫
Ω

f
(
x, ξh(x)

)
dx converges to

∫
Ω

f
(
x, ξ(x)

)
dx, then

(
ξh

)
converges to ξ strongly in

Lp(Ω, R2).

Proof. By the convexity of f , we have the following lower semicontinuity inequality∫
Ω

f
(
x, ξ(x)

)
dx ≤ lim inf

h

∫
Ω

f
(
x, (ξ + ξh(x))/2

)
dx.

Hence,

lim sup
h

∫
Ω

[
1

2
f
(
x, ξ(x)

)
+

1

2
f
(
x, ξh(x)

)
− f

(
x, (ξ(x) + ξh(x))/2

)]
dx ≤

≤ lim sup
h

[
1

2

∫
Ω

f
(
x, ξh(x)

)
dx− 1

2

∫
Ω

f
(
x, ξ(x)

)
dx

]
= 0 (11)

On the other hand, by the convexity of f(x, ·) we have that

1

2
f
(
x, ξ(x)

)
+

1

2
f
(
x, ξh(x)

)
− f

(
x, (ξ(x) + ξh(x))/2

)
is non negative, and thus

1

2
f
(
x, ξ(x)

)
+

1

2
f
(
x, ξh(x)

)
− f

(
x, (ξ(x) + ξh(x))/2

)
→ 0 strongly in L1(Ω). (12)

Up to a subsequence, we have

1

2
f
(
x, ξ(x)

)
+

1

2
f
(
x, ξh(x)

)
− f

(
x, (ξ(x) + ξh(x))/2

)
→ 0 a.e. in Ω.

By the strict convexity of f(x, ·), it easily follows that

ξh(x) → ξ(x) a.e. in Ω
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and hence f(x, ξh(x)) → f(x, ξ(x)) a.e. in Ω. Then by Fatou’s Lemma we get

lim inf
h

∫
Ω

[
f
(
x, ξh(x)

)
+ f

(
x, ξ(x)

)
− |f

(
x, ξh(x)

)
− f

(
x, ξ(x)

)
|
]
dx ≥

≥ 2

∫
Ω

f
(
x, ξ(x)

)
dx

(13)

from which it follows that lim suph

∫
Ω
|f

(
x, ξh(x)

)
− f

(
x, ξ(x)

)
| dx ≤ 0, that is

f
(
x, ξh(x)

)
→ f

(
x, ξ(x)

)
strongly in L1(Ω). (14)

Now from (14) and by assumption (8), we have (up to a subsequence) that (ξh) is dom-
inated in Lp(Ω, R2), which together with the pointwise convergence above imply that
ξh → ξ strongly in Lp(Ω, R2).

3. The dual problem

According to the notation of Section 2.1, we set

X := L1,p(Ω \K), Y := Lp(Ω \K, R2);

F1(u) := I{w: w=g on ∂DΩ\K}(u) ∀u ∈ L1,p(Ω \K);

F2(ξ) :=

∫
Ω\K

f(x, ξ) dx ∀ξ ∈ Lp(Ω \K, R2);

Au := ∇u ∀u ∈ L1,p(Ω \K).

So, the functional to minimize in (10) is of the type (6), that is

F (u) = F1(u) + F2(Au).

According to formula (7), we need to compute F ∗
1 and F ∗

2 . First of all, for every u∗ ∈
(L1,p(Ω \K))∗ there exists some ξ∗ ∈ Lq(Ω \K, R2) such that

〈u∗, u〉 =

∫
Ω\K

ξ∗∇u dx ∀u ∈ L1,p(Ω \K). (15)

Note that
A∗ξ∗ = u∗ (16)

Using this representation, we have that

F ∗
1 (u∗) = sup

u∈L1,p(Ω\K)

u=g on ∂DΩ\K

[ ∫
Ω\K

ξ∗∇u dx
]

= sup
u∈L1,p(Ω\K)

u=0 on ∂DΩ\K

[ ∫
Ω\K

ξ∗∇u dx+

∫
Ω\K

ξ∗∇g dx
]
.

So, by the fact that the supremum of an affine function on a vector space is equal to 0 or
to ∞, we obtain

F ∗
1 (u∗) = F ∗

1 (A∗ξ∗) =


∫

Ω\K
ξ∗∇g dx if

{∫
Ω\K ξ∗∇ϕ dx = 0 ∀ϕ ∈ L1,p(Ω \K),

ϕ = 0 on ∂DΩ \K,

+∞ otherwise .

(17)
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Note that the condition
∫

Ω\K ξ∗∇ϕ dx = 0 ∀ϕ ∈ L1,p(Ω \K) with ϕ = 0 on ∂DΩ \K, is

the weak formulation of div ξ∗ = 0 in Ω \K,

ξ∗ · ν = 0 on ∂NΩ ∪ ∂K.

On the other hand, from (3) we have also

F ∗
2 (ξ∗) =

∫
Ω\K

f ∗(x, ξ∗) dx ∀ξ∗ ∈ Lq(Ω \K, R2). (18)

Finally, formula (7) in this case gives

Φ∗(0, ξ∗) =


∫

Ω\K

[
f ∗(x,−ξ∗) + ξ∗∇g

]
dx if

{∫
Ω\K ξ∗∇ϕ dx = 0 ∀ϕ ∈ L1,p(Ω \K),

ϕ = 0 on ∂DΩ \K,

+∞ otherwise.

(19)

The duality formula (4) in this case is given by

min
u∈L1,p(Ω\K)

F (u) = sup
ξ∗∈Lq(Ω\K,R2)R
Ω\K ξ∗∇ϕ dx=0

∀ϕ∈L1,p(Ω\K), ϕ=0 on ∂DΩ\K

∫
Ω\K

[
−f ∗(x,−ξ∗)− ξ∗∇g

]
dx . (20)

Note that all the results above are actually valid in any dimension, while in two dimen-
sional domains, the dual problem in the right hand-side of (20) can be rewritten as a
maximum problem in some suitable subspace of W 1,q(Ω).

To this aim, let R be the rotation on R2 defined by

R(y1, y2) := (−y2, y1)

and let i : W 1,q(Ω) → Lq(Ω, R2) be the mapping defined by

i(v) := R∇v ∀v ∈ W 1,q(Ω). (21)

For every compact set K ⊂ Ω we set

W 1,q
K (Ω) :=

{
v ∈ W 1,q(Ω),

∫
Ω

v dx = 0 and v is constant Cq−q.e. in every C.C. of K

}
where the notation C.C. means connected component.
The following proposition establishes a bijection between the subspace W 1,q

K∪∂NΩ(Ω) and
the set of admissible functions for the dual problem in the right hand-side of (20).

Proposition 3.1. Assume that the compact set K has a finite number of connected com-
ponents. Then the mapping i defined in (21) establishes a bijection between the subspace
W 1,q

K∪∂NΩ(Ω) and the set of functions{
ξ∗ ∈ Lq(Ω \K, R2) :

∫
Ω\K

ξ∗∇ϕ dx = 0 ∀ϕ ∈ L1,p(Ω \K), ϕ = 0 on ∂DΩ \K

}
.



26 F. Ebobisse, M. Ponsiglione / A Duality Approach for Variational Problems in ...

Proof. Let v ∈ W 1,q
K∪∂NΩ(Ω). Let C1, . . . , C l be the connected components of K ∪ ∂NΩ.

Since v = ci Cq-q.e on Ci, by [24, Theorem 4.5] we can approximate v strongly in W 1,q(Ω)
by a sequence of functions vn ∈ C∞

c (R2) that are constant in a suitable neighborhood V i
n

of Ci. Let ϕ ∈ L1,p(Ω \K) with ϕ = 0 on ∂DΩ \K and let ϕn ∈ W 1,p
0 (Ω \K) such that

ϕn = ϕ in Ω \
⋃

i V
i
n. Then we have that∫

Ω\K
R∇vn∇ϕ dx =

∫
Ω\K

R∇vn∇ϕndx = 0, (22)

where the last equality follows from the fact that the vector field R∇vn is divergence free.
Then passing to the limit in (22) for n →∞, we get∫

Ω\K
R∇v∇ϕ dx = 0 ∀ϕ ∈ L1,p(Ω \K) with ϕ = 0 on ∂DΩ \K.

So, i maps the space W 1,q
K∪∂NΩ(Ω) in the set of admissible function in the dual problem.

Now, let ξ∗ ∈ Lq(Ω \K, R2) be such that
∫

Ω\K ξ∗∇ϕ dx = 0 ∀ϕ ∈ L1,p(Ω \K), ϕ = 0 on

∂DΩ \K. By extending ξ∗ by zero on K and still denoting this extension by ξ∗, we obtain∫
Ω

ξ∗∇ϕ dx = 0 ∀ϕ ∈ D(Ω),

i.e., div ξ∗ = curl (Rξ∗) = 0 in D′(Ω). Since Ω is simply connected, there exists v ∈
W 1,q(Ω) such that Rξ∗ = ∇v a.e. in Ω. It is not restrictive to assume that

∫
Ω

v dx = 0.
So, we have to prove that v is constant on every connected component of K ∪ ∂NΩ. Let
C a connected component of K ∪ ∂NΩ and, for every ε > 0, let

Cε := {x ∈ Ω: dist(x, C) < ε} Kε := K ∪ ∂NΩ ∪ Cε.

Let ξ∗ε be the solution of the dual problem in the right hand of (20) with K replaced by
Kε. By the monotonicity of Ω \Kε, it is easy to see that ξ∗ε → ξ∗ strongly in Lq(Ω, R2)
when ε → 0. As above, let vε ∈ W 1,q(Ω) be such that

∫
Ω

vε dx = 0 and Rξ∗ε = ∇vε a.e. in
Ω. By the fact that ∇vε = 0 in Cε, vε → v strongly in W 1,q(Ω), and that C ⊂⊂ Cε, we
get that v is constant Cq-q.e. on C, so v ∈ W 1,q

K∪∂NΩ(Ω).

Using Proposition 3.1, the dual problem can be rewritten as

sup
v∈W 1,q

K∪∂N Ω(Ω)

∫
Ω\K

[
−f ∗(x, R∇v) + R∇v∇g

]
dx . (23)

So, the duality formula (20) in two dimensional domains becomes

min
u∈L1,p(Ω\K)

F (u) = sup
v∈W 1,q

K∪∂N Ω(Ω)

∫
Ω\K

[
−f ∗(x, R∇v) + R∇v∇g

]
dx . (24)

Let u ∈ L1,p(Ω\K) be a solution of the left hand-side of (24). A solution v ∈ W 1,q
K∪∂NΩ(Ω)

of the right hand-side of (24) is called conjugate of u.
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The duality relation between u and v is∫
Ω\K

f(x,∇u) dx =

∫
Ω\K

[
−f ∗(x, R∇v) + R∇v∇g

]
dx. (25)

Remark 3.2. Since u = g on ∂DΩ \K and v ∈ W 1,q
K∪∂NΩ(Ω) it follows that∫

Ω\K
R∇v∇g dx =

∫
Ω\K

R∇v∇u dx.

Hence (25) becomes∫
Ω\K

[
f(x,∇u) + f ∗(x, R∇v)−R∇v∇u

]
dx = 0. (26)

Since the integrand in (26) is positive, we get

f(x,∇u) + f ∗(x, R∇v)−R∇v∇u = 0 a.e. in Ω \K.

That is
R∇v ∈ ∂ξf(x,∇u)

where ∂ξf(x,∇u) denotes the subdifferential of f(x, ·) at the point ∇u. Whenever f(x, ·)
is also of class C1, then f ∗(x, ·) is strictly convex and hence the dual problem as a unique
solution v such that R∇v = ∇ξf(x,∇u).

For f(ξ) := 1
p
|ξ|p we obtain

R∇v = |∇u|p−2∇u a.e. in Ω \K.

In particular for p = 2 we obtain the classical notion of harmonic conjugate.

4. Stability for the minimum problem

Let (Kh) ⊂ Km(Ω) be a sequence which converges to a compact set K in the Hausdorff
metric. We say that K is stable for the problem (P ) along the sequence (Kh) if for every
function f that satisfies conditions (8)-(9) and for every g ∈ W 1,p(Ω), we have

∇uh → ∇u strongly in Lp(Ω, R2),

where uh and u are solutions of (10) in Ω \Kh and in Ω \K respectively.

In the following theorem, we prove the equivalence between the stability of K for the
minimum problem (10) and for its dual under the condition that f(x, ·) is of class C1.

Theorem 4.1. Let (Kh) ⊂ Km(Ω) be a sequence which converges to a compact set K
in the Hausdorff metric and such that |Kh| converges to |K|. Assume that f(x, ·) is of
class C1. Let g ∈ W 1,p(Ω). Let uh and u be solutions of (10) in Ω \ Kh and in Ω \ K
respectively. Let vh and v be the solutions of the problem (23) in Ω \ Kh and in Ω \ K
respectively. Then

∇uh → ∇u strongly in Lp(Ω, R2) if and only if ∇vh → ∇v strongly in Lq(Ω, R2).
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Proof. Assume that ∇vh → ∇v strongly in Lq(Ω, R2). By (25), we have

∫
Ω\Kh

f(x,∇uh) dx =

∫
Ω\Kh

[
−f ∗(x, R∇vh) + R∇vh∇g

]
dx. (27)

By the growth assumptions (8) on the function f , we have that ∇uh is bounded in
Lp(Ω, R2). So applying Lemma 2.3 to uh − g, we obtain that ∇uh converges (up to a
subsequence) to ∇ũ weakly in Lp(Ω, R2) for some function ũ ∈ L1,p(Ω \K) with ũ = g on
∂DΩ \K. So passing to the limit in (27) we get∫

Ω\K
f(x,∇ũ) dx ≤ lim inf

h→∞

∫
Ω\Kh

f(x,∇uh) dx ≤ lim sup
h→∞

∫
Ω\Kh

f(x,∇uh) dx

= lim
h→∞

∫
Ω\Kh

[
−f ∗(x, R∇vh) + R∇vh∇g

]
dx =

∫
Ω\K

[
−f ∗(x, R∇v) + R∇v∇g

]
dx

=

∫
Ω\K

f(x,∇u) dx (28)

where the last equality follows from the duality relation between u and v. From (28)
and the fact that f(x, ·) is strictly convex, we get ∇u = ∇ũ a.e. in Ω, and then all the
inequalities in (28) are equalities. Therefore, all the sequence (∇uh) converges weakly in
Lp(Ω, R2) and

lim
h→∞

∫
Ω\Kh

f(x,∇uh) dx =

∫
Ω\K

f(x,∇u) dx.

Using the convention ∇uh = 0 on Kh, ∇u = 0 on K, and the fact that |Kh| → |K|, we
get also

lim
h→∞

∫
Ω

f(x,∇uh) dx =

∫
Ω

f(x,∇u) dx. (29)

Now using the strict convexity of f(x, ·), we get from (29) and from Lemma 2.5 that
(∇uh) converges to ∇u strongly in Lp(Ω, R2).
Viceversa, suppose that ∇uh → ∇u strongly in Lp(Ω, R2). Since f(x, ·) is of class C1,
from Remark 3.2, we have R∇vh = fξ(x,∇uh) a.e. in Ω \Kh and R∇v = fξ(x,∇u) a.e.
in Ω \K. Then from the growth assumptions on f we obtain that ∇vh → ∇v strongly in
Lq(Ω, R2).

In the following theorem, we give sufficient conditions on the sequence (Kh) which guar-
antee the stability for Problem (10).

Theorem 4.2. Let (Kh) ⊂ Km(Ω) be a sequence which converges to a compact set K in
the Hausdorff metric and such that |Kh| converges to |K|. Let g ∈ W 1,p(Ω). Let uh and
u be solutions of (10) in Ω \Kh and in Ω \K respectively. Assume that the intersection
of the limits of two different connected components of Kh ∪ ∂NΩ is either empty or has
positive (1, q)-capacity. Then ∇uh converges strongly to ∇u in Lp(Ω, R2).

Proof. Let vh ∈ W 1,q
Kh∪∂NΩ(Ω) and v ∈ W 1,q

K∪∂NΩ(Ω) be conjugates of uh and u respectively.
Up to a subsequence,∇vh ⇀ ∇ṽ weakly in W 1,q(Ω) for some ṽ ∈ W 1,q(Ω). By the fact that
the intersection of the limits of two different connected components of Kh ∪ ∂NΩ is either
empty or has positive (1, q)-capacity, it follows from Lemma 2.4 that ṽ ∈ W 1,q

K∪∂NΩ(Ω).
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By the growth assumptions (8) on the function f , we have that ∇uh is bounded in
Lp(Ω, R2). So applying Lemma 2.3 to uh − g, we obtain that ∇uh converges (up to a
subsequence) to ∇ũ weakly in Lp(Ω, R2) for some function ũ ∈ L1,p(Ω \K) with ũ = g on
∂DΩ \K.
Since v ∈ W 1,q

K∪∂NΩ(Ω), using [24, Theorem 4.5] we can approximate strongly in W 1,q(Ω)
the function v with smooth functions wn which are constant in a suitable neighborhood of
any connected component of K ∪ ∂NΩ, and hence constant in any connected component
of Kh ∪ ∂NΩ for h big enough. So there exists a subsequence of integers (hn) such that
wn ∈ W 1,q

Khn∪∂NΩ(Ω) and wn converges strongly in W 1,q(Ω) to the function v as n → ∞.
Therefore,∫

Ω\K

[
−f ∗(x, R∇v) + R∇v∇g

]
dx = lim

n→∞

∫
Ω\Khn

[
−f ∗(x, R∇wn) + R∇wn∇g

]
dx

≤ lim sup
n→∞

∫
Ω\Khn

[
−f ∗(x, R∇vhn) + R∇vhn∇g

]
dx ≤

∫
Ω\K

[
−f ∗(x, R∇ṽ) + R∇ṽ∇g

]
dx.

Therefore, since v is a maximizer of the dual problem in Ω \ K, all inequalities in the
previous formula are equalities, so we obtain

lim sup
n→∞

∫
Ω\Khn

[
−f ∗(x, R∇vhn) + R∇vhn∇g

]
dx =

∫
Ω\K

[
−f ∗(x, R∇v) + R∇v∇g

]
dx.

Now, using the duality relations between the functions v, u on one hand, and vhn , uhn on
the other hand, and then passing to the limit, we obtain∫

Ω\K
f(x,∇u) dx =

∫
Ω\K

[
−f ∗(x, R∇v) + R∇v∇g

]
dx

= lim sup
n→∞

∫
Ω\Khn

[
−f ∗(x, R∇vhn) + R∇vhn∇g

]
dx = lim sup

n→∞

∫
Ω\Khn

f(x,∇uhn) dx

≥ lim inf
n→∞

∫
Ω\Khn

f(x,∇uhn) dx ≥
∫

Ω\K
f(x,∇ũ) dx.

Since f(x, ·) is strictly convex, we get that ∇ũ = ∇u a.e. in Ω. Therefore, all the
sequence (∇uh) converges weakly in Lp(Ω, R2) to ∇u. Now, using that

∫
Ω

f(x,∇uh) dx →∫
Ω

f(x,∇u) dx, by Lemma 2.5 we get that (∇uh) converges to ∇u strongly in Lp(Ω, R2).

Remark 4.3. When f(x, ·) is of class C1, Theorem 4.2 is a consequence of Theorem
4.1. Indeed, the assumption that the intersection of the limits of two different connected
components of Kh ∪ ∂NΩ is either empty or has positive (1, q)-capacity easily guarantees
the stability for the dual problem, and hence using Theorem 4.1 the stability for Problem
(10) also follows.

5. Some examples of non stability

In this section we study some examples for f(x, ξ) = 1
p
|ξ|p. Throughout the section we

assume that p > 2.
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5.1. Limit problem via Γ-convergence

In the following example, the assumptions of Theorem 4.2 hold. We show in this case
that the stability result follows also by Γ-convergence arguments.

�

��

���

Figure 1.

Example 5.1. Let Ω := (−1, 1)× (−1, 1), ∂DΩ := (−1, 1)×{−1, 1}, K = [−1, 1]×{0}
and let

Kh :=

[
−1,

1

2

]
×

{
1

h

}
∪

[
−1

2
, 1

]
×

{
−1

h

}
,

(see Figure 1). We consider the sequence of functionals Fh defined in Lp(Ω) by:

Fh(u) :=


1

p

∫
Ω\Kh

|∇u|pdxdy if u ∈ W 1,p(Ω \Kh) and u = g on ∂DΩ,

+∞ otherwise.

(30)

Then, Fh Γ-converges to F∞ in the strong topology of Lp(Ω), where

F∞(u) :=


1

p

∫
Ω\K

|∇u|p dxdy if u ∈ W 1,p(Ω \K) and u = g on ∂DΩ,

+∞ otherwise.

Hence in this case the conclusion of Theorem 4.2 follows from a general result on conver-
gence of minima (see Proposition 2.2).

Proof. (i) Γ-liminf: Let uh → u strongly in Lp(Ω), we want to prove that lim infh→∞
Fh(uh) ≥ F (u). We can assume that lim infh→∞ Fh(uh) = limh→∞ Fh(uh) < ∞. So, for
any Ω′ ⊂⊂ Ω \K with ∂DΩ ⊂ ∂Ω′, we have that uh ∈ W 1,p(Ω′) for h big enough, uh ⇀ u
in W 1,p(Ω′) and u = g on ∂DΩ. Now from the lower semicontinuity of the Lp−norm of the
gradients and from the arbitrariness of Ω′ we get that u ∈ W 1,p(Ω \K) and the Γ-liminf
inequality holds.
(ii) Γ-limsup: Let u ∈ Lp(Ω). We want to construct a sequence (uh) ⊂ Lp(Ω) converging
strongly to u in Lp(Ω) such that limh Fh(uh) ≤ F (u). We can assume that u ∈ W 1,p(Ω\K)
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and u = g on ∂DΩ. We set uh := u in Ω \Rh where Rh := (−1, 1)×
[
− 1

h
, 1

h

]
. Now let us

define the function uh in Rh. To this aim, we consider the function vh defined in Rh by

vh(x, y) := u
(
x,

2

h
sgn(x)− y

)
where sgn(x) denotes the sign of x. In other words, the function vh is obtained from u by
symmetry with respect to the segment [0, 1] × { 1

h
} for x positive and by symmetry with

respect to the segment [−1, 0]× {− 1
h
} for x negative.

Such a function vh may jump on the segment {0}×
[
− 1

h
, 1

h

]
. So, we consider the function

ϕ ∈ C0(Rh) defined by

ϕ(x, y) :=


1 if |x| > 1

2
,

−2x if − 1
2
≤ x ≤ 0,

2x if 0 ≤ x ≤ 1
2
.

Now we set uh := ϕ vh on Rh. For this choice of uh, it is easy to see that uh ∈ W 1,p(Ω\Kh)
with uh = g on ∂DΩ and that the Γ-limsup inequality holds.

�
� �

��

Figure 2.

In the following example, we consider a sequence of compact sets Kh along which the
problem (P ) is not stable. More precisely in the limit problem, that is the problem solved
by the limit function u, there is an additional term involving the jump of u on a point of
K.

Example 5.2. Let Ω, ∂DΩ and K be as in the previous example and let

Kh :=
[
−1,−ah

2

]
×

{
0
}
∪

[ah

2
, 1

]
×

{
0
}
∪

{
−ah

2

}
×

[
−bh

2
,
bh

2

]
∪

{ah

2

}
×

[
−bh

2
,
bh

2

]
be as in Figure 2 with (ah) and (bh) being two sequences of positive numbers converging
to 0. In this way (Kh) converges to K in the Hausdorff metric. Let Fh be defined as in
(30).

Assume that the sequence (1
p
ah b1−p

h ) converges to some c ∈ [0, +∞]. Then Fh Γ-

converges in the strong topology of Lp(Ω) to F∞ defined in Lp(Ω) in the following way
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(with the convention that 0 · ∞ = 0).

F∞(u) :=


1

p

∫
Ω\K

|∇u|pdxdy + c
∣∣u+(0, 0)− u−(0, 0)

∣∣p if

{
u ∈ W 1,p(Ω \K) and

u = g on ∂DΩ,

+∞ otherwise,

(31)
where u+(0, 0) and u−(0, 0) are respectively the values in (0, 0) of the traces of u|Ω+ and
u|Ω− on K, Ω+ and Ω− being respectively the upper and the lower connected components
of Ω \K.

Proof. (i) Γ-liminf: Let uh → u in Lp(Ω), we want to prove that lim infh→∞ Fh(uh) ≥
F (u). We can assume that lim infh→∞ Fh(uh) = limh→∞ Fh(uh) < ∞. So, for any Ω′ ⊂⊂
Ω \K with ∂DΩ ⊂ ∂Ω′, we have that uh ∈ W 1,p(Ω′) for h big enough, uh ⇀ u in W 1,p(Ω′)
and u = g on ∂DΩ. Now from the lower semicontinuity of the Lp−norm of the gradients
and from the arbitrariness of Ω′ we get that u ∈ W 1,p(Ω \K).

We set Rh :=
(
−ah

2
, ah

2

)
×

(
− bh

2
, bh

2

)
. We have

Fh(uh) =
1

p

∫
Ω\Kh

|∇uh|p dxdy =
1

p

∫
Ω\Rh

|∇uh|p dxdy +
1

p

∫
Rh

|∇uh|p dxdy

≥ 1

p

∫
Ω\Rh

|∇uh|p dxdy +
1

p
ahb

1−p
h −

∫ ah
2

−ah
2

∣∣∣∣uh

(
x,−bh

2

)
− uh

(
x,

bh

2

)∣∣∣∣p dx. (32)

Now let us fix Ω′ ⊂⊂ Ω \K. We have that Ω′ ⊂⊂ Ω \Rh definitively, and

lim inf
h→∞

∫
Ω\Rh

|∇uh|p dxdy ≥ lim inf
h→∞

∫
Ω′
|∇uh|p dxdy ≥

∫
Ω′
|∇u|p dxdy.

By the arbitrariness of Ω′, we get

lim inf
h→∞

∫
Ω\Rh

|∇uh|p dxdy ≥
∫

Ω\K
|∇u|p dxdy. (33)

Let us consider the functions ũ1
h defined in (−1, 1)× (0, 1− bh

2
) by

ũ1
h(x, y) := uh|(−1,1)×(

bh
2

,1)

(
x, y +

bh

2

)
and ũ2

h defined in (−1, 1)× (−1 + bh

2
, 0) by

ũ2
h(x, y) := uh|(−1,1)×(−1,− bh

2
)

(
x, y − bh

2

)
.

We extend ũ1
h and ũ2

h respectively in Ω+ and Ω− in such a way those extensions converge
weakly to u respectively in W 1,p(Ω+) and in W 1,p(Ω−). Recalling that p > 2, We have



F. Ebobisse, M. Ponsiglione / A Duality Approach for Variational Problems in ... 33

the uniform convergence of their traces on K. So,

1

p
ahb

1−p
h −

∫ ah
2

−ah
2

∣∣∣∣uh

(
x,−bh

2

)
− uh

(
x,

bh

2

)∣∣∣∣p dx

=
1

p
ahb

1−p
h −

∫ ah
2

−ah
2

∣∣ũ1
h(x, 0) − ũ2

h(x, 0)
∣∣p dx

=
1

p
ahb

1−p
h −

∫ ah
2

−ah
2

∣∣u+(x, 0) − u−(x, 0) + wh(x)
∣∣p dx,

with (wh) converging uniformly to 0 on K. From this, it follows that

lim
h→∞

1

p
ahb

1−p
h −

∫ ah
2

−ah
2

∣∣∣∣uh

(
x,−bh

2

)
− uh

(
x,

bh

2

)∣∣∣∣p dx = c
∣∣u+(0, 0)− u−(0, 0)

∣∣p . (34)

Therefore, the Γ-liminf inequality follows from (32), (33) and (34).
(ii) Γ-limsup: Let u ∈ Lp(Ω). We want to construct a sequence (uh) ⊂ Lp(Ω) which
converges to u such that limh Fh(uh) ≤ F (u). We can assume that u ∈ W 1,p(Ω \K) and
u = g on ∂DΩ.

We set uh = u in (Ω \ K) \ Rh and we modify suitably u in Rh \ K in order to get a
new function which does not jump on K ∩ Rh. To this aim let R1

h := Rh ∩ {y > 0} and
R2

h := Rh ∩ {y < 0}. Let us define uh in R1
h. We set

vh := u|(
−ah

2
,
ah
2

)
×
(

bh
2

,bh

)
and

ũh(x, y) := vh(x, bh − y) for any (x, y) ∈ R1
h.

In other words, ũh is defined by taking the reflection of the restriction of u on the rectangle
symmetric to R1

h with respect to the horizontal line y = bh

2
. Now we consider the linear

function ϕ1(x, y) := 2
bh

y. For any (x, y) ∈ R1
h we set

uh(x, y) := ϕ1(x, y)
(
ũh(x, y) − u+(0, 0) + u−(0, 0)

2

)
+

u+(0, 0) + u−(0, 0)

2
.

In the similar way, we define uh in R2
h using

u|(
−ah

2
,
ah
2

)
×
(
−bh,− bh

2

) and ϕ2(x, y) := − 2

bh

y.

It is easy to check that uh ∈ W 1,p(Ω \Kh), uh = g on ∂DΩ and by construction

lim
h→∞

1

p

∫
R1

h

|∇uh|p dxdy = lim
h→∞

1

p

∫
R2

h

|∇uh|p dxdy =
c

2

∣∣u+(0, 0)− u−(0, 0)
∣∣p .
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Therefore,

lim
h

Fh(uh) = lim
h

1

p

∫
Ω\Kh

|∇uh|p dxdy

= lim
h

1

p

∫
(Ω\K)\Rh

|∇uh|p dxdy + lim
h

1

p

∫
R1

h

|∇uh|p dxdy + lim
h

1

p

∫
R2

h

|∇uh|p dxdy

=
1

p

∫
Ω\K

|∇u|p dxdy + c
∣∣u+(0, 0)− u−(0, 0)

∣∣p = F∞(u).

Remark 5.3. Note that if the constant c in the previous example is equal to zero, then
we have the stability of K for the minimization problem (10) along the sequence Kh

even if the intersection of the limit of the two connected components of Kh is the point
(0, 0) whose (1, q)−capacity is equal to zero (recall that q < 2). So, in Theorem 4.2 the
assumption that the limit of two connected components of Kh is either empty or has
positive (1, q)−capacity is not a necessary condition. Although, it can not be removed as
shown by the case c > 0.

Remark 5.4. Starting from Example 5.2, one can construct examples in which the Γ-
limit involves traces at the origin from more than two subdomains, as shown in Figure
3.

��

����

Figure 3.

In this case, we can obtain a Γ-limit of the form

F∞(u) :=


1

p

∫
Ω\K

|∇u|pdxdy +
∑

1≤i<j≤3

ci,j

∣∣ui(0, 0)− uj(0, 0)
∣∣p if

{
u ∈ W 1,p(Ω\K)

u = g on ∂Ω

+∞ otherwise,

where ui(0, 0) is the value at (0, 0) of the trace of u|Ωi
, Ωi being the connected components

of Ω \K.
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In Theorem 4.2, the assumption that Ω is simply connected cannot be removed. In fact
we will consider in the next example a sequence of connected compact sets Kh converging
to K and along which the stability of K for the problem (10) does not hold.

Example 5.5. Let Ω := Q2 \ Q1 with Q1 and Q2 as in Figure 4. and let Kh and K be
as in Figure 4.

��� �

�� ��

� �� �

Figure 4.

In this case, arguing as in Example 5.2 we have that (Fh) Γ-converge in the strong topology
of Lp(Ω) to the functional

F∞(u) :=


1

p

∫
Ω\K

|∇u|pdxdy + c
∣∣u+(0, 0)− u−(0, 0)

∣∣p if

{
u ∈ W 1,p(Ω \K) and

u = g on ∂DΩ,

+∞ otherwise.

(35)

Let ∂DΩ := ∂Ω = ∂Q1 ∪ ∂Q2 and let

g =

{
0 on ∂Q1,

1 on ∂Q2.

Let uh ∈ W 1,p(Ω \Kh) be a solution of problem (10) in Ω \Kh. Then ∇uh ⇀ ∇ũ weakly
in Lp(Ω, R2), where ũ minimizes the functional F∞ among all functions w ∈ W 1,p(Ω \K)
with w = g on ∂DΩ. Now, let ϕ ∈ C1(Ω) with ϕ = g on ∂DΩ. We can always assume
that the sequence (Kh) is such that c >

∫
Ω
|∇ϕ|pdx. It is easy to see that the solution u

of Problem (10) with data g has gradient equal to 0. Then

F∞(u) = c >

∫
Ω

|∇ϕ|pdx = F∞(ϕ) ≥ F∞(ũ).

So, u 6= ũ and hence K is not stable along the sequence Kh for Problem (10).

5.2. Limit problem obtained by duality

In this section we examine, by a duality approach, the problem solved by the limit function
u, even when there is not stability. Let (Kh) ⊂ K(Ω) be such that Kh converges to K in
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the Hausdorff metric and |Kh| converges to |K|. Let uh be solution of (10) in (Ω \ Kh)
and vh its conjugate which in this case satisfies

R∇vh = |∇uh|p−2∇uh a.e in Ω. (36)

From Lemma 2.3 it follows that, up to a subsequence, ∇uh ⇀ ∇u weakly in Lp(Ω, R2)
for some function u ∈ L1,p(Ω \K) and ∇vh ⇀ ∇v weakly in Lq(Ω, R2) for some function
v ∈ W 1,q(Ω). Using the fact that for every Ω′ ⊂⊂ Ω \K, we have div (|∇uh|p−2∇uh) = 0
in D′(Ω′) for h big enough, it follows from the result in [1] that ∇uh → ∇u a.e. in Ω′.
So by the arbitrariness of Ω′, we get ∇uh → ∇u a.e. in Ω \ K. Hence, using the fact
|Kh| → |K| we can pass to the limit in (36) and obtain

R∇v = |∇u|p−2∇u a.e in Ω, (37)

through which we will find the limit problem solved by the function u in the next example.

To this aim, we call contact point, any point of K ∪ ∂NΩ which is limit of at least two
sequences belonging to two different connected components of Kh ∪ ∂NΩ.
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Figure 5.

Example 5.6. Let (Kh) ⊂ Km(Ω) be a sequence which converges to a compact set K in
the Hausdorff metric and such that |Kh| converges to |K| with K having only one contact
point z ∈ Ω. Assume that there exists r > 0 such that Br(z)∩K = Γ1 ∪ Γ2 ∪ Γ3, with Γi

Lipschitz simple curves such that Γi ∩ Γj = z for i 6= j and Γi ∩ ∂Br(z) = xi for every i
(see Figure 5). Suppose that Br(z) \K =

⋃3
i=1 Di with Di Lipschitz domains.

If uh is a solution of (10), then the sequence (∇uh) converges weakly to ∇u in Lp(Ω, R2),
where the function u solves a minimization problem of the type:

min
w


1

p

∫
Ω\K

|∇w|pdx−
[
a1(w3 − w1) + a2(w1 − w2) + a3(w2 − w3)

]
w ∈ L1,p(Ω \K), w = g on ∂DΩ \K

 (38)
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where wj is the trace of w|Dj
evaluated at z and aj coincides with the value taken on Γj

by the continuous representative of the limit v of the conjugates vh.

Proof. First of all from Lemma 2.3 it follows that u ∈ L1,p(Ω \ K) and u = g on
∂DΩ \ K. Now let ϕ ∈ C1(Ω \ K) ∩ L1,p(Ω \ K) with ϕ|Dj

∈ C1(Dj) ∀j and such that
ϕ = 0 on ∂DΩ \K. Using (37), we have that∫

Ω\K
|∇u|p−2∇u∇ϕ dx =

∫
Ω\K

R∇v∇ϕ dx

=

∫
(Ω\K)\Br(z)

R∇v∇ϕ dx +
3∑

j=1

∫
Dj

R∇v∇ϕ dx. (39)

Since z is the only contact point of K ∪ ∂NΩ, we have that any connected component
of K ∪ ∂NΩ \Br(z) is contained in a limit of some connected component of Kh ∪ ∂NΩ.
Therefore v is constant on every connected components of K ∪ ∂NΩ \ Br(z). In order to
integrate by parts outside Br(z), where K in general is not regular, it is useful (from [24,
Theorem 4.5]) to approximate strongly in W 1,q(Ω \ Br(z)) the function v with smooth
functions wn that are constant in a suitable neighborhood of any connected component
of (K ∪ ∂NΩ) \Br(z). As div (R∇wn) = 0, integrating by parts we get∫

(Ω\K)\Br(z)

R∇v∇ϕ dx = lim
n→∞

∫
(Ω\K)\Br(z)

R∇wn∇ϕ dx

= − lim
n→∞

∫
∂Br(z)

(R∇wn)ν ϕ dH1 = − lim
n→∞

∫
∂Br(z)

∂wn

∂τ
ϕ dH1

= +

∫
∂Br(z)

v
∂ϕ

∂τ
dH1 − (a1ϕ|D1(x1)− a2ϕ|D1(x2))− (a2ϕ|D2(x2)− a3ϕ|D2(x3))

−(a3ϕ|D3(x3)− a1ϕ|D3(x1)) (40)

where ν is the unit vector outer normal to Br(z) and τ = −Rν is the corresponding
tangential unit vector, so that ∂ϕ

∂τ
denotes the tangential derivative of the function ϕ.

On the other hand, as div (R∇ϕ) = 0, we have

3∑
j=1

∫
Dj

R∇v∇ϕ dx = −
3∑

j=1

∫
Dj

∇vR∇ϕ dx = −
3∑

j=1

∫
∂Dj

v
∂ϕ

∂τ
dH1. (41)

Let us compute∫
∂D1

v
∂ϕ

∂τ
dH1 =

∫
∂Br(z)∩∂D1

v
∂ϕ

∂τ
dH1 +

∫
Γ1

v
∂ϕ

∂τ
dH1 +

∫
Γ2

v
∂ϕ

∂τ
dH1

=

∫
∂Br(z)∩∂D1

v
∂ϕ

∂τ
dH1 − a1(ϕ|D1(x1)− ϕ|D1(z))− a2(ϕ|D1(z)− ϕ|D1(x2)).

In a similar way∫
∂D2

v
∂ϕ

∂τ
dH1 =

∫
∂Br(z)∩∂D2

v
∂ϕ

∂τ
dH1 − a2(ϕ|D2(x2)− ϕ|D2(z))− a3(ϕ|D2(z)− ϕ|D2(x3))
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∫
∂D3

v
∂ϕ

∂τ
dH1 =

∫
∂Br(z)∩∂D3

v
∂ϕ

∂τ
dH1 − a3(ϕ|D3(x3)− ϕ|D3(z))− a1(ϕ|D3(z)− ϕ|D3(x1)).

Then, we have by (41) that

3∑
j=1

∫
Dj

R∇v∇ϕ dx = −
∫

∂Br(z)

v
∂ϕ

∂τ
dH1 + a1(ϕ|D1(x1)− ϕ|D1(z))

+a2(ϕ|D1(z)− ϕ|D1(x2)) + a2(ϕ|D2(x2)− ϕ|D2(z)) + a3(ϕ|D2(z)− ϕ|D2(x3))

+a3(ϕ|D3(x3)− ϕ|D3(z)) + a1(ϕ|D3(z)− ϕ|D3(x1))

= −
∫

∂Br(z)

v
∂ϕ

∂τ
dH1 + a1(ϕ|D3(z)− ϕ|D1(z)) + a2(ϕ|D1(z)− ϕ|D2(z))

+a3(ϕ|D2(z)− ϕ|D3(z)) + [(a1ϕ|D1(x1)− a2ϕ|D1(x2)) + (a2ϕ|D2(x2)− a3ϕ|D2(x3))

+(a3ϕ|D3(x3)− a1ϕ|D3(x1))] . (42)

Therefore from (39), (40) and (42) we get the identity∫
Ω\K

|∇u|p−2∇u∇ϕ dx =

=a1(ϕ|D3(z)− ϕ|D1(z)) + a2(ϕ|D1(z)− ϕ|D2(z)) + a3(ϕ|D2(z)− ϕ|D3(z))

which is the weak formulation of the Euler-Lagrange equation for the minimization prob-
lem (38) and the conclusion follows from the convexity of the functional in (38).

Remark 5.7. Note that the function u solves a problem of the type (38) whenever K is
as in Figure 5 and z is the only contact point of K, independently of the sequence (Kh).
However the constants ai are related to the particular sequence (Kh) and to the particular
boundary data g. Indeed, the constants ai are the limits (as h →∞) of the values taken
by the conjugates vh on the connected components of Kh.

Note also that the functional to minimize in (38) can be rewritten as

1

p

∫
Ω\K

|∇w|pdx−
[
w1(a2 − a1) + w2(a3 − a2) + w3(a1 − a3)

]
.

Remark 5.8. The example above can easily be extended to cases in which there are
finitely many contact points where a finite number of curves intersect each other as above.
In particular, this method applied to Example 5.2 gives the following minimization prob-
lem in the limit

min
w


1

p

∫
Ω\K

|∇w|pdx− (a1 − a2)(w
+(0, 0)− w−(0, 0))

w ∈ L1,p(Ω \K), w = g on ∂DΩ \K

 . (43)
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Now from the weak Euler-Lagrange equations of (43) and of the minimization problem
involving the functional F∞ in (31) we get for every ϕ ∈ L1,p(Ω \ K) with ϕ = 0 on
∂DΩ \K

pc|u+(0, 0)− u−(0, 0)|p−2(u+(0, 0)− u−(0, 0))(ϕ+(0, 0)− ϕ−(0, 0)) =

= (v+(0, 0)− v−(0, 0))(ϕ+(0, 0)− ϕ−(0, 0)).

By the arbitrariness of ϕ we get

pc|u+(0, 0)− u−(0, 0)|p−2(u+(0, 0)− u−(0, 0)) = (v+(0, 0)− v−(0, 0))

which can be interpreted as a discrete version of the duality relation (37).
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