
Journal of Convex Analysis

Volume 11 (2004), No. 2, 335–361

Variational Analysis for a Class of
Minimal Time Functions in Hilbert Spaces

Giovanni Colombo∗

Dipartimento di Matematica Pura e Applicata,
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This paper considers the parameterized infinite dimensional optimization problem

minimize
{

t ≥ 0 : S ∩ {x+ tF} 6= ∅
}

,

where S is a nonempty closed subset of a Hilbert space H and F ⊆ H is closed convex satisfying 0 ∈ int F .
The optimal value T (x) depends on the parameter x ∈ H, and the (possibly empty) set S∩(x+T (x)F ) of
optimal solutions is the “F -projection” of x into S. We first compute proximal and Fréchet subgradients
of T (·) in terms of normal vectors to level sets, and secondly, in terms of the F -projection. Sufficient
conditions are also obtained for the differentiability and semiconvexity of T (·), results which extend the
known case when F is the unit ball.

1. Introduction

Let H be a real Hilbert space, and suppose the following data are given: S ⊆ H is
nonempty and closed, and F ⊆ H is nonempty, closed, convex, bounded, and with 0 ∈
int F . This paper studies regularity properties of the value function T : H → IR given by

T (x) := inf
t≥0

{

t : S ∩ {x+ tF} 6= ∅
}

. (1)

One can view T (·) as the minimal time function of a control system in which the dynamic
equation is Úx(t) ∈ F , where the righthand side F is constant (i.e. independent of t and
x), and the target set is S. An important and well-studied special case is F = IB, where
IB is the closed unit ball, in which T (·) reduces to the usual distance function

dS(x) = inf
s∈S

‖x− s‖.

We adopt the approach of Cannarsa and Sinestrari [8] by studying T (·) in analogy with
dS(·). A key ingredient to differentiability properties of dS(·) is the set of projections onto
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S; the analogous notion we require is the set ΠF
S (x) of so-called F -projections onto S,

given by ΠF
S (x) = S ∩ {x+ T (x)F}, which could be empty in infinite dimensions.

We quickly review some recent work on minimal time problems related to our results here.
The minimal time function for general nonlinear control problems was first characterized
as a solution to a Hamilton-Jacobi equation by Bardi [3] using viscosity methods. Soravia
[18] extended these results to allow for noncontrollability and more general boundary con-
ditions; see also [21] for related results using an invariance-based approach. Regularity
properties were derived in [8] with an emphasis on global semiconcavity results. Global
semiconvexity was also proven in [8] for the case where the target is convex and the
dynamic equation is linear. Lipschitz estimates are provided by Veliov [20], and differen-
tiability is linked with properties of the velocity set in [5], where the dynamics are linear
and the target is a single point. The underlying state space in the aforementioned pa-
pers is finite-dimensional. Some infinite dimensional extensions of [8] are provided in [9],
where in particular sufficient conditions are established for differentiability. The results
of Section 5.3 below are contained in [9] when S = {0}. Other regularity results, for a
more general dynamics but less general target and control set, are contained in [1]. As
already mentioned, the case F = IB has T (·) = dS(·), and has been well-studied in both
finite and infinite dimensions. Differentiability in Hilbert space of dS(·) is characterized
in [12]. Additional refinements and localization is carried out in [16], and [13] contains
related results emphasizing the distinction between finite and infinite dimensional spaces.

The present paper extends to T (·) a variety of the above-mentioned results. The literature
on dS(·), both in finite and in infinite dimensions, goes much deeper (see, e.g., [7] and
references therein) than we are able to establish for T (·). However, we compute its
subdifferentials, and derive regularity properties under suitable assumptions on both S
and F . The linkage of regularity of T (·) with the interplay of the regularity properties of
S and F at the point of contact is firmly established.

We remark that our class of problems cannot be simply formulated as a renorming of the
space, unless F is symmetric with respect to the origin. A source of difficulty lies in the
fact that the segment joining x with its F -projection is not necessarily normal to S or to
F .

The plan of the paper is as follows. Section 2 contains a terse review of the required back-
ground plus some preliminary results. The main result in Section 3 is a general formula
for the proximal and the Fréchet subgradient of T (·) in terms of normal vectors to its
level sets. A similar propagation formula for general nonlinear systems in finite dimen-
sions was proven by Soravia [19]; proximal versions in both finite and infinite dimensions
are contained in [21] and [14]. Similar results are also contained in §3 of [4]. Section 4
contains a formula for the subgradient of T (·) in the case where S is convex. Section
5 contains the main results, and considers nonconvex target sets. If the target S is not
weakly closed, then the nonemptiness of the F -projection is not assured, and so we first
provide sufficient conditions for existence, uniqueness, and local Lipschitz continuity of
the F -projection (5.1); these generalize well known assertions for the Euclidean metric
projection (see [6, 12, 16, 13]). Again analogous to the distance function (see e.g. [12, 16]),
results on the differentiability of T (·) are derived there as well. In particular, we show in
Theorem 5.14 that if F is strictly convex and C1,+, and S is proximally smooth with the
nonconvexity of S “harmonious" with the strict convexity of F , then T (·) is of class C1,+

in a neighborhood of S. Moreover, assumptions are introduced that imply semiconvexity
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in a neighborhood of S. Finally, Section 6 is devoted to some examples and remarks.

2. Preliminaries

This section reviews some of the concepts and basic tools used in the sequel. See [11] for
a fuller development of nonsmooth analysis based on the proximal concepts, and [17] for
a somewhat different but exhaustive treatment in finite dimensions.

2.1. Background in variational analysis

The proximal normal cone Np
S(s) to S at s ∈ S is the set of all ζ ∈ H for which there

exist σ ≥ 0 such that
〈ζ, s′ − s〉 ≤ σ‖s′ − s‖2 ∀s′ ∈ S.

If S is convex, then the proximal normal cone coincides with the normal cone NS(s) of
convex analysis, and in this case, there is no loss in generality using just σ = 0.

The corresponding function concept is the proximal subgradient, defined as follows. Sup-
pose f : H → (−∞,∞] is lower semicontinuous and proper, and let epi f := {(x, α) ∈
H× IR : α ≥ f(x)} denote the epigraph of f . For x ∈ dom f := {x ∈ H : f(x) < ∞}, the
proximal subgradient ∂pf(x) is (the possibly empty) subset of H defined as those ζ sat-
isfying (ζ,−1) ∈ NP

epi f

(

x, f(x)
)

. A user-friendly description of the proximal subgradient
is given by (see [11, Theorem 2.5])

∂pf(x) = {ζ : ∃η > 0, σ ≥ 0 so that f(y) ≥ f(x) + 〈ζ, y − x〉 − σ‖y − x‖2 ∀y ∈ x+ ηIB}.

If f is convex, then ∂pf(x) coincides with the subgradient of convex analysis, and is simply
denoted by ∂f . In this case, the above description is equivalent with σ = 0 and η = ∞.

Additional variational objects will also be considered. The Fréchet normal cone N f
S (s) to

S at s is the set of all ζ ∈ H such that

lim sup
s′→s,s′∈S

〈

ζ,
s′ − s

‖s′ − s‖

〉

≤ 0.

The corresponding function concept ∂ff(x) can be defined via the epigraph as in the
proximal case, or equivalently by

ζ ∈ ∂ff(x) if and only if lim inf
x′→x

f(x′)− f(x)− 〈ζ, x′ − x〉
‖x′ − x‖

≥ 0.

Limiting objects are also useful: the limiting normal cone to S at s is the set N l
S of all

cluster points in the weak topology of H of sequences {ζi} with ζi ∈ Np
S(si) and si → s,

i.e., N l
S(s) = {ζ : ζ = w − lim ζi, ζi ∈ Np

S(si), si → s}. The limiting subdifferential
of a lower semicontinuous proper function f : H → (−∞,+∞] at x ∈ dom f is the set
∂lf(x) of all weak cluster points of sequences {ζi} with ζi ∈ ∂pf(xi) and xi → x. The
Clarke normal cone N c

S(s) is defined as the closed convex hull of N l
S(s). It can be proved

that Np
S(s) ⊆ N f

S (s) ⊆ N l
S(s) ⊆ N c

S(s) for all s ∈ S, where all inclusions can be strict.
Similar chains of inclusions hold also for subgradients (see, e.g, [11, §10], [2, Theorem
4.4.4]). Equalities among these normal cones/subgradients are entwined with regularity
properties of the sets/functions, and are a major theme of the ensuing analysis.
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2.2. Gauge functions and polars

We are interested in convex sets F ⊂ H that are closed, convex, bounded, and with
0 ∈ int F , however the concepts of this section are first introduced more generally with
F assumed only to be closed, convex, and with 0 ∈ F .

Recall that the (Minkowski) gauge function ρF : H → [0,∞] associated to F is defined
by

ρF (ζ) = min

{

t ≥ 0 :
1

t
ζ ∈ F

}

,

and the polar F ◦ of F is the set

F ◦ := {ζ : 〈ζ, v〉 ≤ 1 ∀v ∈ F}.

The polar is always closed, convex, and with 0 ∈ F ◦, and the closedness and convexity of
F imply the polar of F ◦ is F , that is (F ◦)◦ = F . We next further review some elementary
properties of ρF (·), which of course also hold for ρF ◦(·), but are not explicitly stated. The
proofs of these facts involve routine manipulations of the definitions and are therefore
omitted. The gauge ρF (·) is positively homogeneous (ρF (rx) = rρF (x) for all x ∈ H and
r ≥ 0) and subadditive (ρF (x+ y) ≤ ρF (x) + ρF (y) for all x and y), and therefore is also
convex. Since F is closed, ρF (·) is lower semicontinuous. It is clear that x ∈ F if and only
if ρF (x) ≤ 1. Furthermore, F is bounded if and only if 0 ∈ int F ◦, and in fact one has for
constants m and M in [0,∞] that

mIB ⊆ F ⊆ MIB ⇐⇒ 1

M
IB ⊆ F ◦ ⊆ 1

m
IB. (2)

Henceforth for the remainder of the paper, we assume F is bounded and 0 ∈ int F .
Of course F bounded (resp. 0 ∈ int F ) means that we can take M < ∞ (resp. m > 0)
in (2). Note then that (2) implies F ◦ is also bounded with 0 ∈ int F ◦. Define, for a
set A ⊆ H, ‖A‖ = sup{‖a‖ : a ∈ A}. Then, by (2) the number ‖F‖ ‖F ◦‖ is ≥ 1, and
represents a measure of “how far" is F from being a ball. Some further consequences of
these assumptions are included in the following proposition.

Proposition 2.1. Suppose F is closed, convex, bounded, and with 0 ∈ int F . Then

(a) v ∈ bdry F if and only if ρF (v) = 1.

(b) For all ζ 6= 0 in H,
0 < ρF ◦(ζ) = max

v∈F
〈ζ, v〉 < ∞.

(c) Define ‖F‖ := max{‖v‖ : v ∈ F}, and similarly ‖F ◦‖ := max{‖ζ‖ : ζ ∈ F ◦}. Then
for all z ∈ H,

ρF (z)

‖F ◦‖
≤ ‖z‖ ≤ ‖F‖ρF (z). (3)

Proof. (a) The “ifÔ direction holds for any convex F with 0 ∈ F , since ρF (v) = 1 implies
(1 + ε)v /∈ F for all ε > 0. For the “only ifÔ direction, we prove the contrapositive, and
assume ρF (v) ≤ ρ0 < 1. Let ε < 1−ρ0

max{ρF (b′):b′∈IB} . Then for all b ∈ IB, we have

ρF (v + εb) ≤ ρF (v) + ερF (b) ≤ ρ0 +
1− ρ0

max{ρF (b′) : b′ ∈ IB}
ρF (b) < 1.
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Therefore v + εIB ⊆ F , and so v /∈ bdry F , and (a) is proven.

(b) Let ζ 6= 0. Now ρF ◦(ζ) is positive since 0 ∈ int F ◦, and is finite since F is bounded.
A calculation shows

ρF ◦(ζ) = min
{

t :
1

t
ζ ∈ F ◦} = min

{

t : 〈ζ, v〉 ≤ t ∀v ∈ F
}

= max
v∈F

〈ζ, v〉,

which proves (b).

(c) For any z ∈ H, we have by (b) that

ρF (z) = max
ζ∈F ◦

〈ζ, z〉 ≤ ‖F ◦‖‖z‖,

which is equivalent to the first inequality. The second is trivial if z = 0 and follows
otherwise since z

ρF (z)
∈ F .

Remark. Note (b) says that the Hamiltonian as usually defined in optimal control (see
[11]) is ρF ◦(·). Moreover, observe that ρF is a norm on H, equivalent to the usual one, if
and only if F = −F . Finally, by (2) it is easy to see that ‖F‖ ‖F ◦‖ ≥ 1.

2.3. Subgradient properties of the gauge functions

Differential properties of the gauge functions are reviewed in this subsection, and in
particular the duality relationships among them.

Proposition 2.2. Assume that F is closed, convex, bounded, and with 0 ∈ int F . For
given nonzero vectors v ∈ H, ζ ∈ H, the following statements are equivalent:

(a) 〈ζ, v〉 = ρF (v)ρF ◦(ζ);

(b) v
ρF (v)

attains the max over u ∈ F of the map u 7→ 〈ζ, u〉;

(c) ζ ∈ NF

(

v
ρF (v)

)

;

(d) ζ
ρF◦ (ζ)

attains the max over ξ ∈ F ◦ of the map ξ 7→ 〈ξ, v〉;

(e) v ∈ NF ◦

(

ζ
ρF◦ (ζ)

)

;

(f) ζ
ρF◦ (ζ)

∈ ∂ρF (v);

(g) v
ρF (v)

∈ ∂ρF ◦(ζ).

Proof. By Proposition 2.1(b), one observes that ρF ◦(·) is the support function of F , and
so its Legendre-Fenchel conjugate

ρF ◦(v) := sup
ζ∈H

{

〈ζ, v〉 − ρF ◦(ζ)
}

is the indicator function

IF (v) :=

{

0 if v ∈ F
∞ if v /∈ F

of F . Recall that the convex subgradient of ∂IF (v) is the normal cone to F at v. The
equivalent conditions in the statement are immediate consequences of this fact and the
duality relationships between a convex function and its conjugate. See e.g. [15, pp.
21-22].



340 G. Colombo, P.R. Wolenski / Variational Analysis for a Class of Minimal ...

Corollary 2.3. Suppose v ∈ H. Then

∂ρF (v) =

{

ζ : ρF ◦(ζ) = 1

}

∩NF

(

v

ρF (v)

)

.

2.4. The minimal time function

The minimal time function T (·) : H → [0,∞) was defined above in (1), but the equivalent
following description is more useful:

T (x) = inf
s∈S

ρF (s− x). (4)

Note that the assumption 0 ∈ int F implies T (x) < ∞ for all x ∈ H, but the next
proposition says in fact T (·) is Lipschitz, as it is to be expected from the optimal control
point of view (see [8], [20], [21]) since 0 ∈ int F .

Proposition 2.4. The minimal time function T (·) is globally Lipschitz on H of rank
‖F ◦‖.

Proof. Let x, y ∈ H and let ε > 0. There exists s ∈ S so that ρF (s− y) ≤ T (y) + ε. By
(4) and the subadditivity of ρF (·), we have

T (x)− T (y) ≤ ρF (s− x)− ρF (s− y) + ε

≤ ρF (y − x) + ε

≤ ‖F ◦‖‖y − x‖+ ε,

where in the last inequality we used (3). Letting ε ↓ 0 and switching the roles of x and y
proves the theorem.

Another consequence of (3) is the following

Proposition 2.5. Let x 6∈ S. Then T (x) ≤ ‖F ◦‖dbdry S(x).

The level sets S(r) of T (·) will play a significant role in our analysis, and are defined by

S(r) =
{

y ∈ H : T (y) ≤ r
}

. (5)

The F -projection of a point x ∈ H is the (possibly empty) set ΠF
S (x) = {s ∈ S :

ρF (s − x) = T (x)}. The metric projection onto a set A, i.e., the F -projection onto A
when F is the closed unit ball, will be denoted by πA. It is clear that the nonemptiness of
ΠF

S (x) means that the infimum in (1) is attained, i.e., there exists an optimal trajectory
for the control problem (1). The following proposition contains the special versions of the
so-called principle of optimality that are pertinent here.

Proposition 2.6 (Principle of Optimality). Suppose x /∈ S.

(a) For all v ∈ F and t ≥ 0,
T (x− tv) ≤ T (x) + t.

(b) Let S(r) be as in (5). Then

T (x) ≤ r + min
z∈S(r)

ρF (z − x).
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Proof. (a). Let v ∈ F , t ≥ 0, and ε > 0. There exists s ∈ S so that ρF (s−x) < T (x)+ε.
By subadditivity and positive homogeneity, we have

T (x− tv) ≤ ρF (s− x+ tv) ≤ ρF (s− x) + tρF (v) < T (x) + t+ ε.

Letting ε ↓ 0 proves (a).

(b). Let ε > 0 and suppose 0 ≤ r < T (x), otherwise there is nothing to prove. There
exist z ∈ S(r) and s ∈ S so that

ρF (z − x) < min
z′∈S(r)

ρF (z
′ − x) + ε and ρF (s− z) ≤ r + ε.

Therefore

T (x) ≤ ρF (s− z) + ρF (z − x) ≤ r + min
z′∈S(r)

ρF (z
′ − x) + 2ε,

and letting ε ↓ 0 proves (b).

Remark. If r ≤ T (x), then the inequality in the statement (b) above is actually an
equality.

A variant of part (b) will be needed in the infinite dimensional setting when the F -
projection set is empty. If ΠF

S (x) = ∅, there are nonetheless points s ∈ S that are
suboptimal for (4) in the sense of (6) below. The content of the corollary is that from
a fixed x /∈ S, any point z on a line originating from x with the suboptimal velocity is
suboptimal with the same error for the problem of minimizing x to the level set containing
z. The corollary includes the optimal case ε = 0 as well.

Corollary 2.7 (Principle of Suboptimality). Suppose x /∈ S, ε ≥ 0, and s ∈ S sat-
isfy

ρF (s− x) ≤ T (x) + ε. (6)

Let v := s−x
ρF (s−x)

∈ F , and define zt := x+ tv for t ≥ 0. Now suppose 0 ≤ r ≤ T (x) and t̄

satisfy T (zt̄) = r. Then

t̄ ≤ min
z∈S(r)

ρF (z − x) + ε. (7)

Proof. We have

r = min
s′∈S

ρF (s
′ − zt̄) ≤ ρF (s− zt̄)

= ρF

(

s− x− t̄
s− x

ρF (s− x)

)

= ρF

(

[

ρF (s− x)− t̄
] s− x

ρF (s− x)

)

= ρF (s− x)− t̄.

Thus by (6) we have

t̄ ≤ ρF (s− x)− r ≤ T (x)− r + ε,

and the final conclusion (7) follows from the previous Theorem, part (b), since it says
T (x)− r ≤ minz∈S(r) ρF (z − x).
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3. General Formulas for ∂pT and ∂fT

The first result in this section characterizes the proximal and the Fréchet subgradient of
T (·) in general terms. The formulas have two features and can be naturally explained
as follows: (1) one feature is to be expected from vector calculus in that the gradient is
normal to the level set (although this is not true for general nonsmooth functions), and
(2) the other says that the gradient is scaled in a manner to satisfy the Hamilton-Jacobi
equation. Next, we prove an upper inclusion for both proximal and Fréchet subgradient at
some point x 6∈ S, which does not involve the level sets of T . Reversing this inclusion, and
hence explicitly computing the subgradients, will be one of the major efforts of Section 5.

Theorem 3.1. Suppose S is closed and F ⊂ H is closed, convex, bounded, and with
0 ∈ int F . Suppose x /∈ S and T (x) = r. Then

∂pT (x) = Np
S(r)(x) ∩

{

ζ : ρF ◦(−ζ) = 1
}

,

∂fT (x) = N f
S(r)(x) ∩

{

ζ : ρF ◦(−ζ) = 1
}

,

where S(r) is as in (5).

Proof. We refer to [14] for the proof of the proximal case. Modifications of that argument
will establish the formula for the Fréchet subgradient, which we now elucidate.

(⊆) Let ζ ∈ ∂fT (x). Then

lim inf
y→x

T (y)− T (x)− 〈ζ, y − x〉
‖y − x‖

≥ 0. (8)

If we restrict the limit to y ∈ S(r), the above formula becomes

lim sup
y→x, y∈S(r)

〈ζ, y − x〉
‖y − x‖

≤ 0,

which says exactly that ζ ∈ N f
S(r)(x).

We next show ρF ◦(−ζ) ≤ 1. Let v ∈ F , and set, for t ≥ 0, yt = x− tv. Let ε > 0. If t is
small enough, by (8) and Proposition 2.6 (a) we obtain that

1 + 〈ζ, v〉
‖v‖

≥ T (yt)− T (x)− 〈ζ, yt − x〉
‖yt − x‖

≥ −ε.

By letting ε → 0 we obtain

ρF ◦(−ζ) = max
v∈F

〈−ζ, v〉 ≤ 1. (9)

Finally, we show there exists v̄ ∈ F with 〈ζ, v̄〉 ≤ −1, which along with (9) implies
ρF ◦(−ζ) = 1 as desired. For t > 0, let st ∈ S be so that ρF (st − x) ≤ r + t2, and let
vt =

st−x
ρF (st−x)

∈ F . Since F is weakly compact, there exists a sequence {ti}i with ti ↘ 0
and vi := vti converging weakly to some v̄ ∈ F as i → ∞. Now consider yi := x + tivi,
and write si for sti . Observe that for all t′ > 0

1

t′
(si − yi) =

ρF (si − x)− ti
t′

si − x

ρF (si − x)
,
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and so the minimum value of t′ with 1
t′
(si − yi) belonging to F must necessarily satisfy

t′ ≤ ρF (si − x)− ti. Therefore

T (yi) = min{ρF (s− yi) : s ∈ S} ≤ min{t′ : 1
t′
(si − yi) ∈ F}

≤ ρF (si − x)− ti < r − ti + t2i

for all i. Let ε > 0. For large i, the previous estimate can be used in conjunction with
(8) to obtain

r − ti + t2i > T (yi) ≥ r + 〈ζ, yi − x〉 − ε‖yi − x‖
= r + ti〈ζ, vi〉 − εti‖vi‖.

Now divide by ti > 0 and let i → ∞. Since vi → v̄ weakly and ε is arbitrary, the
conclusion is

〈ζ, v̄〉 ≤ −1. (10)

Hence ρF ◦(−ζ) = 1 as asserted.

(⊇) Now let ζ be such that ρF ◦(−ζ) = 1 and

lim sup
z→x, z∈S(r)

〈ζ, z − x〉
‖z − x‖

≤ 0. (11)

Let ε > 0 be fixed. In order to prove (8) we must find δ > 0 such that if ‖y−x‖ ≤ δ then

T (y)− r − 〈ζ, y − x〉 ≥ −ε‖y − x‖. (12)

There are three possibilities for a point y, which we shall consider separately: (i) T (y) = r,
(ii) T (y) > r, and (iii) T (y) < r.

(i) The case T (y) = r is trivial, since (12) follows automatically from (11).

(ii) Suppose T (y) > r and ‖y − x‖ ≤ 1. There exists s ∈ S such that

ρF (s− y) < T (y) + ‖y − x‖2. (13)

Set v := s−y
ρF (s−y)

, and choose t̄ so that zt := y+ tv satisfies T (zt̄) = r. Indeed, since t0 = 0

satisfies T (zt0) = T (y) > r and t1 = ρF (s− y) satisfies T (zt1) = 0, such a t̄ exists by the
intermediate value theorem. We claim that there exists a constant k > 0 independent of
y such that

‖zt̄ − x‖ ≤ k‖y − x‖ (14)

Indeed, the Principle of Suboptimality (Corollary 2.7, with ε = ‖y − x‖2) implies that

t̄ ≤ min
z∈S(r)

ρF (z − y) + ‖y − x‖2

≤ ρF (x− y) + ‖y − x‖2 (since x ∈ S(r))

≤ (‖F ◦‖+ 1)‖y − x‖, (by (3) and ‖y − x‖ ≤ 1)
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and thus

‖zt̄ − x‖ ≤ ‖zt̄ − y‖+ ‖y − x‖ = t̄‖v‖+ ‖y − x‖

≤
{

(‖F ◦‖+ 1)‖F‖+ 1
}

‖y − x‖
=: k‖y − x‖.

Now we claim that
r + t̄ ≤ ρF (s− y). (15)

Indeed,

s− zt̄ = s− y − t̄
s− y

ρF (s− y)
= (ρF (s− y)− t̄)

s− y

ρF (s− y)
,

and so
r = min

s′∈S
ρF (s

′ − zt̄) ≤ ρF (s− zt̄) ≤ ρF (s− y)− t̄,

which implies (15).

If y is close enough to x, we can combine (13) and (15) and exploit (11) to obtain the
following estimate

T (y) + ‖y − x‖2 > r + t̄

≥ r + t̄+ 〈ζ, zt̄ − x〉 − ε‖zt̄ − x‖
= r + t̄+ t̄〈ζ, v〉+ 〈ζ, y − x〉 − ε‖zt̄ − x‖
≥ r + 〈ζ, y − x〉 − ε‖zt̄ − x‖, (16)

where we used the assumption ρF ◦(−ζ) = 1 (which implies 〈ζ, v〉 ≥ −1) to deduce the
inequality in (16). Combining this estimate with (14) yields, for y close enough to x,

T (y) ≥ r + 〈ζ, y − x〉 − 2kε‖y − x‖,

and finishes the proof of (ii).

(iii) Assume now that T (y) < r. Take v ∈ F such that 〈ζ, v〉 = −1 and assume that
ε < 1/(‖F ◦‖ ‖F‖). Take δ > 0 so that ‖z − x‖ < δ and z ∈ S(r) imply 〈ζ, z − x〉 <
ε‖ζ‖ ‖z − x‖. Set zt = y − tv. We claim that there exist t and k (the latter being
independent of y) so that zt 6∈ S(r) and 0 ≤ t ≤ k‖y − x‖. Indeed, if y is close enough to
x and t is small, then zt ∈ S(r) and

〈ζ, zt − x〉 < ε‖zt − x‖ ‖ζ‖ (17)

moreover,
〈ζ, zt − x〉

t
= 1 +

〈ζ, y − x〉
t

→ 1 for t → +∞.

On the other hand,

lim
t→+∞

ε‖zt − x‖ ‖ζ‖
t

= ε‖ζ‖ ‖v‖ ≤ ε‖F‖ ‖F ◦‖ < 1.

Hence there exists Ýt such that

〈ζ, zÝt − x〉 = ε‖zÝt − x‖ ‖ζ‖. (18)
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Thus

Ýt+ 〈ζ, y − x〉 = 〈ζ, zÝt − x〉 = ε‖zÝt − x‖ ‖ζ‖
≤ ε‖ζ‖(‖y − x‖+ Ýt‖v‖)
≤ ε‖F ◦‖(‖y − x‖+ Ýt‖F‖),

from which one has
Ýt(1− ε‖F ◦‖ ‖F‖) ≤ (ε+ 1)‖F ◦‖ ‖y − x‖

and

Ýt ≤ k‖y − x‖, with k =
(ε+ 1)‖F ◦‖

1− ε‖F ◦‖ ‖F‖
.

If y is close enough to x, then zÝt 6∈ S(r), because the condition (17) is violated. Now,
since, for small t, T (zt) < r, by the above argument we obtain that, for y close enough to
x, there exists 0 < t < Ýt such that

T (zt) = r, t ≤ k‖y − x‖, (19)

and (17) holds.

We now return to proving (8). We have by the principle of optimality again that

T (zt̄) ≤ T (y) + t̄,

from which it follows, recalling that 〈ζ, v〉 = −1,

T (y) ≥ T (zt̄)− t̄ = r − 〈ζ,−t̄v̄〉
= r + 〈ζ, y − x〉 − 〈ζ, zt̄ − x〉. (20)

Now by (17)
〈ζ, zt̄ − x〉 < ε‖zt̄ − x‖ ‖ζ‖. (21)

Also, from the t̄-estimate in (19), we obtain

‖zt̄ − x‖ ≤ ‖y − x‖+ t̄‖v̄‖ ≤ (1 + k‖F ◦‖) ‖y − x‖. (22)

Substituting (21) and (22) into (20) yields (8).

We state the following result as a corollary to the previous proof (see (10)), for it will be
used subsequently.

Corollary 3.2. Suppose x /∈ S, s ∈ ΠF
S (x), and −ζ ∈ ∂ρF (s− x). Then

〈

ζ,
s− x

ρF (s− x)

〉

= 1.

The following result is a first step in order to give an alternative formula to those in
Theorem 3.1, based on the F -projections rather than on the level sets of T (·).
Theorem 3.3. Suppose S ⊆ H is closed, x /∈ S, and ΠF

S (x) 6= ∅. Then for all s ∈ ΠF
S (x)

the following inclusions hold:

∂pT (x) ⊆ Np
S(s) ∩ (−∂ρF (s− x)) , (23)

∂fT (x) ⊆ N f
S (s) ∩ (−∂ρF (s− x)) . (24)
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Proof. Fix s ∈ ΠF
S (x). Of course both inclusions are trivial if ∂pT (x) = ∂fT (x) = ∅, so

suppose ζ ∈ ∂pT (x), and set r := T (x). Recall Theorem 3.1, which says

ρF ◦(−ζ) = 1 and ζ ∈ Np
S(r)(x).

By Corollary 2.3, it suffices to show that

ζ ∈
[

−NF

(

s− x

ρF (s− x)

)]

∩Np
S(s). (25)

So, set v̄ := s−x
ρF (s−x)

and note by Corollary 3.2 that 〈−ζ, v̄〉 = 1. Also, since ρF ◦(−ζ) = 1,

we have 〈−ζ, v〉 ≤ 1 for all v ∈ F , and hence

〈−ζ, v − v̄〉 ≤ 0 ∀v ∈ F,

which says that ζ ∈ −NF (v̄).

We are left to showing that ζ ∈ Np
S(s), and are assuming there exists σ > 0 so that

〈ζ, y − x〉 ≤ σ‖y − x‖2 ∀y ∈ S(r). (26)

Let s′ ∈ S, and note that y := s′ + x − s belongs to S(r) (since T (y) ≤ ρF (s
′ − y) =

ρF (s− x) = r). Since s′ − y = s− x and y − x = s′ − s, we have by (26) that

〈ζ, s′ − s〉 = 〈ζ, y − x〉
≤ σ‖y − x‖2

= σ‖s′ − s‖2.

Hence ζ ∈ Np
S(s).

Let now ζ ∈ ∂fT (x). The same argument as above shows that ζ ∈ −NF (v). To prove

that ζ ∈ N f
S (s), take s

′ ∈ S and set y(s′) = s′+x−s. Observe as above that y(s′) ∈ S(r).
Thus,

lim sup
s′→s

〈ζ, s′ − s〉
‖s′ − s‖

= lim sup
s′→s

〈ζ, y(s′)− x〉
‖y(s′)− x‖

≤ 0,

which concludes the proof.

4. The case where S is convex

As in many situations involving convexity, there is a global and complete characterization
under additional convexity assumptions. We shall show in this section that the subgradi-
ent of T (·) at each point can be completely described when S is convex. It is convenient
to have the following concept.

Definition 4.1. Suppose S is convex, x̄ /∈ S, and s̄ ∈ ΠF
S (x̄). The S/F separating normal

cone SEP (S/F, s̄, x̄) for (s̄, x̄) is defined by

SEP (S/F, s̄, x̄) := NS(s̄) ∩
{

−NF

(

s̄− x̄

ρF (s̄− x̄)

)}

.

Theorem 4.2. Suppose S is convex. Then
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(a) T (·) is convex on H;

(b) for each x ∈ H, the F -projection set ΠF
S (x) is not empty;

(c) for all x̄ /∈ S, the separating cone SEP (S/F, s̄, x̄) is independent of the choice of
s̄ ∈ ΠF

S (x̄) and is nontrivial;

(d) the convex subgradient ∂T (x̄) is given by

∂T (x̄) =

{

ζ

ρF ◦(−ζ)
: ζ ∈ SEP (S/F, s̄, x̄) for some s̄ ∈ ΠF

S (x̄)

}

=

{

ζ

ρF ◦(−ζ)
: ζ ∈ SEP (S/F, s̄, x̄) for all s̄ ∈ ΠF

S (x̄)

}

Proof. (a). Since ρF (·) is convex, the function (x, s) 7→ ρF (s − x) + IS(s) is convex
jointly in (x, s). The convexity of T (·) then follows directly from (4) and a general fact
about minimizing over one of the variables a function that is jointly convex. We give a
direct proof for the sake of completeness.

Let x1, x2 be elements in H, 0 ≤ λ ≤ 1 and ε > 0. Let ti = T (xi), i = 1, 2. Then

S ∩
{

x1 + (t1 + ε)F
}

6= ∅ and S ∩
{

x2 + (t2 + ε)F
}

6= ∅.

Multiplying the first intersection by λ, the second by (1−λ), and adding, we get that the
intersection of S = λS + (1− λ)S with

{

λx1 + (1− λ)x2 +
(

λt1 + (1− λ)t2 + ε
)

F
}

is not empty. We have used twice the fact that for any convex C and nonnegative numbers
a and b, the distributive property aC + bC = (a + b)C holds. Letting ε ↘ 0, we now
conclude that

T (λx1 + (1− λ)x2) ≤ λT (x1) + (1− λ)T (x2),

or that T (·) is convex.

(b) For each i = 1, 2 . . . , let si ∈ S satisfy ρF (si − x) < T (x) + 1
i
. Since the sequence

{si} is bounded, there exists s̄ ∈ H and a subsequence of {si} that converges weakly to
s̄. But S and x + T (x)F are both closed and convex and therefore weakly closed. Thus
s̄ ∈ S ∩

{

x+ T (x)F
}

= ΠF
S (x).

(c) This will follow from the more general statement:

Claim 4.3. Suppose S1 and S2 are closed convex sets with S2 bounded and int S2 6= ∅. If
S1 ∩ int S2 = ∅ and S1 ∩ S2 6= ∅, then for each s̄ ∈ S1 ∩ S2, the cone NS1(s̄) ∩ {−NS2(s̄)}
is not the trivial cone {0} and is independent of the particular choice of s̄ ∈ S1 ∩ S2.

Proof of Claim 4.3. The set S̃ := S1 − S2 is convex, closed (since S2 is bounded), and
with nonempty interior. By assumption, 0 ∈ bdry S̃, and thus there exists ζ ∈ NS̃(0)
with ζ 6= 0; see [15, Corollary 1.3, p. 5]. This means

〈ζ, s1 − s2〉 ≤ 0 ∀s1 ∈ S1 and s2 ∈ S2. (27)
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Now let s̄ ∈ S1∩S2. Setting s2 = s̄ in (27) illustrates that ζ ∈ NS1(s̄), while setting s1 = s̄
gives −ζ ∈ NS2(s̄). This proves the nontriviality statement. That any ζ does not depend
on the choice of s̄ follows directly as well since (27) does not depend on a particular choice
of s̄ ∈ S1 ∩ S2.

Part (c) of the Theorem follows from the claim by setting S1 = S and S2 = x̄+ T (x̄)F =
x̄+ ρF (s̄− x̄)F and noting that

NS2(s̄) = NF

(

s̄− x̄

ρF (s̄− x̄)

)

.

(d) Fix x̄ /∈ S. By (c), the two sets on the right in (d) are equal. So for a fixed s̄ ∈ ΠF
S (x̄)

(which is nonempty by (b)), the conclusion of (d) is equivalent to the formula

∂T (x̄) =

{

ζ

ρF ◦(−ζ)
: ζ ∈ SEP (S/F, s̄, x̄)

}

. (28)

To prove (28), set r = T (x̄). Let S(r) be as in (5), and observe that it is convex since
T (·) is convex. Recall Theorem 3.1, which says

∂T (x̄) = NS(r) ∩ {ζ : ρF ◦(−ζ) = 1}. (29)

Comparing (28) and (29), it suffices to prove that

NS(r)(x̄) = SEP (S/F, s̄, x̄). (30)

We break the equality in (30) into two inclusions.

(⊇) Suppose ζ ∈ SEP (S/F, s̄, x̄) and x ∈ S(r). We must show that 〈ζ, x− x̄〉 ≤ 0 for all
x ∈ S(r). The given vector ζ belongs to SEP (S/F, s̄, x̄), which implies two things:

〈ζ, s− s̄〉 ≤ 0 ∀s ∈ S, and (31)

〈

ζ,
s̄− x̄

r
− v

〉

≤ 0 ∀v ∈ F (32)

Let x ∈ S(r) and s ∈ ΠF
S (x), and note that

ρF (s− x) ≤ r = ρF (s̄− x̄). (33)

We now calculate

1

r
〈ζ, x− x̄〉 =

1

r

[

〈ζ, x− s〉+ 〈ζ, s− s̄〉+ 〈ζ, s̄− x̄〉
]

≤
〈

ζ,
s̄− x̄

r
− s− x

r

〉

,

where the inequality is valid by (31). Now s−x
ρF (s−x)

∈ F and ρF (s − x) ≤ r (by (33)),

and since 0 ∈ F and F is convex, it follows that v := s−x
r

∈ F . Thus by (32), the last
displayed line is nonpositive. Hence 〈ζ, x− x̄〉 ≤ 0, as was to be shown.
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(⊆) Now let ζ ∈ NS(r)(x̄), and so we have

〈ζ, x− x̄〉 ≤ 0 ∀x ∈ S(r) (34)

and must show that (31) and (32) hold. Let s ∈ S, set x := s + x̄ − s̄, and note that
x ∈ S(r) (since ρF (s− x) = ρF (s̄− x̄) = r). Hence by (34),

〈ζ, s− s̄〉 = 〈ζ, s− x〉+ 〈ζ, x− x̄〉+ 〈ζ, x̄− s̄〉
≤ 〈ζ, s− x〉+ 〈ζ, x̄− s̄〉
= 0,

and we have that (31) holds.

Now suppose v ∈ F , and let x := s̄− ρF (s̄− x̄)v ∈ S(r). Then by (34) again,
〈

ζ,
s̄− x̄

ρF (s̄− x̄)
− v

〉

=

〈

ζ,
s̄− x̄

ρF (s̄− x̄)
− s̄− x

ρF (s̄− x̄)

〉

=
1

ρF (s̄− x̄)
〈ζ, x− x̄〉

≤ 0,

and hence (32) holds.

As a restatement of the above result, we obtain that (if S is convex) the inclusions in
Theorem 3.3 are actually equalities.

Corollary 4.4. Suppose S is convex and x /∈ S. Then

∂T (x) = NS(s) ∩ (−∂ρF (s− x)) ∀s ∈ ΠF
S (x).

Moreover, the set NS(s)∩ (−∂ρF (s− x)) is nonempty for each s ∈ ΠF
S (x) and is indepen-

dent of s.

If S is strictly convex, some regularity properties of the F -projection ΠF
S can be estab-

lished (see Theorem 5.8 below). An example illustrating the above subgradient formula
is contained in Section 6 below.

5. Results for nonconvex S

We now consider conditions on F and a possibly nonconvex target S for which T (·) has
some regularity properties in a neighborhood of S. Both Fréchet and proximal subgradi-
ents are studied. The main tool for the present analysis is the projection map, the study
of which is the subject of the first subsection.

In what follows we need a regularity concept for sets. The idea is that the nonconvexity
of the target S has to be controlled and balanced by the strict convexity of the dynamics
F .

Definition 5.1. A closed set S ⊂ H is proximally smooth if there exists ϕ ≥ 0 so that
for all s1, s2 ∈ S and ζi ∈ Np

S(si) such that ‖ζi‖ ≤ 1, i = 1, 2, one has

〈ζ2 − ζ1, s2 − s1〉 ≥ −ϕ‖s2 − s1‖2. (35)

To emphasize the dependence of ϕ, S is called ϕ-proximally smooth if (35) holds.
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Obviously, a convex set is ϕ-proximally smooth with ϕ = 0, and it is easy to see that the
boundary of the unit ball is 1-proximally smooth. It is also not difficult to show that if
S = {x ∈ H : g(x) ≤ 0} for some g ∈ C1,+(H) (i.e., g is differentiable and its differential
Dg is Lipschitz continuous) and Dg(x) 6= 0 for all x ∈ bdry S, then S is ϕ-proximally
smooth with ϕ the Lipschitz rank of Dg.

Definition 5.2. Let γ > 0 be given. We say that a closed convex set F ⊂ H is γ-strictly
convex if for all v1, v2 ∈ F and ζi ∈ NF (vi), such that ‖ζi‖ ≤ 1, i = 1, 2, one has

〈ζ2 − ζ1, v2 − v1〉 ≥ γ‖v2 − v1‖2. (36)

The property of proximal smoothness has several consequences and admits various char-
acterizations (see, e.g., [12, 16, 13, 6]). In particular, proximally smooth sets were studied
in infinite dimensions in [12] in connection with the differentiability of the Euclidean dis-
tance in a neighborhood of S. We mention here some properties which will be needed in
the proofs.

Proposition 5.3.

(i) Let S be ϕ-proximally smooth, and let s ∈ S. Let s1, s2 ∈ S be such that ϕ‖si−s‖ <
1, i = 1, 2. Then for all t ∈ [0, 1] one has

dS(ts1 + (1− t)s2) ≤ ϕt(1− t)‖s1 − s2‖2; (37)

moreover, for all s ∈ S, Np
S(s) = N f

S (s) = N l
S(s) = N c

S(s). Furthermore, the normal
cone has strongly×weakly-closed graph, i.e., if sn → s, with sn ∈ S, and ζn → ζ
weakly, with ζn ∈ Np

S(sn), then ζ ∈ Np
S(s).

(ii) Let F be γ-strictly convex and let v1, v2 ∈ bdry F . Then for all t ∈ [0, 1] one has

dbdry F (tv1 + (1− t)v2) ≥ γt(1− t)‖v1 − v2‖2. (38)

Proof. (i) is Proposition 2.13 in [6] (with ϕ in place of 2p, see also Remark 1.6 in [6])
and Propositions 5.1 and 6.1 in [13].

(ii). Fix t ∈ (0, 1), set vt = tv1 + (1 − t)v2 and choose ε > 0. Since F has nonempty
interior, by a density theorem (see [11, Theorem 1.3.1]) there exists vε ∈ F such that
‖vε − vt‖ ≤ ε and πbdry F (vε) is a singleton, say wε. We claim that wε − vε ∈ NF (wε).
Indeed, if wε = vε there is nothing to prove, otherwise take by contradiction v ∈ F so
that 〈wε − vε, v − wε〉 > 0. Then the convex hull K of v and the ball vε + ‖wε − vε‖B
contains wε in its interior. Since K ⊂ F we reach a contradiction against wε ∈ bdry F .
Therefore, according to (36) one has both

〈

wε − vε
‖wε − vε‖

, v1 − wε

〉

≥ γ‖v1 − wε‖2,
〈

wε − vε
‖wε − vε‖

, v2 − wε

〉

≥ γ‖v2 − wε‖2.

Multiplying by t the first inequality, by 1− t the second one, and summing one obtains

〈

wε − vε
‖wε − vε‖

, vt − wε

〉

≥ γ
(

t‖v1 − wε‖2 + (1− t)‖v2 − wε‖2
)

=

= γ
(

‖t(v1 − wε) + (1− t)(v2 − wε)‖2 + t(1− t)‖v1 − wε − (v2 − wε)‖2
)

.
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By the Cauchy-Schwartz inequality and rearranging the right-hand side, one has

‖vt − wε‖ ≥ γ
(

‖vt − wε‖2 + t(1− t)‖v1 − v2‖2
)

≥ γt(1− t)‖v1 − v2‖2. (39)

Recalling that |dbdry F (vt)− dbdry F (vε)| ≤ ‖vt − vε‖, we obtain dbdry F (vt) ≥ ‖vt − wε‖ −
2‖vt − vε‖. By using (39) and passing to the limit for ε → 0 we conclude the proof.

The uniform strict convexity of F provides the following estimate for the gauge function.

Proposition 5.4. Let F be γ-strictly convex. Then ρF satisfies the following estimate:
for all x1, x2 one has

ρF

(x1 + x2

2

)

≤ ρF (x1) + ρF (x2)

2
− γ

2‖F‖
ρF (x1)ρF (x2)

ρF (x1) + ρF (x2)

∥

∥

∥

∥

x1

ρF (x1)
− x2

ρF (x2)

∥

∥

∥

∥

2

. (40)

Proof. Write ρi = ρF (xi) and xi = ρivi with vi ∈ bdry F , i = 1, 2. Then

x1 + x2

2
=

(

ρ1
ρ1 + ρ2

v1 +
ρ2

ρ1 + ρ2
v2

)

ρ1 + ρ2
2

.

Set v = (ρ1v1 + ρ2v2)/(ρ1 + ρ2), and observe that by, (38),

dbdry F (v) ≥ γ
ρ1ρ2

(ρ1 + ρ2)
2‖v1 − v2‖2.

Assume v 6= 0. Then

ρF

(x1 + x2

2

)

=
ρ1 + ρ2

2
ρF (v)

=
ρ1 + ρ2

2

(

1− ρF

(

v

ρF (v)
− v

))

≤ ρ1 + ρ2
2

− ρ1 + ρ2
2‖F‖

∥

∥

∥

∥

v

ρF (v)
− v

∥

∥

∥

∥

≤ ρ1 + ρ2
2

− ρ1 + ρ2
2‖F‖

dbdry F (v) ≤
ρ1 + ρ2

2
− γ

2‖F‖
ρ1ρ2

ρ1 + ρ2
‖v1 − v2‖2,

which is the desired estimate. If v = 0, then x1 + x2 = 0 as well, and it suffices to
substitute in the above inequalities v/ρF (v) with any point in bdry F .

5.1. Regularity of the F -projection

In what follows, we adopt the convention that γ/ϕ = ∞ if ϕ = 0. The first result states
that at an F -projection point a separation property, analogous to the nontriviality of
SEP in the convex case, holds.

Proposition 5.5. Let S ⊂ H be closed and let x 6∈ S, s ∈ ΠF
S (x). Then there exists

ζ ∈ NF ((s− x)/ρF (s− x)) ∩
(

−N l
S(s)

)

, with ζ 6= 0.
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Proof. Observe that s is a minimizer of the function f(y) := ρF (y − x) + IS(y). Thus,
recalling [11, Proposition 10.1] and Corollary 2.3, one has

0 ∈ ∂l (ρF (s− x) + IS(s)) ⊆ ∂ρF (s− x) +N l
S(s)

= {ζ ∈ NF ((s− x)/ρF (s− x)) : ρF ◦(ζ) = 1}+N l
S(s)

as asserted.

The following result is the key point of our analysis. It states the existence and uniqueness
of an optimal trajectory for a nonconvex target S, provided the starting point is close
enough to S. Observe that this statement, and consequently all the subsequent analysis,
does not contain the results from Section 4, since here we require the strict convexity of
F .

Theorem 5.6. Let S be ϕ-proximally smooth and F be γ-strictly uniformly convex, and
let x ∈ H. Then:

(i) if ϕT (x) < γ, then ΠF
S (x) is at most a singleton;

(ii) if ϕT (x) < γ
‖F ◦‖ ‖F‖ ∧

1
‖F‖ , then ΠF

S (x) is nonempty (and therefore it is a singleton).

Proof. (i). Let s1, s2 ∈ ΠF
S (x). By Proposition 5.5 there exists ζ ∈ NF ((s1 − x)

/ρF (s1 − x)) ∩
(

−N l
S(s1)

)

with ‖ζ‖ = 1. Set ρ = ρF (s1 − x) = ρF (s2 − x). Then,
by proximal smoothness,

〈−ζ, s2 − s1〉 ≤ ϕ‖s2 − s1‖2.

On the other hand, by strict convexity,

〈−ζ,
s2 − s1

ρ
〉 = 〈−ζ,

s2 − x

ρ
− s1 − x

ρ
〉 ≥ γ

ρ2
‖s2 − s1‖2.

Hence γ
ρ
‖s2 − s2‖2 ≤ ϕ‖s2 − s1‖2. Thus if ϕρ < γ one must have that s2 = s1.

(ii). Set ρ = T (x), and let {sn} ⊂ S be a minimizing sequence for ρF (· − x), i.e.,
ρF (sn−x) := ρn ↓ ρ. We claim that {sn} is a Cauchy sequence. Indeed, by Proposition 5.4
one has

ρF

(sn + sm
2

− x
)

≤ ρn + ρm
2

− γ

2‖F‖
ρnρm

ρn + ρm

∥

∥

∥

∥

sn − x

ρn
− sm − x

ρm

∥

∥

∥

∥

2

. (41)

On the other hand, by taking r = T ( sn+sm
2

) in Proposition 2.6, part b), and recalling
Proposition 2.5, (3), and (37), one obtains for m,n large enough

ρF

(sn + sm
2

− x
)

≥ ρ− T
(sn + sm

2

)

≥ ρ− ϕ

4
‖F ◦‖ ‖sn − sm‖2. (42)

Fix now ε > 0. Observe that, since the sequence {sn} is bounded, it follows from (41)
that for m,n large enough one has

ρF

(sn + sm
2

− x
)

≤ ρ− γ

4ρ‖F‖
‖sn − sm‖2 + ε. (43)
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From (42) and (43) it then follows, for m,n large enough,

(

γ

4ρ‖F‖
− ϕ

4
‖F ◦‖

)

‖sn − sm‖2 ≤ ε,

which is the desired estimate.

Theorem 5.7. Let S be ϕ-proximally smooth and let F be γ-strictly convex. Let r̄ be
such that 0 < ϕr̄ < γ

‖F ◦‖ ‖F‖ ∧
1

‖F‖ .

(i) Then the single valued map ΠF
S is locally Hölder continuous on S(r̄) with exponent

1/2.

(ii) Let, furthermore, F = {v ∈ H : g(v) ≤ 0} for some g ∈ C1,+(H) such that
Dg(v) 6= 0 for all v ∈ bdry F . Alternatively, assume that S = {x ∈ H : f(x) ≤ 0}
for some f ∈ C1,+ with Df(s) 6= 0 for all s ∈ bdry S. Then ΠF

S is locally Lipschitz
continuous on S(r̄).

Proof. Theorem 5.6 (ii) yields that the F -projection is a singleton for all x ∈ S(r̄). Set
si = ΠF

S (xi) and ρi = ρF (si − xi), i = 1, 2.

Ad (i). The proof is divided into two steps.

Step 1: ρ1 = ρ2 = ρ.

Take ζi ∈ NF ((si − xi)/ρ) ∩ (−Np
S(si)) with ‖ζi‖ = 1. Then, by proximal smoothness

〈ζ2 − ζ1, s2 − s1〉 ≤ ϕ‖s2 − s1‖2, (44)

while by strict convexity and Cauchy–Schwartz inequality

〈ζ2 − ζ1,
s2 − x2

ρ
− s1 − x1

ρ
〉 ≥ γ

ρ2
‖s2 − x2 − (s1 − x1)‖2 ≥

≥ γ

ρ2
(

‖s2 − s1‖2 + ‖x2 − x1‖2 − 2‖s2 − s1‖ ‖x2 − x1‖
)

. (45)

Putting together (44) and (45) and using again Cauchy–Schwartz inequality, one obtains

γ

ρ

(

‖s2 − s1‖2 + ‖x2 − x1‖2 − 2‖s2 − s1‖ ‖x2 − x1‖
)

≤ ϕ‖s2 − s1‖2 + ‖ζ2 − ζ1‖ ‖x2 − x1‖,

(46)
which implies

(γ − ρϕ)‖s2 − s1‖2 − 2γ‖x2 − x1‖ ‖s2 − s1‖ − 2ρ‖x2 − x1‖ ≤ 0. (47)

Therefore

‖s2 − s1‖ ≤ γ‖x2 − x1‖+
√

γ2‖x2 − x1‖+ 2ρ(γ − ρϕ)
√

‖x2 − x1‖
γ − ρϕ

,

which implies the Hölder continuity. Observe that the Hölder ratio, which we denote by
Hρ, depends on the level ρ.

Step 2: ρ1 and ρ2 arbitrary.
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We take ρ2 > ρ1, the other case being handled symmetrically. Recall first that |ρ2−ρ1| ≤
‖F ◦‖ ‖x2−x1‖. Write s2 = x2+ρ2v, with ρF (v) = 1, and let x′

2 = x2+(ρ2−ρ1)v. Observe
that by the optimality principle (Proposition 2.6, part (a)) we have that T (x′

2) = ρ1 and
ΠF

S (x
′
2) = s2. Then

‖s2 − s1‖ ≤ Hρ1

√

‖x′
2 − x1‖ ≤ Hρ1

√

‖x′
2 − x2‖+ ‖x2 − x1‖

≤ Hρ1

√

1 + ‖F‖ ‖F ◦‖
√

‖x2 − x1‖,

which concludes the proof of part (i).

Ad (ii). Assume again ρ1 = ρ2 = ρ, and denote by λ the Lipschitz ratio of Dg, and set
M = sup{‖Dg(v)‖ : v ∈ F} < ∞. If F is C1,+, the normal vectors ζ1, ζ2 can be chosen
to be, respectively, Dg((s1 − x1)/ρ)/M , Dg((s2 − x2)/ρ)/M . Then (36) yields

λ

Mρ
‖s2 − x2 − (s1 − x1)‖2 ≥ (48)

≥ 1

M

〈

Dg

(

s2 − x2

ρ

)

−Dg

(

s1 − x1

ρ

)

, s2 − x2 − (s1 − x1)

〉

(49)

≥ γ

ρ
‖s2 − x2 − (s1 − x1)‖2,

which, in particular, implies that γ ≤ λ/M . By the inequality between (48) and (49), the
right-hand side of (46) can be refined to be

ϕ‖s2 − s1‖2 +
λ

Mρ
(‖s2 − s1‖+ ‖x2 − x1‖) ‖x2 − x1‖.

Then (47) becomes

(γ − ρϕ)‖s2 − s1‖2 − (2γ +
λ

M
)‖x2 − x1‖ ‖s2 − s1‖+ (γ − λ

M
)‖x2 − x1‖2 ≤ 0.

This yields the local Lipschitz estimate for ρ1 = ρ2 = ρ.

If S is of class C1,+, assume that ‖x1− s̄‖ ≤ η, ‖x2− s̄‖ ≤ η for some s̄ ∈ S and η > 0, set
K = sup{‖Df(s)‖ : s ∈ bdry S, ‖s − s̄‖ ≤ 2η} and let µ be the Lipschitz ratio of Df .
Then we can set ζi = Df(si)/K, i = 1, 2. The righthand side of (46) can be refined to be

ϕ‖s2 − s1‖2 +
µ

K
‖s2 − s1‖ ‖x2 − x1‖,

which implies

(γ − ρϕ)‖s2 − s1‖2 − (2γ +
µ

K
)‖x2 − x1‖ ‖s2 − s1‖ ≤ 0.

The case of ρ1 = ρ2 arbitrary is handled as in Step 2 above.

The last result of the section concerns convex targets.

Theorem 5.8. Let S be γ-strictly convex. Then
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(i) the projection map ΠF
S : H → S is a singleton which is Hölder continuous with

exponent 1/2;

(ii) if moreover S = {x ∈ H : f(x) ≤ 0} for some f ∈ C1,+(H) with Df(x) 6= 0 for all
x ∈ bdry S, and S is bounded, then ΠF

S is Lipschitz continuous.

Proof. Nonemptiness and uniqueness of the F -projection follow from standard argu-
ments.

Ad (i). Take x1, x2 ∈ H, assuming first that T (x1) = T (x2) = ρ. Write si = ΠF
S (xi),

i = 1, 2, and take by Proposition 5.5 ζi ∈ NF ((si − xi)/ρ) ∩ (−NS(si)), with ‖ζi‖ ≤ 1.
By the strict convexity of S one has

〈−ζ2 + ζ1, s2 − s1〉 ≥ γ‖s2 − s1‖2.

On the other hand, by the convexity of F one has

〈−ζ2 + ζ1, s2 − s1〉 ≤ 〈−ζ2 + ζ1, x2 − x1〉.

Thus
γ‖s2 − s1‖2 ≤ ‖ζ2 − ζ1‖ ‖x2 − x1‖, (50)

which gives the Hölder estimate. Observe that the Hölder ratio is independent of ρ. The
general case is treated as in Step 2 of the proof of Theorem 5.7.

Ad (ii). If S is C1,+, by the same argument as in the proof of part (ii) of Theorem 5.7, the
right-hand side of (50) can be refined to be

µ

K
‖s2 − s1‖ ‖x2 − x1‖,

where µ is the Lipschitz ratio of Df and K = sup{‖Df(s)‖ : s ∈ S}. The Lipschitz
estimate then follows immediately.

5.2. Fréchet and proximal subgradient

Our goal is to identify hypotheses so that the opposite inclusions in Theorem 3.3 hold,
and thereby obtain regularity results for T (·). This is well-understood for the case of
F = IB (see, e.g., [12, 6, 16]), and we state as corollaries a few situations where those
results can be generalized. By Theorem 3.3, it is clear that if one seeks ∂pT (x) 6= ∅ for x
in a neighborhood of S, then S must have plentiful proximal normal cone properties, and
proximal smoothness is such a condition.

We begin with the Fréchet subdifferential.

Proposition 5.9. Let S be ϕ-proximally smooth and F be γ-strictly convex. Let x ∈ H\S
and set r := T (x). Assume that ϕr < γ

‖F ◦‖ ‖F‖ ∧
1

‖F‖ . Then

∅ 6= Np
S(Π

F
S (x)) ∩

(

−∂ρF (Π
F
S (x)− x)

)

⊆ N f
S(r)(x). (51)

Proof. Recalling Propositions 2.2, 5.5 and part (i) in 5.3, we obtain that the lefthand
side of (51) is nonempty. Set now s = ΠF

S (x). Let ζ ∈ −∂ρF (s − x) ∩ Np
S(s), and let

xn → x, xn ∈ S(r). We want to show that

lim sup
n→∞

〈

ζ,
xn − x

‖xn − x‖

〉

≤ 0. (52)
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To this aim, set sn = ΠF
S (xn). Then, by the assumptions on S and F one has

〈ζ, xn − x〉 = 〈ζ, xn − sn〉+ 〈ζ, sn − s〉+ 〈ζ, s− x〉

= r

〈

ζ,
s− x

r
− sn − xn

r

〉

+ 〈ζ, sn − s〉

≤ −γ‖ζ‖
r

‖sn − xn − (s− x)‖2 + ϕ‖ζ‖ ‖sn − s‖2

=
(

ϕ− γ

r

)

‖ζ‖ ‖sn − s‖2 + 2γ‖ζ‖
r

〈sn − s, xn − x〉 − γ

r
‖ζ‖ ‖xn − x‖2.

Since ‖sn − s‖ = O(
√

‖xn − x‖) by Theorem 5.7 part (i), we obtain (52).

As a consequence, we obtain the following result.

Theorem 5.10. Let S be ϕ-proximally smooth and F be γ-strictly convex. Let r̄ be such
that 0 < ϕr̄ < γ

‖F ◦‖ ‖F‖ ∧
1

‖F‖ . Let x ∈ S(r̄) \ S, and set s = ΠF
S (x). Then

∂fT (x) = Np
S(s) ∩ (−∂ρF (s− x)) 6= ∅. (53)

Moreover, T is Clarke regular on S(r̄) \ S (i.e., the Clarke generalized gradient and the
Fréchet subgradient coincide).

Proof. Since by Theorem 5.6 (ii) the F -projection of x is a singleton, formula (53) comes
by putting together (51) and (24). To show the Clarke regularity, consider the following
chain of inclusions:

∂fT (x) = N f
S(r)(x) ∩ {ζ : ρF ◦(−ζ) = 1} (54)

⊆ N c
S(r)(x) ∩ {ζ : ρF ◦(−ζ) = 1} (55)

= co {ζ : ζ = w − lim ζi, ζi ∈ ∂fT (xi), xi → x, xi ∈ S(r)} (56)

⊆ co {ζ : ζ = w − lim ζi, ζi ∈ ∂fT (xi), xi → x} (57)

= co
{

ζ : ζ = w − lim ζi, ζi ∈ Np
S(Π

F
S (xi)) ∩

(

−∂ρF (Π
F
S (xi)− xi)

)

, xi → x
}

(58)

⊆ co {ζ : ζ ∈ Np
S(s) ∩ (−∂ρF (s− x))} (59)

= −∂ρF (s− x) ∩Np
S(s) = ∂fT (x). (60)

Indeed, (54) is Theorem 3.1, the equality between (55) and (56) follows from [2, Theorem
4.4.4] and Theorem 3.1, while the inclusion between (58) and (59) follows from the normal
regularity of S (see (i) in Proposition 5.3) and F and the continuity of the F -projection;
the equality between (59) and (60) follows again from the normal regularity of S and F .
Observe that the set in (57) is exactly the Clarke generalized gradient of T (x), which
therefore coincides with the Fréchet subgradient. The proof is concluded.

Corollary 5.11. Under the assumptions of Theorem 5.10, suppose that the righthand
side of (53) is a singleton for some x ∈ S(r̄). Then T is strictly differentiable at x (see
[10, p. 30]).
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Proof. By Theorem 5.10, the righthand side of (53) is also the Clarke generalized gradient
of T at x. By Proposition 2.2.4 in [10], T is strictly differentiable at x.

In addition to proximal smoothness, the following theorem hypothesizes a sort of one-sided
Lipschitz condition of the F -projection map (see (61) below), and, just as in the convex
case, concludes that (25) holds as an equality. It is not clear if (61) always holds for S
convex. However, in the previous section we showed that in some cases the projection
map is singleton-valued and Lipschitz, which immediately implies (61).

Theorem 5.12. Let S be ϕ-proximally smooth, and suppose x /∈ S is such that ΠF
S (x) 6=

∅, and there exist constants η = η(x) > 0 and k = k(x) > 0 so that

ΠF
S (y) ⊆ ΠF

S (x) + k‖y − x‖IB ∀y ∈ x+ ηIB, (61)

and that the set Np
S(s) ∩ (−∂ρF (s− x)) is independent of s ∈ ΠF

S (x). Then one has

∂pT (x) = Np
S(s) ∩ (−∂ρF (s− x)) 6= ∅ (62)

for each s ∈ ΠF
S (x).

Proof. The inclusion “⊆Ô is the result of Theorem 3.3. In view of Theorem 3.1, the
opposite inclusion “⊇Ô follows if it can be shown that

∅ 6= Np
S(s) ∩ (−∂ρF (s− x)) ⊆ Np

S(r)(x) (63)

for all s ∈ ΠF
S (x), where r := T (x). The nonemptiness of the lefthand side of (63) can be

proved as in Proposition 5.9, so suppose ζ belongs to the left side of (63) for some (and
therefore all) s ∈ ΠF

S (x). Now let y ∈
(

x+ ηIB
)

∩ S(r), and select any s′ ∈ ΠF
S (y). By

(61), there exists s ∈ ΠF
S (x) so that

‖s′ − s‖ ≤ k‖y − x‖. (64)

Now we write

〈ζ, y − x〉 = r

〈

−ζ,
s′ − y

r
− s− x

r

〉

+ 〈ζ, s′ − s〉, (65)

and note that ρF (s
′ − y) = T (y) ≤ r implies ρF

(

s′−y
r

)

≤ 1, or that s′−y
r

belongs to F .

Since, by Proposition 2.3, −ζ ∈ NF

(

s−x
r

)

, the first term on the righthand side of (65) is
thus nonpositive. The second term is bounded by ϕ‖ζ‖ ‖s′ − s‖2 by (35), and so by (64)
and (65), we have

〈ζ, y − x〉 ≤ ϕk2‖ζ‖ ‖y − x‖2.
This says ζ ∈ Np

S(r)(x) and finishes the proof of (63), and consequently of the theorem.

5.3. Semiconvexity and differentiability

In this section we consider some simple consequences of our previous analysis. We prove
first a result concerning a sufficient condition for semiconvexity (which is called lower C2

in [17], [12]) of T (·) near S. We recall that a function f from a convex set U ⊂ H into R
is called semiconvex if there exists a constant C > 0 such that for all x1, x2 ∈ U and for
all λ ∈ [0, 1] one has

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) + λ(1− λ)C‖x1 − x2‖2.
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Proposition 5.13. Suppose S is closed, and let U ⊂ H \ S be an open bounded convex
set. Assume that the F -projection ΠF

S of each point x in U admits a single valued Lipschitz
selection Π (as it is the case, for example, if the assumptions of part (ii) in Theorem 5.7
are satisfied), and assume, furthermore, that there exists ϕ ≥ 0 such that the estimate (35)
holds for all si = Π(xi), xi ∈ U , and ζi ∈ Np

S(si), i = 1, 2 (as it is the case, for example,
if S is ϕ-proximally smooth). Then ∂pT (x) 6= ∅ for all x ∈ U and T (·) is semiconvex on
U .

Proof. Let x1, x2 ∈ U . Set x = λx1+(1−λ)x2 and choose y1 ∈ ΠF
S (x1) and y2 ∈ ΠF

S (x2)
such that ‖y1 − y2‖ ≤ L‖x1 − x2‖. Set y = λy1 +(1−λ)y2. Then, by Proposition 2.6 (b),
the convexity of ρF , (3), and (37), one has

T (x) ≤ ρF (y − x) + T (y)

≤ λρF (y1 − x1) + (1− λ)ρF (y2 − x2) + dS(y)‖F ◦‖
≤ λT (x1) + (1− λ)T (x2) + κλ(1− λ)L‖F ◦‖ ‖x1 − x2‖2,

for a suitable constant κ ≥ 0. The proof is concluded.

The second result concerns sufficient conditions for the smoothness of T .

Theorem 5.14. Let S and F satisfy the assumptions of Theorem 5.10, and assume fur-
thermore that either F is the closure of an open convex set of class C1, or S = {s ∈ H :
f(s) ≤ 0} for some f ∈ C1(H) such that Df(s) 6= 0 for all s ∈ bdry S. Let r̄ be such that
0 < ϕr̄ < γ

‖F ◦‖ ‖F‖ ∧
1

‖F‖ . Then T is of class C1 on S(r̄) \ S, and

DT (x) = Np
S(Π

F
S (x)) ∩

(

−∂ρF (Π
F
S (x)− x)

)

. (66)

Proof. By Theorem 5.10, the Fréchet subdifferential of T is computed as

∂fT (x) = Np
S(Π

F
S (x)) ∩

(

−∂ρF (Π
F
S (x)− x)

)

for all x ∈ S(r̄) \ S. By Proposition 5.5, the righthand side of (66) is nonempty. Since
either ρF or S are of class C1, it is also a singleton, continuously depending on x, since
ΠF

S is so.

Remark. Observe that if in Theorem 5.14 F is the closure of an open C1,+ convex set,
then (66) becomes

DT (x) = −DρF (Π
F
S (x)− x)

This generalizes the well known formula for the gradient of the Euclidean distance from
a proximally smooth set (see, e.g., [12]), and implies by Theorem 5.7 that T (·) is of class
C1,+.

6. Examples

1) To illustrate Theorem 4.2, let F be the L1-ball {(x, y) : |x| + |y| ≤ 1} in IR2, and let
S = {(x, y) : x, y ≤ 0}. Our formula for ∂T (·) detects exactly the nondifferentiability
points of T , which are the points of the positive x and y-axis. For example, the subgradient
of T at (0, 1) is the set {(x, 1) : 0 ≤ x ≤ 1}.
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2) Let S be the convex hull of {(x, y, z) : x = 0, −1 ≤ y ≤ 1, z ≥ 0} and the curve
{(x, y, z) : y = 0, z = x2}, i.e., S is the “wallÔ defined by the first set, all the lines
connecting the wall to the curve, and all the space above these lines. Thus each point
on the curve is an extreme point. Now let F be the unit cube (i.e., the L∞ unit ball),
and consider points on the curve {(x, y, z) : x = r + 1, y = 0, z = r2 − 1, r ≥ 0}. The
latter curve is just the curve used in forming S except that it is shifted over and down
by one unit. All the points on the curve are in the 1-level set of T (·). When r = 0, the
F -projection is {(x, y, z) : x = 0, −1 ≤ y ≤ 1, z = 0}, and when r > 0, the projection is
{(r + 1, 0, r2)}.
The above example shows that the projection map itself may not be continuous, even in
the convex case. However, observe that in this case the projection map admits a Lipschitz
continuous selection.

3) The property (61) may hold without the existence of a Lipschitz selection from ΠF
S . It

suffices to take as F the product of the interval [−1, 1] with the L1-ball in the (y, z)-space,
and as S the convex hull of the sets {(x, 0, 0) : −1 ≤ x ≤ 1}, {(1, y, y2) : y ≤ 0} and
{(−1, y, y2) : y ≥ 0}.

4) To illustrate formula (62) and the subsequent analysis, let F be {−1
9
≤ x ≤ 1

9
, −10x−

1 ≤ y ≤ 10x − 1} and S = {x ≤ 0, y ≤ x2}. Observe that −F 6= F , so that ρF is not
a norm, and that S is proximally smooth. Consider the 1-level set S(1) of T , which is a
parabola for x ≤ 0, while for x ≥ 0 it is the segment joining (0, 1) with (1

9
,−1

9
) and then

a vertical half line. It is easy to show that if x ≥ −1/2, then ΠF
S (x) is a singleton, which

is Lipschitz w.r.t. x. By applying formula (62) it is easy to see that the only points of
nondifferentiability in S(1) for T are (0, 1) and (1

9
,−1

9
). If instead F is an ellipse, then T

is C1,+ in a neighborhood of S, which can be explicitly determined.

5) The minimal time function needs not be semiconvex, even if the F -projection is unique.
It suffices to take as F the L1-ball in IR2, and as S the set {y ≥ f(x)}, with f(x) =
min{x/2, 0}.

6) Let H = R2, S = B∞, F = B1. Let x0 = (1, 2). Then ΠF
S is a singleton in a

neighborhood of x0, but the convex subgradient of T at x0 is multivalued.

7) The assumptions of proximal smoothness in Theorem 5.7 and, very likely, in Theo-
rem 5.8 are not sharp. Indeed, set F := {(x, y) : |y| ≤ 1 − |x|3/2} and S := {(x, y) :
−2 ≤ y ≤ |x|3/2 − 1, |x| ≤ 1}, and observe that neither F nor S are ϕ-proximally smooth
for any ϕ. However, for any x small enough, ΠF

S (x,−1/2) is a singleton, Lipschitz con-
tinuous with respect to x. In fact, the unique point (ξ(x), η(x)) in ΠF

S (x,−1/2) can be
computed by imposing that the tangent line to S at (ξ(x), η(x)) is orthogonal to a normal
to (x,−1/2)+T (x,−1/2)F at (ξ(x), η(x)). This condition reads, for x > 0 small enough,

√

ξ(x)− x
√

T (x,−1/2)
=

√

ξ(x),

which yields

ξ(x) =
x

1− T (x,−1/2)
.

Since T (x,−1/2) → 1/2 as x → 0+, we have that ξ(·) is Lipschitz continuous in a
neighborhood of 0. It is easy to see that also η(·) is Lipschitz.
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8) Here a non convex example is presented where property (61) holds without the unique-
ness of the projection and the proximal smoothness of the target S. Let F = IB and
S = {(x, y) : −1 ≤ y ≤ |x|3/2, |x| ≤ 1}. For 0 < y ≤ 1 the F -projection ΠF

S (0, y) is never
a singleton (actually it is (ξ(y),±η(y)), with η(y) > 0). Observe that ‖ΠF

S (0, y)‖ → 0 as
y → 0+. We compute (ξ(y), η(y)) in terms of y through T (0, y), and show that they are
Lipschitz continuous functions of y, at least for y small. Indeed, imposing the normality
condition between the tangent to S and the normal to (0, y) + T (0, y)F at (ξ(y), η(y))
gives

3

2

√

ξ(y) =
ξ(y)

√

T 2(0, y)− ξ2(y)
,

which implies

ξ(y) =
−2 +

√

4 + 81T 2(0, y)

9
.

Being T Lipschitz, ξ and η are also Lipschitz.

Acknowledgements. The proof of Theorem 5.7 profited of an useful discussion with R. Vin-

ter.
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