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1. Introduction

Since the pioneering papers of Crandall, Rabinowitz and Tartar [6] and Stuart [18], sin-
gular semilinear elliptic problems of the form







u > 0 in Ω ,
−∆u = u−β + g(x, u) in Ω ,
u = 0 on ∂Ω ,

(1)

where Ω is a bounded open subset of Rn, β > 0 and g satisfies suitable growth conditions,
have been considered by several authors (see e.g. [10, 13, 15, 16, 20] and the references
therein). Let us also mention [5, 9], where the case in which the singular term u−β has
the opposite sign is treated.

However, in spite of the fact that (1) is formally the Euler equation of the functional

f(u) =
1

2

∫

Ω

|Du|2 dx+

∫

Ω

Φ(u) dx−
∫

Ω

∫ u(x)

0

g(x, s) dsdx , u ∈ W 1,2
0 (Ω) ,

where

Φ(s) =







−
∫ s

1

t−β dt if s ≥ 0 ,

+∞ if s < 0 ,
(2)
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few existence and multiplicity results for (1) have been so far obtained through a direct
variational approach. Let us mention [12], where the case in which β < 3 and g has
critical growth is studied by minmax techniques. The restriction β < 3 is due to the fact
that, according to [16, Theorem 2]), the functional f is identically +∞, if β ≥ 3.

The main purpose of this paper is to provide a variational approach to (1) also when
β ≥ 3. Actually, our results apply for any β > 0, but the novelty concerns the case β ≥ 3.

More precisely, in this paper we provide first of all a variational approach to the problem







u > 0 in Ω ,
−∆u = u−β + w in Ω ,
u = 0 on ∂Ω ,

(3)

with w ∈ W−1,2(Ω). To this aim, consider first the case w = 0. We denote by Φk : R → R
the primitive of the function

{

max
{

−s−β,−k
}

if s > 0 ,
−k if s ≤ 0 ,

such that Φk(1) = 0 and we define a proper, lower semicontinuous, strictly convex func-
tional Ýf0,k : L

2(Ω) →]−∞,+∞] as

Ýf0,k(u) =







1

2

∫

Ω

|Du|2 dx+

∫

Ω

Φk(u) dx if u ∈ W 1,2
0 (Ω) ,

+∞ if u ∈ L2(Ω) \W 1,2
0 (Ω) .

Since a primitive is naturally defined up to an additive constant, to prevent a possible
unhappy choice we pass to consider f0,k : L

2(Ω) →]−∞,+∞], defined as

f0,k(u) = Ýf0,k(u)−min Ýf0,k = Ýf0,k(u)− Ýf0,k(u0,k) ,

where u0,k ∈ W 1,2
0 (Ω) is the minimum of Ýf0,k.

More generally, for every w ∈ W−1,2(Ω), we define fw,k : L
2(Ω) →]−∞,+∞] as

fw,k(u) =

{

f0,k(u)− 〈w, u− u0,k〉 if u ∈ W 1,2
0 (Ω) ,

+∞ if u ∈ L2(Ω) \W 1,2
0 (Ω) .

Our first step is to prove that the sequence (fw,k) is still equicoercive in L2(Ω) and is now
Γ-convergent (see [1, 7, 8]) as k → ∞ to a proper, lower semicontinuous, strictly convex
functional fw : L2(Ω) →]−∞,+∞], whose effective domain {u ∈ L2(Ω) : fw(u) < +∞}
is independent of w. Moreover, if u0 is the minimum of f0 (the Γ-limit functional corre-
sponding to w = 0), then the effective domain of fw is contained in u0 +W 1,2

0 (Ω) and an
explicit description of fw can be provided.

The second step is to study the Euler equation associated with fw. If w ∈ L1
loc(Ω) ∩

W−1,2(Ω), then (3) is just the Euler equation of fw, provided that the boundary condition
u = 0 on ∂Ω has a suitable relaxed meaning. Moreover, if Ω has smooth boundary and w
is Hölder continuous on Ω, then the minimum of fw is just the solution in C(Ω) ∩ C2(Ω)
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of (3) already considered in [6]. In general, if w ∈ W−1,2(Ω) then the minimum of fw is
characterized by a variational inequality.

Finally, the variational description of (1) is obtained by considering the sum of a convex,
lower semicontinuous functional and a functional of class C1 taking into account the term
g(x, u). For such a class of functionals, minmax techniques have been developed in [19].

2. On the equation −∆u = u−β

Let Ω be a bounded open subset of Rn and let β > 0. In the following, we will denote by
L∞
c (Ω) the space of L∞-functions with compact support in Ω. We will also denote by ‖ ‖p

the usual norm in Lp(Ω) and by ‖ ‖−1,2 the norm in W−1,2(Ω) dual to the norm ‖Du‖2
in W 1,2

0 (Ω).

Definition 2.1. Let u ∈ W 1,2
loc (Ω). We say that u ≤ 0 on ∂Ω if, for every ε > 0, the

function (u− ε)+ belongs to W 1,2
0 (Ω).

It is readily seen that, if u ∈ W 1,2
0 (Ω), then u ≤ 0 on ∂Ω. The same fact holds if

u ∈ C(Ω) ∩W 1,2
loc (Ω) and u(x) ≤ 0 for every x ∈ ∂Ω.

Let us state the main result of this section.

Theorem 2.2. There exists one and only one u0 ∈ C∞(Ω) satisfying







u0 > 0 in Ω ,

−∆u0 = u−β
0 in Ω ,

u0 ≤ 0 on ∂Ω .
(4)

Moreover, if u1 ∈ W 1,2
0 (Ω) ∩ C∞(Ω) satisfies −∆u1 = 1 in Ω, then

‖u1‖
− β

β+1
∞ u1 ≤ u0 ≤ ((β + 1)u1)

1
β+1 in Ω . (5)

Remark 2.3. If ∂Ω is sufficiently smooth, then much sharper estimates than (5) have
been proved in [6, 16].

Corollary 2.4. There exists one and only one u0 ∈ C(Ω) ∩ C∞(Ω) such that







u0 > 0 in Ω ,

−∆u0 = u−β
0 in Ω ,

u0 = 0 on ∂Ω ,
(6)

if and only if each x ∈ ∂Ω satisfies the Wiener criterion [11].

Proof. Of course, the uniqueness in Theorem 2.2 implies the uniqueness in Corollary 2.4.

Let u0 be given by Theorem 2.2. By (5), we have that u0 is a C(Ω)-solution of (6) if and
only if u1 belongs to C(Ω) and satisfies u1 = 0 on ∂Ω. It is quite standard to show that in
turn this holds if and only if each x ∈ ∂Ω satisfies the Wiener criterion. For the reader’s
convenience, we give a proof of this fact in the Appendix.

The remaining part of the section will be devoted to the proof of Theorem 2.2.
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Definition 2.5. Let g : Ω × R → R be a Carathéodory function, let w ∈ W−1,2(Ω) and
let ϕ ∈ W 1,2

loc (Ω). We say that ϕ is a (local) subsolution of the equation

−∆u = g(x, u) + w , (7)

if g(x, ϕ) ∈ L1
loc(Ω) and

∫

Ω

DϕDv dx ≤
∫

Ω

g(x, ϕ)v dx+ 〈w, v〉 ∀v ∈ W 1,2
0 (Ω) ∩ L∞

c (Ω) with v ≥ 0 a.e. in Ω .

We say that ϕ is a (local) supersolution of (7), if g(x, ϕ) ∈ L1
loc(Ω) and

∫

Ω

DϕDv dx ≥
∫

Ω

g(x, ϕ)v dx+ 〈w, v〉 ∀v ∈ W 1,2
0 (Ω) ∩ L∞

c (Ω) with v ≥ 0 a.e. in Ω .

Definition 2.6. Let w ∈ W−1,2(Ω) and ϕ ∈ W 1,2
loc (Ω). We say that ϕ is a (local) subsolu-

tion of the variational inequality

∫

Ω

DuD(v − u) dx ≥
∫

Ω

u−β(v − u) dx+ 〈w, v − u〉 ∀v ≥ 0 , (8)

if ϕ > 0 a.e. in Ω, ϕ−β ∈ L1
loc(Ω) and

∫

Ω

DϕDv dx ≤
∫

Ω

ϕ−βv dx+ 〈w, v〉 ∀v ∈ W 1,2
0 (Ω) ∩ L∞

c (Ω) with 0 ≤ v ≤ ϕ a.e. in Ω .

We say that ϕ is a (local) supersolution of (8), if ϕ > 0 a.e. in Ω, ϕ−β ∈ L1
loc(Ω) and

∫

Ω

DϕDv dx ≥
∫

Ω

ϕ−βv dx+ 〈w, v〉 ∀v ∈ W 1,2
0 (Ω) ∩ L∞

c (Ω) with v ≥ 0 a.e. in Ω .

Lemma 2.7. Let g : Ω× R → R be a Carathéodory function satisfying

∀S > 0 : sup
|s|≤S

|g(·, s)| ∈ L1
loc(Ω) ,

let w ∈ W−1,2(Ω) and let ϕ, u, ψ ∈ W 1,2
loc (Ω). Assume that ϕ is a subsolution of (7), ψ is

a supersolution of (7), ϕ ≤ u ≤ ψ a.e. in Ω, g(x, u) ∈ L1
loc(Ω) and

∫

Ω

DuD(v − u) dx ≥
∫

Ω

g(x, u)(v − u) dx+ 〈w, v − u〉

∀v ∈ u+
(

W 1,2
0 (Ω) ∩ L∞

c (Ω)
)

with ϕ ≤ v ≤ ψ a.e. in Ω .

Then −∆u = g(x, u) + w in D′(Ω).

Proof. Let ϑ ∈ C∞
c (R) with 0 ≤ ϑ ≤ 1 on R, ϑ = 1 on [−1, 1] and ϑ = 0 outside ]− 2, 2[.

Let v ∈ C∞
c (Ω) with v ≥ 0, let k ≥ 1, t > 0 and let

vk = ϑ
(u

k

)

v , vk,t = min {u+ tvk, ψ} .
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Since u ≤ vk,t ≤ ψ and vk,t − u ≤ tvk ≤ tv, we have

∫

Ω

(

|D(vk,t − u)|2 − (g(x, vk,t)− g(x, u)) (vk,t − u)

)

dx

≤
∫

Ω

(Dvk,tD(vk,t − u)− g(x, vk,t) (vk,t − u)) dx− 〈w, vk,t − u〉

=

∫

Ω

(Dvk,tD(vk,t − u− tvk)− g(x, vk,t) (vk,t − u− tvk)) dx

−〈w, vk,t − u− tvk〉+ t

∫

Ω

(Dvk,tDvk − g(x, vk,t)vk) dx− t〈w, vk〉

=

∫

Ω

(DψD(vk,t − u− tvk)− g(x, ψ) (vk,t − u− tvk)) dx

−〈w, vk,t − u− tvk〉+ t

∫

Ω

(Dvk,tDvk − g(x, vk,t)vk) dx− t〈w, vk〉

≤ t

∫

Ω

(Dvk,tDvk − g(x, vk,t)vk) dx− t〈w, vk〉 ,

whence
∫

Ω

(Dvk,tDvk − g(x, vk,t)vk) dx− 〈w, vk〉 ≥ −
∫

Ω

|g(x, vk,t)− g(x, u)| |vk| dx . (9)

Since

|g(x, vk,t)| |vk| ≤

(

sup
|s|≤2k+t‖v‖∞

|g(x, s)|

)

|v| ,

by Lebesgue theorem we can pass to the limit in (9) as t → 0+, obtaining

∫

Ω

(DuDvk − g(x, u)vk) dx− 〈w, vk〉 ≥ 0 .

Going to the limit as k → ∞, it follows

∫

Ω

(DuDv − g(x, u)v) dx− 〈w, v〉 ≥ 0 . (10)

Let now v ∈ C∞
c (Ω) with v ≤ 0, let k ≥ 1, t > 0 and let

vk = ϑ
(u

k

)

v , vk,t = max {u+ tvk, ϕ} .

Arguing as before, we find again (10).

Therefore, (10) holds for every v ∈ C∞
c (Ω) and the assertion follows, as we can exchange

v in −v.

Lemma 2.8. Let w ∈ W−1,2(Ω) and ϕ, ψ ∈ W 1,2
loc (Ω). Assume that ϕ is a subsolution

of (8) with ϕ ≤ 0 on ∂Ω and ψ a supersolution of (8).

Then ϕ ≤ ψ a.e. in Ω.
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Proof. Let ε > 0, let k > ε−β and let Φk : R → R and fw,k : L2(Ω) →] − ∞,+∞] be
defined as in the Introduction.

Let u be the minimum of the functional fw,k on the convex set

K =
{

u ∈ W 1,2
0 (Ω) : 0 ≤ u ≤ ψ a.e. in Ω

}

.

According to [14], we have

∫

Ω

DuD(v − u) dx ≥ −
∫

Ω

Φ′
k(u)(v − u) dx+ 〈w, v − u〉 ∀v ∈ K .

In particular, if v ∈ C∞
c (Ω) with v ≥ 0 and t > 0, we can consider as test function

vt = min{u+ tv, ψ}. Since ψ is a supersolution also of the equation −∆u = −Φ′
k(u) +w,

arguing as in the proof of Lemma 2.7, we find that

∫

Ω

DuDv dx ≥ −
∫

Ω

Φ′
k(u)v dx+ 〈w, v〉 . (11)

It easily follows that (11) holds for every v ∈ W 1,2
0 (Ω) with v ≥ 0 a.e. in Ω.

In particular, since u ≥ 0 we have (ϕ− u− ε)+ ∈ W 1,2
0 (Ω) and

∫

Ω

DuD(ϕ− u− ε)+ dx ≥ −
∫

Ω

Φ′
k(u)(ϕ− u− ε)+ dx+ 〈w, (ϕ− u− ε)+〉 . (12)

Let now v ∈ W 1,2
0 (Ω) such that 0 ≤ v ≤ ϕ a.e. in Ω and Dϕ ∈ L2({v > 0}). Let (Ývk) be

a sequence in C∞
c (Ω) converging to v in W 1,2

0 (Ω) and let vk = min{Ýv+k , v}. We have

∫

Ω

DϕDvk dx ≤
∫

Ω

ϕ−βvk dx+ 〈w, vk〉 dx .

If ϕ−βv ∈ L1(Ω), going to the limit as k → ∞, we get

∫

Ω

DϕDv dx ≤
∫

Ω

ϕ−βv dx+ 〈w, v〉 dx . (13)

If ϕ−βv 6∈ L1(Ω), formula (13) is obviously true. In particular, it follows

∫

Ω

DϕD(ϕ− u− ε)+ dx ≤
∫

Ω

ϕ−β(ϕ− u− ε)+ dx+ 〈w, (ϕ− u− ε)+〉 . (14)

Since ε−β < k, from (12) and (14) we deduce that

∫

Ω

|D(ϕ− u− ε)+|2 dx =

∫

Ω

D(ϕ− u)D(ϕ− u− ε)+ dx

≤
∫

Ω

(

ϕ−β + Φ′
k(u)

)

(ϕ− u− ε)+ dx

=

∫

Ω

(−Φ′
k(ϕ) + Φ′

k(u)) (ϕ− u− ε)+ dx ≤ 0 ,

whence ϕ ≤ u+ ε ≤ ψ + ε. The assertion follows from the arbitrariness of ε.
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Proof of Theorem 2.2. Let Φk : R → R and f0,k : L2(Ω) →] −∞,+∞] be defined as
in the Introduction. Let also u1 ∈ W 1,2

0 (Ω) ∩ C∞(Ω) be the solution of −∆u1 = 1 in Ω
and let

ϕ = ‖u1‖
− β

β+1
∞ u1 , ψ = ((β + 1)u1)

1
β+1 .

Recall that u1 > 0 in Ω. Then it turns out that ϕ ≤ ψ and ϕ is a subsolution and ψ a

supersolution of the equation −∆u = −Φ′
k(u), for any k ≥ ‖u1‖

− β
β+1

∞ .

Let u0,k ∈ W 1,2
0 (Ω) be the minimum of f0,k, namely the weak solution of

{

−∆u = −Φ′
k(u) in Ω ,

u = 0 on ∂Ω .
(15)

Of course, f0,k admits one and only one minimum also on the convex set

{

u ∈ W 1,2
0 (Ω) : ϕ ≤ u ≤ ψ a.e. in Ω

}

and such a minimum is a solution of (15) by Lemma 2.7. It follows that ϕ ≤ u0,k ≤ ψ
a.e. in Ω. Since u0,k is a subsolution of −∆u = −Φ′

k+1(u), a similar argument shows that

u0,k ≤ u0,k+1 a.e. in Ω. On the other hand, for every ε > 0 there exists k > ε−β. For
every k, it follows

−∆(u0,k + ε) = −Φ′
k
((u0,k + ε)− ε) ≥ −Φ′

k(u0,k + ε) ,

namely u0,k + ε is a supersolution of −∆u = −Φ′
k(u). Therefore u0,k ≤ u0,k + ε, namely

(u0,k) is a Cauchy sequence in L∞(Ω).

Therefore (u0,k) is increasing and convergent, as k → ∞, to some u0 in L∞(Ω). Moreover,

we have ϕ ≤ u0 ≤ ψ, hence u−β
0 ∈ L∞

loc(Ω).

Given ε > 0, we have

∫

Ω

|D(u0,k − ε)+|2 dx = −
∫

Ω

Φ′
k(u0,k)(u0,k − ε)+ dx ≤ ε−β

∫

Ω

(u0,k − ε)+ dx .

It follows that (u0,k − ε)+ is bounded in W 1,2
0 (Ω) as k → ∞, so that

∀ε > 0 : (u0 − ε)+ ∈ W 1,2
0 (Ω) .

Since u0,k ≥ ϕ, we deduce that u0 ∈ W 1,2
loc (Ω), u0 ≤ 0 on ∂Ω and (Du0,k) is weakly

convergent to Du0 in L2(K) for any compact set K in Ω.

Then from (15) it follows that −∆u0 = u−β
0 in D′(Ω). From the interior regularity theory,

we infer that u0 ∈ C∞(Ω) (see also [6, 16]).

The uniqueness of u0 follows from Lemma 2.8.

3. The Γ-limit functional and the associated Euler equation

Let Ω be a bounded open subset of Rn and let β > 0. Let w ∈ W−1,2(Ω) and let
Φ : R →] − ∞,+∞], Φk : R → R and fw,k : L2(Ω) →] − ∞,+∞] be defined as in the
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Introduction. Let also u0 ∈ C∞(Ω) be the solution of (4). According to (5), we have
u0 ∈ L∞(Ω).

Let G0 : Ω× R → [0,+∞] be the Borel function defined as

G0(x, s) = Φ(u0(x) + s)− Φ(u0(x)) + s u−β
0 (x) .

Then G0(x, 0) = 0 and G0(x, ·) is convex and lower semicontinuous for any x ∈ Ω.
Moreover, G0(x, ·) is of class C1 on ]− u0(x),+∞[ with

DsG0(x, s) = u−β
0 (x)− (u0(x) + s)−β .

Define a functional fw : L2(Ω) →]−∞,+∞] by

fw(u) =







1

2

∫

Ω

|D(u− u0)|2 dx+

∫

Ω

G0(x, u− u0) dx−〈w, u− u0〉 if u ∈ u0 +W 1,2
0 (Ω),

+∞ otherwise.

(16)
Then fw is strictly convex, lower semicontinuous and coercive, with fw(u0) = 0. Moreover,
the effective domain of fw is

{

u ∈ u0 +W 1,2
0 (Ω) : G0(x, u− u0) ∈ L1(Ω)

}

⊆ W 1,2
loc (Ω) ,

independently of w. In the case w = 0, it is clear that u0 is just the minimum of f0.

Let us recall from [1, 7, 8, 17] the following

Definition 3.1. Let X be a topological space, fk : X → [−∞,+∞] a sequence of func-
tions and f : X → [−∞,+∞] a function.

We say that

f = Γ(X−)− lim
k

fk

if the following facts hold:

(a) for every sequence (uk) convergent to u in X, we have

f(u) ≤ lim inf
k

fk(uk) ;

(b) for every u ∈ X there exists a sequence (uk) in X convergent to u satisfying

f(u) ≥ lim sup
k

fk(uk) .

When X is a Banach space, we say that (fk) is convergent to f in the sense of Mosco
(M-convergent, for short), if (a) holds with respect to the weak topology of X and (b)
with respect to the strong topology.

Theorem 3.2. For every w ∈ W−1,2(Ω), the sequence (fw,k) is equicoercive in L2(Ω) and
we have

fw = Γ(L2(Ω)−)− lim
k

fw,k .
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Proof. Let u0,k ∈ W 1,2
0 (Ω) be the minimum of f0,k. According to the proof of Theo-

rem 2.2, (u0,k) is convergent to u0 in L∞(Ω).

Then, since Ýf0,k is of class C1 on W 1,2
0 (Ω), for every u ∈ W 1,2

0 (Ω) we have

fw,k(u) = Ýf0,k(u)− Ýf0,k(u0,k)− 〈w, u− u0,k〉

= Ýf0,k(u)− Ýf0,k(u0,k)− 〈 Ýf ′
0,k(u0,k), u− u0,k〉 − 〈w, u− u0,k〉

=
1

2

∫

Ω

|D(u− u0,k)|2 dx+

∫

Ω

(Φk(u)− Φk(u0,k)− Φ′
k(u0,k)(u− u0,k)) dx

−〈w, u− u0,k〉 .

Since Φk is convex, for every c ∈ R the set
⋃

k∈N

{

u− u0,k : u ∈ L2(Ω), fw,k(u) ≤ c
}

is bounded in W 1,2
0 (Ω). In particular, the sequence (fw,k) is equicoercive in L2(Ω).

Let now (uk) be a sequence convergent to u in L2(Ω). If lim inf
k

fw,k(uk) = +∞, it is

obvious that
fw(u) ≤ lim inf

k
fw,k(uk) . (17)

Otherwise, up to a subsequence (uk − u0,k) is bounded in W 1,2
0 (Ω) and convergent to u

a.e. in Ω. It follows that u ∈ u0 +W 1,2
0 (Ω) and (uk − u0,k) is weakly convergent to u− u0

in W 1,2
0 (Ω).

Since u0 > 0 in Ω, it is clear that Φk(uk)−Φk(u0,k)−Φ′
k(u0,k)(uk − u0,k) is convergent to

G0(x, u− u0) a.e. in Ω. Then (17) easily follows also in this case.

Finally, let u ∈ L2(Ω). If fw(u) = +∞ it is obvious that (b) of Definition 3.1 holds.
Otherwise, let u ∈ u0 + W 1,2

0 (Ω) with u ≥ 0 a.e. in Ω and G0(x, u − u0) ∈ L1(Ω). Let
(Ývm) be a sequence in C∞

c (Ω) convergent to u− u0 in W 1,2
0 (Ω) and let

vm = max
{

Ývm,−(u− u0)
−} .

Then vm ∈ W 1,2
0 (Ω) ∩ L∞

c (Ω) and is strongly convergent to u− u0 in W 1,2
0 (Ω) with vm ≥

−(u− u0)
− and (G0(x, vm)) is strongly convergent to G0(x, u− u0) in L1(Ω). Therefore,

given ε > 0, there exists v ∈ W 1,2
0 (Ω)∩L∞

c (Ω) with v ≥ −(u−u0)
−, ‖Dv−D(u−u0)‖2 < ε

and ‖G0(x, v) − G0(x, u − u0)‖1 < ε. Let ϑ ∈ C∞
c (Ω) with ϑ ≥ 0 in Ω and ϑ = 1 where

v 6= 0. If we set v = v + δϑ with δ > 0 small enough, then v ∈ W 1,2
0 (Ω) ∩ L∞

c (Ω) with
‖Dv −D(u− u0)‖2 < ε, ‖G0(x, v)−G0(x, u− u0)‖1 < ε and

ess inf
{v 6=0}

(u0 + v) > 0 .

Then it is easy to see that

lim
k

‖(Φk(u0,k + v)− Φk(u0,k)− Φ′
k(u0,k)v)−G0(x, u− u0)‖1 < ε .

In particular, there exists a sequence (vk) strongly convergent to u− u0 in W 1,2
0 (Ω) with

lim
k

‖(Φk(u0,k + vk)− Φk(u0,k)− Φ′
k(u0,k)vk)−G0(x, u− u0)‖1 = 0 .
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If we set uk = u0,k + vk, then (uk) is strongly convergent to u in L2(Ω) with (fw,k(uk))
convergent to fw(u).

Remark 3.3. From the proof of Theorem 3.2 it follows that:

(a) if we define f̃w,k : W 1,2
0 (Ω) → R and f̃w : W 1,2

0 (Ω) →] − ∞,+∞] as f̃w,k(v) =
fw,k(u0,k + v), f̃w(v) = fw(u0 + v), then (f̃w,k) is M -convergent to f̃w;

(b) if n = 1, then the restriction of (fw,k) to L
∞(Ω) isM -convergent to the corresponding

restriction of fw;

(c) if n ≥ 2, 2 ≤ p < ∞ and p(n − 2) ≤ 2n, then the restriction of (fw,k) to Lp(Ω) is
M -convergent to the corresponding restriction of fw.

Now we consider the associated Euler equation.

Theorem 3.4. The following facts hold:

(a) for every w ∈ W−1,2(Ω) and u ∈ W 1,2
loc (Ω), we have that u is the minimum of fw if

and only if u satisfies























u > 0 a.e. in Ω and u−β ∈ L1
loc(Ω) ,

∫

Ω

DuD(v − u) dx−
∫

Ω

u−β(v − u) dx ≥ 〈w, v − u〉

∀v ∈ u+
(

W 1,2
0 (Ω) ∩ L∞

c (Ω)
)

with v ≥ 0 a.e. in Ω ,
u ≤ 0 on ∂Ω ;

(18)

in particular, for every w ∈ W−1,2(Ω) problem (18) admits one and only one solution
u ∈ W 1,2

loc (Ω);

(b) if w1, w2 ∈ W−1,2(Ω) and u1, u2 ∈ W 1,2
loc (Ω) are the corresponding solutions of (18),

we have u1 − u2 ∈ W 1,2
0 (Ω) and

‖D(u1 − u2)‖2 ≤ ‖w1 − w2‖−1,2 .

Proof. (a) Given w ∈ W−1,2(Ω), there exists one and only one minimum u ∈ u0+W 1,2
0 (Ω)

of fw. According to [2], we have G0(x, u− u0) ∈ L1(Ω), hence u ≥ 0 a.e. in Ω, and











(

u−β
0 − u−β

)

(v − u) ∈ L1(Ω) ,
∫

Ω

D(u− u0)D(v − u) dx+

∫

Ω

(

u−β
0 − u−β

)

(v − u) dx ≥ 〈w, v − u〉 ,
(19)

for every v ∈ u0 +W 1,2
0 (Ω) with G0(x, v − u0) ∈ L1(Ω) (here we agree that 0−β = +∞).

In particular, we have

(

u−β
0 − u−β

)

v ∈ L1(Ω) for every v ∈ C∞
c (Ω) with v ≥ 0 ,

whence u > 0 a.e. in Ω and u−β ∈ L1
loc(Ω).

Let now ε, σ > 0 and let

v = min
{

u− u0, ε− (u0 − σ)+
}

.



A. Canino, M. Degiovanni / A Variational Approach to Singular Semilinear ... 157

Clearly v ∈ W 1,2
0 (Ω). Moreover, we have a.e. either v = u − u0 or ε = v ≤ u − u0 or

v = ε+ σ − u0 with u0 ≥ σ. It follows G0(x, v) ∈ L1(Ω), hence

((u0 − σ)+ + u− u0 − ε)+ = u− u0 − v ∈ W 1,2
0 (Ω) ,

(

u−β
0 − u−β

)

(u0 + v − u) ∈ L1(Ω)

and
∫

Ω

D(u−u0)D(u−u0−v) dx ≤ −
∫

Ω

(

u−β
0 − u−β

)

(u−u0−v) dx+ 〈w, u−u0−v〉 . (20)

In particular, since u 6= u0 + v implies u > ε, we have that both u−β(u − u0 − v) and
u−β
0 (u− u0 − v) belong to L1(Ω).

On the other hand, we also have

∫

Ω

D(u0 − σ)+Dϕdx ≤
∫

Ω

u−β
0 ϕdx for every ϕ ∈ C∞

c (Ω) with ϕ ≥ 0 .

Arguing as in [3], it follows

∫

Ω

D(u0 − σ)+Dϕdx ≤
∫

Ω

u−β
0 ϕdx for every ϕ ∈ W 1,2

0 (Ω) with ϕ ≥ 0 a.e. in Ω .

In particular, we have

∫

Ω

D(u0 − σ)+D(u− u0 − v) dx ≤
∫

Ω

u−β
0 (u− u0 − v) dx ,

which yields, combined with (20),

∫

Ω

|D(u− u0 − v)|2 dx =

∫

Ω

D
(

(u0 − σ)+ + u− u0

)

D(u− u0 − v) dx

≤
∫

Ω

u−β(u− u0 − v) dx+ 〈w, u− u0 − v〉

≤ ε−β

∫

Ω

(u− u0 − v) dx+ 〈w, u− u0 − v〉 .

Therefore, for any ε > 0, we have that ((u0 − σ)+ + u− u0 − ε)+ is bounded in W 1,2
0 (Ω)

as σ → 0+. It follows that (u− ε)+ ∈ W 1,2
0 (Ω), namely that u ≤ 0 on ∂Ω.

Let now v ∈ u +
(

W 1,2
0 (Ω) ∩ L∞

c (Ω)
)

with v ≥ 0 a.e. in Ω. Let v0 ∈ C∞
c (Ω) with v0 ≥ 0

in Ω and v0 = 1 where v 6= u. Then, for every ε > 0, we have G0(x, v+ εv0−u0) ∈ L1(Ω),
whence
∫

Ω

D(u− u0)D(v + εv0 − u) dx+

∫

Ω

(

u−β
0 − u−β

)

(v + εv0 − u) dx ≥ 〈w, v + εv0 − u〉 .

From the arbitrariness of ε it follows
∫

Ω

D(u− u0)D(v − u) dx+

∫

Ω

(

u−β
0 − u−β

)

(v − u) dx ≥ 〈w, v − u〉 .
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Since
∫

Ω

Du0D(v − u) dx =

∫

Ω

u−β
0 (v − u) dx ,

it turns out that u satisfies (18).

Conversely, let u be a solution of (18) and let Ýu ∈ W 1,2
loc (Ω) be the minimum of fw.

We already know that Ýu also is a solution of (18). In particular, u and Ýu are both a
subsolution and a supersolution of (8). From Lemma 2.8 it follows that u = Ýu, namely u
is the minimum of fw.

(b) If w1, w2 ∈ W−1,2(Ω) and u1, u2 ∈ W 1,2
loc (Ω) are the corresponding minima of fw1 and

fw2 , from (19) it follows that
∫

Ω

|D(u1 − u2)|2 dx ≤
∫

Ω

(

u−β
1 − u−β

2

)

(u1 − u2) dx+ 〈w1 − w2, u1 − u2〉

≤ 〈w1 − w2, u1 − u2〉 ,

whence ‖D(u1 − u2)‖2 ≤ ‖w1 − w2‖−1,2.

Theorem 3.5. Let w ∈ W−1,2(Ω) and u ∈ W 1,2
loc (Ω). If u satisfies







u > 0 a.e. in Ω and u−β ∈ L1
loc(Ω) ,

−∆u− u−β = w in D′(Ω) ,
u ≤ 0 on ∂Ω ,

(21)

then u is the solution of (18). If w ∈ L1
loc(Ω)∩W−1,2(Ω), then (18) and (21) are equiva-

lent.

Proof. If u satisfies (21), a simple approximation argument shows that
∫

Ω

DuDv dx−
∫

Ω

u−β
0 v dx = 〈w, v〉

for every v ∈ W 1,2
0 (Ω) ∩ L∞

c (Ω). Then u satisfies (18).

Assume now that w ∈ L1
loc(Ω) ∩W−1,2(Ω) and that u is the solution of (18). It is readily

seen that, for every v ∈ C∞
c (Ω) with v ≥ 0,
∫

Ω

DuDv dx ≥
∫

Ω

u−βv dx+

∫

Ω

wv dx . (22)

Let now v ∈ C∞
c (Ω) with v ≤ 0, let t > 0 and let vt = (u+ tv)+. Since |vt − u| ≤ t|v|, we

have
∫

{u+tv>0}
DuDv dx ≥ −1

t

∫

{u+tv≤0}
|Du|2 dx+

∫

{u+tv>0}
DuDv dx

=

∫

Ω

DuD

(

vt − u

t

)

dx ≥
∫

Ω

u−β vt − u

t
dx+

∫

Ω

w
vt − u

t
dx .

Going to the limit as t → 0+, we get
∫

Ω

DuDv dx ≥
∫

Ω

u−βv dx+

∫

Ω

wv dx

also in this case. Therefore u satisfies (21).
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Example 3.6. Let 0 < β < 2 and let Ω =]−π, π[. Let u(x) = | sinx|α, where 1/2 < α <
1/β and let w = −u′′ − u−β − δ0, where δ0 denotes the Dirac measure at 0.

Then u ∈ W 1,2
0 (Ω), w ∈ W−1,2(Ω) and (18) is satisfied, even if u is not a solution of (21).

Since the solution of (18) is unique, this means that (21) has no solution at all. Thus,
if w is merely in W−1,2(Ω), we can solve the variational inequality (18), but not the
equation (21), in general.

Corollary 3.7. Assume that each x ∈ ∂Ω satisfies the Wiener criterion (for instance, Ω
has Lipschitz boundary) and that w ∈ L∞(Ω). Let u ∈ W 1,2

loc (Ω) be the solution of (21)
given by Theorems 3.4 and 3.5.

Then u ∈ C(Ω) ∩W 2,p
loc (Ω) for any p < ∞ and satisfies







u > 0 in Ω ,
−∆u− u−β = w a.e. in Ω ,
u = 0 on ∂Ω .

(23)

Moreover, we have
tw u0 ≤ u ≤ Tw u0 in Ω

for some 0 < tw ≤ Tw < +∞.

Proof. According to Corollary 2.4, we have u0 ∈ C(Ω) and u0 = 0 on ∂Ω. Since w ∈
L∞(Ω), it is readily seen that there exist Tw, tw > 0 such that twu0 is a subsolution and
Twu0 a supersolution of (8). From Lemma 2.8 we deduce that twu0 ≤ u ≤ Twu0 a.e. in
Ω. Then u−β ∈ L∞

loc(Ω) and the assertion follows from standard regularity theory (see e.g.
[14]).

4. C1 perturbations

Let Ω be a bounded open subset of Rn and let β > 0. For the sake of simplicity, we
suppose here that n ≥ 3. In the cases n = 1, 2, simple adaptations are required for the
growth condition (24) below. Let also u0 ∈ L∞(Ω)∩C∞(Ω) be the solution of (4) and let
f̃0 : W

1,2
0 (Ω) →]−∞,+∞] be the lower semicontinuous, convex functional defined in (a)

of Remark 3.3 when w = 0.

Moreover, suppose that g : Ω× R → R is a Carathéodory function. Assume that
{

there exist a ∈ L
2n
n+2 (Ω) and b ∈ R such that

|g(x, s)| ≤ a(x) + b|s|
n+2
n−2 for a.e. x ∈ Ω and every s ∈ R .

(24)

Define a new Carathéodory function g1 : Ω× R → R by g1(x, s) = g(x, u0(x) + s). Since
u0 ∈ L∞(Ω), g1 also satisfies (24). Let G1(x, s) =

∫ s

0
g1(x, t) dt and let f : W 1,2

0 (Ω) →
]−∞,+∞] be the functional defined as f(u) = f̃0(u) + γ(u), where γ is the functional of
class C1 defined as

γ(u) = −
∫

Ω

G1(x, u) dx .

According to [19], u ∈ W 1,2
0 (Ω) is said to be a critical point of f , if f̃0(u) < +∞ and

∀v ∈ W 1,2
0 (Ω) : 〈γ′(u), v − u〉+ f̃0(v)− f̃0(u) ≥ 0 .
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Theorem 4.1. For every u, the following assertions are equivalent:

(a) u ∈ W 1,2
loc (Ω) ∩ L

2n
n−2 (Ω) and we have







u > 0 a.e. in Ω and u−β ∈ L1
loc(Ω) ,

−∆u = u−β + g(x, u) in D′(Ω) ,
u ≤ 0 on ∂Ω ;

(25)

(b) u ∈ u0 +W 1,2
0 (Ω) and u− u0 is a critical point of f .

Proof. If (a) holds, let w = g(x, u) = g1(x, u − u0). By Theorems 3.4 and 3.5, we have
that u ∈ u0 +W 1,2

0 (Ω) and minimizes fw. This means that

∀v ∈ W 1,2
0 (Ω) : f̃0(v) ≥ f̃0(u− u0) + 〈w, u0 + v − u〉

= f̃0(u− u0)− 〈γ′(u− u0), u0 + v − u〉 ,

namely u− u0 is a critical point of f .

Conversely, assume that (b) holds. Then u ∈ W 1,2
loc (Ω) ∩ L

2n
n−2 (Ω) and

w := g(x, u) = g1(x, u− u0) ∈ L1
loc(Ω) ∩W−1,2(Ω) .

From Theorems 3.4 and 3.5 it follows that u is a solution of (25).

Corollary 4.2. Assume that each x ∈ ∂Ω satisfies the Wiener criterion and that

{

there exists b ∈ R such that

|g(x, s)| ≤ b(1 + |s|
n+2
n−2 ) for a.e. x ∈ Ω and every s ∈ R .

(26)

Let u ∈ W 1,2
loc (Ω) ∩ L

2n
n−2 (Ω) be a solution of (25).

Then u ∈ C(Ω) ∩W 2,p
loc (Ω) for any p < ∞ and satisfies







u > 0 in Ω ,
−∆u = u−β + g(x, u) a.e. in Ω ,
u = 0 on ∂Ω .

Proof. Let z = (u− 1)+. Then z ∈ W 1,2
0 (Ω) and is a subsolution of the equation

−∆v = Ýg(x, v) + w ,

where Ýg(x, s) = g(x, s + 1)χ{u>1} and w = u−βχ{u>1} ∈ L∞(Ω). Then it is standard to
show (see in particular [4, Theorem 2.3]) that z ∈ L∞(Ω), whence u ∈ L∞(Ω).

Since in turn g(x, u) ∈ L∞(Ω), the assertion follows from Corollary 3.7.

5. Appendix

In this appendix we prove the following result.
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Theorem 5.1. Let Ω be a bounded open subset of Rn and let u1 ∈ W 1,2
0 (Ω) ∩ C∞(Ω) be

such that −∆u1 = 1 in Ω.

Then u1 ∈ C(Ω) with u1 = 0 on ∂Ω if and only if each x ∈ ∂Ω satisfies the Wiener
criterion.

Proof. Assume that each x ∈ ∂Ω satisfies the Wiener criterion. Let u2(x) = x2
1/2, so

that ∆u2 = 1. According to [11], there exists u ∈ C(Ω) ∩ C∞(Ω) with u = u2 on ∂Ω
and ∆u = 0 in Ω. Then it is easily seen that u − u2 ∈ W 1,2

0 (Ω) ∩ C∞(Ω) and satisfies
−∆(u− u2) = 1 in Ω, whence u− u2 = u1.

Assume now that u1 ∈ C(Ω) with u1 = 0 on ∂Ω. According to [11], it is enough to
show that, for every v ∈ C(∂Ω) there exists u ∈ C(Ω) ∩ C∞(Ω) with u = v on ∂Ω and
∆u = 0 in Ω. Let (vk) be a sequence in C∞(Rn) converging to v uniformly on ∂Ω. By
the weak maximum principle, it is enough to show the assertion for vk instead of v. Let
zk ∈ W 1,2

0 (Ω) ∩ C∞(Ω) be such that −∆zk = ∆vk in Ω. There exists Mk > 0 such that
|∆vk| ≤ Mk on Ω, whence |zk| ≤ Mku1. Therefore zk ∈ C(Ω) with zk = 0 on ∂Ω, namely
u = vk + zk satisfies u = vk on ∂Ω and ∆u = 0 in Ω.
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