On the Representation Property of Kernels of Quasidifferentials

J. Grzybowski

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland jgrz@amu.edu.pl

R. Urbański

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland rich@amu.edu.pl

Received May 20, 2003 Revised manuscript received February 11, 2004

In this paper the conjecture that the kernel of each quasidifferential always represents this quasidifferential is proved false in \mathbb{R}^3 .

Keywords: Quasidifferential calculus, minimal pair of compact convex sets

1991 Mathematics Subject Classification: 52A20, 90C30

Let X be a topological vector space over the field \mathbb{R} , and $\mathcal{K}(X)$ be the family of all nonempty compact convex subsets of X. If $A, B \in \mathcal{K}(X)$ then $A + B = \{a + b \mid a \in A, b \in B\}$ is the Minkowski sum of A and B. Let $A \vee B$ be the convex hull of $A \cup B$. If $f: X \to \mathbb{R}$ is a continuous functional, then $H_f A = \{a \in A \mid f(a) = \max_{b \in A} f(b)\}$. Let $(A, B) \sim (C, D)$ if and only if A + D = B + C, for $(A, B), (C, D) \in \mathcal{K}^2(X) = \mathcal{K}(X) \times \mathcal{K}(X)$. The relation "~" is a relation of equivalence in $\mathcal{K}^2(X)$. By [A, B], we denote the quotient class of (A, B) in $\mathcal{K}^2(X)/_{\sim}$. We can identify quotient classes $[A, B], (A, B) \in \mathcal{K}^2(X)$, with quasidifferentials [1]. Let $(A, B) \leq (C, D)$ if and only if $(A, B) \sim (C, D), A \subset C$, and $B \subset D$. The pair (A, B) is called *minimal* if (A, B) is a minimal element in $([A, B], \leq)$.

The set $A \in \mathcal{K}(X)$ is called a *summand of* $B \in \mathcal{K}(X)$ if there exists $C \in \mathcal{K}(X)$ such that A + C = B.

The kernel

$$(\bigcap_{(A,B)\in[A_0,B_0]}(A-B),\bigcap_{(A,B)\in[A_0,B_0]}(B-B))$$

of quasidifferential $[A_0, B_0]$ was studied in [10] and [3].

Proposition. Let $A_0, B_0 \in \mathcal{K}(\mathbb{R}^n)$. Then the sets

$$\bigcap_{(A,B)\in[A_0,B_0]} (A-B), \ \bigcap_{(A,B)\in[A_0,B_0]} (B-B)$$

are nonempty.

ISSN 0944-6532 / $\$ 2.50 \odot Heldermann Verlag

388 J. Grzybowski, R. Urbański / On the Representation Property of Kernels of ...

Proof. Since $0 \in B - B$, $B \in \mathcal{K}(\mathbb{R}^n)$, then $\bigcap_{(A,B)\in[A_0,B_0]}(B-B) \neq \emptyset$. Let $f \in (\mathbb{R}^n)^*$, $f \not\equiv 0$. Notice that if $(A,B) \in [A_0,B_0]$ then $(H_fA,H_fB) \in [H_fA_0,H_fB_0]$. Take $f_k : \mathbb{R}^n \to \mathbb{R}$, $f_k(x_1,\ldots,x_n) = x_k$, $k = 1,\ldots,n$. Then

$$(H_{f_1}A, H_{f_1}B) \in [H_{f_1}A_0, H_{f_2}B_0]$$
 and $\dim H_{f_2}B \le n-1$.

Also $(H_{f_2}H_{f_1}A, H_{f_2}H_{f_1}B) \in [H_{f_2}H_{f_1}A_0, H_{f_2}H_{f_1}B_0]$ and

 $\dim H_{f_2} H_{f_1} A, \ \dim H_{f_2} H_{f_1} B \le n-2.$

In *n* steps we obtain $(H_{f_n} \ldots H_{f_1}A, H_{f_n} \ldots H_{f_1}B) \in [H_{f_n} \ldots H_{f_1}A_0, H_{f_n} \ldots H_{f_1}B_0]$ and $\dim H_{f_n} \ldots H_{f_1}A$, $\dim H_{f_n} \ldots H_{f_1}B = 0$. Then there exist $a, b, a_0, b_0 \in \mathbb{R}^n$ such that

 $H_{f_n} \dots H_{f_1} A = \{a\}, \ H_{f_n} \dots H_{f_1} B = \{b\},$ $H_{f_n} \dots H_{f_1} A_0 = \{a_0\}, \ H_{f_n} \dots H_{f_1} B_0 = \{b_0\}.$

Hence $a + b_0 = a_0 + b$ and $a_0 - b_0 = a - b \in A - B$. Therefore

 $a_0 - b_0 \in \bigcap_{(A,B)\in[A_0,B_0]}(A-B)$, and $\bigcap_{(A,B)\in[A_0,B_0]}(A-B)$ is nonempty. \Box

Proposition was also proved in Chinese in [2]. The following Theorem was proved as Theorem 2.1 in [3].

Theorem. Let $A_0, B_0 \in \mathcal{K}(\mathbb{R}^2)$ and

$$C = \bigcap_{(A,B)\in[A_0,B_0]} (A-B), \ D = \bigcap_{(A,B)\in[A_0,B_0]} (B-B).$$

Then $(C, D) \in [A_0, B_0]$. If (A_0, B_0) is a minimal pair then $C = A_0 - B_0$, $D = B_0 - B_0$.

Theorem holds true due to the uniqueness up to translation of equivalent minimal pairs of compact convex sets in \mathbb{R}^2 [4]. Theorem holds true also for $A_0, B_0 \in \mathcal{K}(\mathbb{R})$.

Now, we will show that Theorem cannot be extended to \mathbb{R}^3 . In order to do this we need the following Lemma.

Lemma. Let $A_0, B_0 \in \mathcal{K}(\mathbb{R}^3)$, $f \in (\mathbb{R}^3)^*$, $f \not\equiv 0$ and (A', B') be a minimal pair in $[H_f A_0, H_f B_0]$. Let

$$C = \bigcap_{(A,B)\in[A_0,B_0]} (A-B), \ D = \bigcap_{(A,B)\in[A_0,B_0]} (B-B).$$

Then $A' - B' \subset C$ and $B' - B' \subset D$.

Proof. Let $x \in \mathbb{R}^3$ and f(x) = 1. We can assume that $\max f(A_0) = \max f(B_0) = 0$. Notice that if $(A, B) \sim (A_0, B_0)$ then

$$H_f A + H_f B_0 = H_f (A + B_0) = H_f (A_0 + B) = H_f A_0 + H_f B$$

J. Grzybowski, R. Urbański / On the Representation Property of Kernels of ... 389

Hence

$$(H_f A - \max f(A) \cdot x, \ H_f B - \max f(A) \cdot x) \in [H_f A_0, H_f B_0] \in \mathcal{K}^2(Y) / \sim_{\mathcal{H}} \mathcal{K}^2(Y) / \mathcal$$

where $Y = f^{-1}(0)$. Applying Theorem, we obtain

$$A' - B' = \bigcap_{(A,B) \in [H_f A_0, H_f B_0]} (A - B) \subset \bigcap_{(A,B) \in [A_0, B_0]} (H_f A - H_f B) \subset C$$

and

$$B' - B' = \bigcap_{(A,B) \in [H_f A_0, H_f B_0]} (B - B) \subset \bigcap_{(A,B) \in [A_0, B_0]} (H_f B - H_f B) \subset D.$$

Example. Let $T = (1, 0, 0) \lor (0, 1, 0) \lor (0, 0, 1)$ and a = (1, 1, 1). Let $A_0 = [0, 1]^3 \subset \mathbb{R}^3$ and $B_0 = T \lor (a - T)$.

Let $A_1 = (-T) \lor (T - T) \lor T$ and $B_1 = T - T$.

We have $(A_0, B_0) \sim (A_1 - B_1, B_1 - B_1)$. Notice that

$$B_1 = (B_0 - B_0) \cap (B_1 - B_1) \supset \bigcap_{(A,B) \in [A_0, B_0]} (B - B) = D.$$

Let us consider $f_1 : \mathbb{R}^3 \to \mathbb{R}$, $f_1(x_1, x_2, x_3) = x_1$. Let $B' = (1, 1, 0) \lor (1, 0, 1)$, $A' = B' \lor (1, 1, 1)$. The pair (A', B') is minimal and belongs to the quotient class $[H_{f_1}A_0, H_{f_1}B_0]$. According to Lemma,

$$A' - B' \subset \bigcap_{(A,B) \in [A_0,B_0]} (A - B) = C.$$

Then $(0,0,1), (0,1,0), (0,1,-1), (0,-1,1) \in C$. Replacing f_1 with $f_2 : \mathbb{R}^3 \to \mathbb{R}$, $f_2(x_1, x_2, x_3) = x_2, f_3 : \mathbb{R}^3 \to \mathbb{R}, f_3(x_1, x_2, x_3) = x_3, -f_1, -f_2 \text{ and } -f_3 \text{ and } A', B'$ with suitable sets, we prove that $(1,0,0), (0,1,0), (0,0,1), (1,-1,0), (-1,1,0), (1,0,-1), (-1,0,1), (0,-1,1), (-1,0,0), (0,-1,0), (0,0,-1) \in C$. Therefore, all the vertices of A_1 belong to C. Hence $A_1 \subset C$. Take any $(A, B) \in [A_0, B_0]$. Then $A_1 \subset C \subset A - B$ and $(A_1, B_1) \sim (A, B) \sim (A - B, B - B)$. Applying the order law of cancellation [9], we obtain $B_1 \subset B - B$. Hence $B_1 \subset D \subset B_1$. Therefore, $D = B_1$.

Let us denote

$$E = \bigcap_{(A,B)\in[B_0,A_0]} (A-B), \ F = \bigcap_{(A,B)\in[B_0,A_0]} (B-B).$$

Assume that $(C, D) \in [A_0, B_0]$ and $(E, F) \in [B_0, A_0]$. Since $D = B_1$ and $(C, D) \sim (A_1, B_1)$ then $C = A_1$ and $E = -C = A_1$. Since $(E, F) \sim (B_1, A_1)$ then $2A_1 = E + A_1 = F + B_1$. But the fact that B_1 is not a summand of $2A_1$ contradicts our assumption. Therefore, $(C, D) \notin [A_0, B_0]$ or $(E, F) \notin [B_0, A_0]$. In fact, it can be proved that $C = A_1$. Hence $(E, F) \notin [B_0, A_0]$. Let us notice that, incidently, C = E because the set A_1 is symmetric. The set D here and generally is not equal to F.

References

- V. F. Demyanov, A. M. Rubinov: Quasidifferential Calculus, Optimization Software, Publication Division, New York (1986).
- [2] M. R. Deng, Y. Gao: A property on quasidifferentials, Chinese J. Operations Research 10 (1991) 65–67 (in Chinese).
- [3] Y. Gao, Z. Q. Xia, L. W. Zhang: Kernelled quasidifferential for a quasidifferentiable function in two-dimensional space, J. Convex Anal. 8(2) (2001) 401–408.
- [4] J. Grzybowski: Minimal pairs of convex compact sets, Arch. Math. 63 (1994) 173–181.
- [5] J. Grzybowski, R. Urbański: Minimal pairs of bounded closed convex sets, Studia Math. 126(1) (1997) 95–99.
- [6] D. Pallaschke, S. Scholtes, R. Urbański: On minimal pairs of compact convex sets, Bull. Polish Acad. Sci. Math. 39 (1991) 1–5.
- [7] D. Pallaschke, R. Urbański: Some criteria for the minimality of pairs of compact convex sets, Z. Oper. Res. 37 (1993) 129–150.
- [8] D. Pallaschke, R. Urbański: Pairs of Compact Convex Sets, Fractional Arithmetic with Convex Sets, Mathematics and its Applications, Kluwer Academic Publisher, Dordrecht (2002).
- R. Urbański: A generalization of the Minkowski-Rådström-Hörmander Theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976) 709–715.
- [10] Z.Q. Xia: On quasidifferential kernels, Demonstr. Math. 26 (1993) 159–182.