
Journal of Convex Analysis

Volume 11 (2004), No. 2, 387–390
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In this paper the conjecture that the kernel of each quasidifferential always represents this quasidifferential
is proved false in R3.
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Let X be a topological vector space over the field R, and K(X) be the family of all
nonempty compact convex subsets of X. If A,B ∈ K(X) then A + B = {a + b | a ∈
A, b ∈ B} is the Minkowski sum of A and B. Let A ∨ B be the convex hull of A ∪ B. If
f : X → R is a continuous functional, then HfA = {a ∈ A | f(a) = max b∈A f(b)}. Let
(A,B) ∼ (C,D) if and only if A+D = B+C, for (A,B), (C,D) ∈ K2(X) = K(X)×K(X).
The relation Ô∼ Ô is a relation of equivalence in K2(X). By [A,B], we denote the quotient
class of (A,B) in K2(X)/∼ . We can identify quotient classes [A,B], (A,B) ∈ K2(X),
with quasidifferentials [1]. Let (A,B) ≤ (C,D) if and only if (A,B) ∼ (C,D), A ⊂ C, and
B ⊂ D. The pair (A,B) is called minimal if (A,B) is a minimal element in ([A,B],≤).

The set A ∈ K(X) is called a summand of B ∈ K(X) if there exists C ∈ K(X) such that
A+ C = B.

The kernel
(

⋂

(A,B)∈[A0,B0]

(A−B),
⋂

(A,B)∈[A0,B0]

(B −B) )

of quasidifferential [A0, B0] was studied in [10] and [3].

Proposition. Let A0, B0 ∈ K(Rn). Then the sets

⋂

(A,B)∈[A0,B0]

(A−B),
⋂

(A,B)∈[A0,B0]

(B −B)

are nonempty.
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Proof. Since 0 ∈ B −B, B ∈ K(Rn), then
⋂

(A,B)∈[A0,B0]
(B −B) 6= ∅.

Let f ∈ (Rn)∗, f 6≡ 0. Notice that if (A,B) ∈ [A0, B0] then (HfA,HfB) ∈ [HfA0, HfB0].

Take fk : Rn → R, fk(x1, . . ., xn) = xk, k = 1, . . ., n. Then

(Hf1A,Hf1B) ∈ [Hf1A0, Hf2B0] and dimHf2B ≤ n− 1.

Also (Hf2Hf1A,Hf2Hf1B) ∈ [Hf2Hf1A0, Hf2Hf1B0] and

dimHf2Hf1A, dimHf2Hf1B ≤ n− 2.

In n steps we obtain (Hfn . . .Hf1A,Hfn . . .Hf1B) ∈ [Hfn . . .Hf1A0, Hfn . . .Hf1B0] and
dimHfn . . .Hf1A, dimHfn . . .Hf1B = 0. Then there exist a, b, a0, b0 ∈ Rn such that

Hfn . . .Hf1A = {a} , Hfn . . .Hf1B = {b},

Hfn . . .Hf1A0 = {a0}, Hfn . . .Hf1B0 = {b0}.

Hence a+ b0 = a0 + b and a0 − b0 = a− b ∈ A−B. Therefore

a0 − b0 ∈
⋂

(A,B)∈[A0,B0]
(A−B), and

⋂

(A,B)∈[A0,B0]
(A−B) is nonempty. £

Proposition was also proved in Chinese in [2]. The following Theorem was proved as
Theorem 2.1 in [3].

Theorem. Let A0, B0 ∈ K(R2) and

C =
⋂

(A,B)∈[A0,B0]

(A−B), D =
⋂

(A,B)∈[A0,B0]

(B −B).

Then (C,D) ∈ [A0, B0]. If (A0, B0) is a minimal pair then C = A0 −B0, D = B0 −B0.

Theorem holds true due to the uniqueness up to translation of equivalent minimal pairs
of compact convex sets in R2 [4]. Theorem holds true also for A0, B0 ∈ K(R).

Now, we will show that Theorem cannot be extended to R3. In order to do this we need
the following Lemma.

Lemma. Let A0, B0 ∈ K(R3), f ∈ (R3)∗, f 6≡ 0 and (A′, B′) be a minimal pair in
[HfA0, HfB0]. Let

C =
⋂

(A,B)∈[A0,B0]

(A−B), D =
⋂

(A,B)∈[A0,B0]

(B −B).

Then A′ −B′ ⊂ C and B′ −B′ ⊂ D.

Proof. Let x ∈ R3 and f(x) = 1. We can assume that max f(A0) = max f(B0) = 0.
Notice that if (A,B) ∼ (A0, B0) then

HfA+HfB0 = Hf (A+B0) = Hf (A0 +B) = HfA0 +HfB.



J. Grzybowski, R. Urbański / On the Representation Property of Kernels of ... 389

Hence

(HfA−max f(A) · x, HfB −max f(A) · x) ∈ [HfA0, HfB0] ∈ K2(Y )/ ∼,

where Y = f−1(0). Applying Theorem, we obtain

A′ −B′ =
⋂

(A,B)∈[HfA0,HfB0]

(A−B) ⊂
⋂

(A,B)∈[A0,B0]

(HfA−HfB) ⊂ C

and
B′ −B′ =

⋂

(A,B)∈[HfA0,HfB0]

(B −B) ⊂
⋂

(A,B)∈[A0,B0]

(HfB −HfB) ⊂ D.

£

Example. Let T = (1, 0, 0) ∨ (0, 1, 0) ∨ (0, 0, 1) and a = (1, 1, 1). Let A0 = [0, 1]3 ⊂ R3

and B0 = T ∨ (a− T ).

6

-
Hf1A0

-

A0
x1

x2

x3
-

6

-B0
x1

x2

x3

Hf1B0- -

Let A1 = (−T ) ∨ (T − T ) ∨ T and B1 = T − T.

-

6

-

B1

x1

x2

x3

-

6

-

A1

x1

x2

x3

We have (A0, B0) ∼ (A1 −B1, B1 −B1). Notice that

B1 = (B0 −B0) ∩ (B1 −B1) ⊃
⋂

(A,B)∈[A0,B0]

(B −B) = D.

Let us consider f1 : R3 → R, f1(x1, x2, x3) = x1. Let B′ = (1, 1, 0) ∨ (1, 0, 1), A′ =
B′∨(1, 1, 1). The pair (A′, B′) is minimal and belongs to the quotient class [Hf1A0, Hf1B0].
According to Lemma,

A′ −B′ ⊂
⋂

(A,B)∈[A0,B0]

(A−B) = C.
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Then (0, 0, 1), (0, 1, 0), (0, 1,−1), (0,−1, 1) ∈ C. Replacing f1 with f2 : R3 → R,
f2(x1, x2, x3) = x2, f3 : R3 → R, f3(x1, x2, x3) = x3, −f1, −f2 and −f3 and A′, B′ with
suitable sets, we prove that (1, 0, 0), (0, 1, 0), (0, 0, 1), (1,−1, 0), (−1, 1, 0), (1, 0,−1),
(−1, 0, 1), (0, 1,−1), (0,−1, 1), (−1, 0, 0), (0,−1, 0), (0, 0,−1) ∈ C. Therefore, all the
vertices of A1 belong to C. Hence A1 ⊂ C. Take any (A,B) ∈ [A0, B0]. Then A1 ⊂ C ⊂
A− B and (A1, B1) ∼ (A,B) ∼ (A− B,B − B). Applying the order law of cancellation
[9], we obtain B1 ⊂ B −B. Hence B1 ⊂ D ⊂ B1. Therefore, D = B1.

Let us denote
E =

⋂

(A,B)∈[B0,A0]

(A−B), F =
⋂

(A,B)∈[B0,A0]

(B −B).

Assume that (C,D) ∈ [A0, B0] and (E,F ) ∈ [B0, A0]. SinceD = B1 and (C,D) ∼ (A1, B1)
then C = A1 and E = −C = A1. Since (E,F ) ∼ (B1, A1) then 2A1 = E + A1 = F + B1.
But the fact that B1 is not a summand of 2A1 contradicts our assumption. Therefore,
(C,D) 6∈ [A0, B0] or (E,F ) 6∈ [B0, A0]. In fact, it can be proved that C = A1. Hence
(E,F ) 6∈ [B0, A0]. Let us notice that, incidently, C = E because the set A1 is symmetric.
The set D here and generally is not equal to F.
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