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Main result: the Packing constants of Orlicz function spaces L(Φ)[0, 1] and LΦ[0, 1] with Luxemburg and
Orlicz norm have the exact value.

(i) If FΦ(t) = tϕ(t)/Φ(t) is decreasing, 1 < CΦ < 2, then

P (L(Φ)[0, 1]) = P (LΦ[0, 1]) =
21/CΦ

2 + 21/CΦ
;

(ii) If FΦ(t) is increasing, CΦ > 2, then

P (L(Φ)[0, 1]) = P (LΦ[0, 1]) =
1

1 + 21/CΦ
,

where CΦ = lim
t→∞

FΦ(t).
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1. Introduction

Definition 1.1 ([5] [10]). The packing constant P (X) of a Banach spaces X is

P (X) = sup{ r > 0 : infinitely many balls of radius r

are packed into the unit ball of X}.

The Kottman constant of a infinite dimensional Banach space X is defined [5] as

K(X) = sup

{

inf
i6=j

‖xi − xj‖ : {xi}∞1 ⊂ S(X)

}

,

where S(X) is the unit sphere of X.

Clearly, 1 ≤ K(X) ≤ 2. The following relationship was offered by Kottman [5] (cf. Ye
[18]):

Proposition 1.2. For a infinite dimensional Banach space X, one has

P (X) =
K(X)

2 +K(X)
. (1)
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Hudzik [4] verified that K(X) = 2 if X is a nonreflexive Banach lattice, therefore P (X) =
1
2
.

If X is an infinite dimensional Hilbert space, then Rankin [8] established

P (X) =
1

1 +
√
2
.

Slightly later, Burlack, Rankin and Robertson [1] generalized it as:

P (lp) =
1

1 + 21−
1
p

, 1 < p < ∞.

Much later, in 1975, Wells and Williams [15] showed

P (Lp[0, 1]) =







1

1+2
1− 1

p
, 1 < p ≤ 2,

1

1+2
1
p
, 2 ≤ p < ∞

and that for p = 1 and p = ∞, the value is 1/2. However, the calculation of packing
constants of general Banach spaces is a difficult problem. Researchers turned to study
the Kottman constants in Orlicz spaces.

Let

Φ(u) =

∫ |u|

0

ϕ(t)dt and Ψ(v) =

∫ |v|

0

ψ(s)ds

be a pair of complementary N−functions, i.e., ϕ(t) is right continuous, ϕ(0) = 0, and
ϕ(t) ↗ ∞ as t ↗ ∞(to simplify the discussion, we assume ϕ being continuously differen-
tial ). We call Φ ∈ ∆2(∞), if there exist u0 > 0 and k > 2 such that Φ(2u) ≤ kΦ(u) for
u ≥ u0. The Orlicz function space LΦ[0, 1] is defined as

LΦ[0, 1] =

{

x(t) : ρΦ(λx) =

∫ 1

0

Φ(λ|x(t)|)dt < ∞ for some λ > 0

}

.

The Luxemburg norm and Orlicz norm are expressed as

‖x‖(Φ) = inf{c > 0 : ρΦ(
x

c
) ≤ 1}

and

‖x‖Φ = inf
k>0

1

k
[1 + ρΦ(kx)] ,

respectively. For the Orlicz sequence spaces equipped with Luxemburg norm and Orlicz
norm with Φ satisfying the ∆2-condition, Wang [14] and Ye [18] gave the expressions for
Kottman constants. Latter on, the author [17] gave the formulae for real computation
and answered Rao and Ren’s [10] open problem which concerning the exact value of some
Orlicz sequence spaces. However, formulae for Orlicz function spaces is still unknown in
spite of the work of Cleaver [2], Ren [11], [12]. This paper is trying to give a formula for
packing constants in a class of Orlicz function spaces equipped with both norms.
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In what follows, we will use Semenove and Simonenko indices of Φ(u):

αΦ = lim inf
u→∞

Φ−1(u)

Φ−1(2u)
, βΦ = lim sup

u→∞

Φ−1(u)

Φ−1(2u)
, (2)

AΦ = lim inf
t→∞

tϕ(t)

Φ(t)
, BΦ = lim sup

t→∞

tϕ(t)

Φ(t)
, (3)

The same indices can be applied to Ψ(v). The author [17] obtained

2αΦβΨ = 1 = 2αΨβΦ. (4)

Rao and Ren [8] gave the following interrelations:

2
− 1

AΦ ≤ αΦ ≤ βΦ ≤ 2
− 1

BΦ , (5)

If the index function FΦ(t) =
tϕ(t)
Φ(t)

is monotonic (increase or decrease) at a neighborhood

of ∞, then the limit CΦ = lim
t→+∞

tϕ(t)
Φ(t)

must exist, and hence

αΦ = βΦ = 2
− 1

CΦ . (6)

Define GΦ(c, u) = Φ−1(u)/Φ−1(cu), c > 1, and GΦ = GΦ(2, u). The author [17] proved:

Proposition 1.3. FΦ is increasing (decreasing) on [Φ−1(u0),+∞) if and only if GΦ(c, u)
is increasing (decreasing) on [u0/c,+∞) for any c > 1.

2. Main results

We need only to observe the Kottman constants for L(Φ)[0, 1] and LΦ[0, 1] being reflexive,
or equivalently, Φ ∈ 42(∞) ∩ ∇2(∞), since otherwise, the Kottman constants of a non-
reflexive space is 2 and hence the Packing sphere constants must be 1/2. Cleaver [2] and
Ren [11], [12] obtained the following results:

max

(

1

αΦ
, 2βΦ

)

≤ K(L(Φ)[0, 1]), (7)

max

(

1

αΨ
, 2βΨ

)

≤ K(LΦ[0, 1]), (8)

and
{

K(L(Φs)[0, 1]), K(LΦs [0, 1])
}

≤ 21−
s
2 (9)

for the interpolation of Orlicz spaces. In view of the author’s result (4), the left sides of

(7) and (8) are indeed the same and greater than or equal to
√
2. Therefore, the above

results can be refined for interpolation of spaces as follows:

Proposition 2.1 ([2], [12], [9]). Let Φ be an N−function, Φ0(u) = u2, and let Φs be
the inverse of

Φ−1
s (u) =

[

Φ−1(u)
]1−s [

Φ−1
0 (u)

]s
, 0 < s ≤ 1, u ≥ 0.

Then

max

(

1

αΦs

, 2βΦs

)

≤
{

K(L(Φs)[0, 1]), K(LΦs [0, 1])
}

≤ 21−
s
2 . (10)
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For any N−function Φ with CΦ 6= 2, we produce a function M such that

Φ−1(u) =
[

M−1(u)
]1−s [

Φ−1
0 (u)

]s
(11)

for some 0 < s < 1, where Φ0(u) = u2. Then M is determined by

M−1(u) = u−s/2(1−s)
[

Φ−1(u)
]1/(1−s)

.

If 1 < CΦ < 2, we take l such that 1 < l < CΦ and let s = 2(CΦ − l)/CΦ(2 − l), then
0 < s < 1. If CΦ > 2, we take l such that CΦ < l < ∞ and let s = 2(CΦ − l)/CΦ(2 − l),
then we also have 0 < s < 1. It is important to show that M is an N−function under
some conditions.

Theorem 2.2. Let Φ be an N−function,

(i) If FΦ(t) is decreasing, 1 < CΦ < 2, then the function M determined by (11) satisfies:
(A) lim

t→+∞
M(t)/t = +∞.

(B) M is convex.

(ii) If FΦ(t) is increasing, CΦ > 2, then M determined by (11) also satisfies (A), (B) in
(i).

Proof. (i) In this case, there is a u0 such that uCΦ ≤ Φ(u) for u ≥ u0, or equivalently,
Φ−1(u) ≤ u1/CΦ . Therefore,

u

M−1(u)
=

(

u
2−s
2

Φ−1(u)

) 1
1−s

≥

(

u
2−s
2

u
1

CΦ

) 1
1−s

=

(

u
(CΦ−2)(l−1)

CΦ(l−2)

) 1
1−s

→ ∞

as u → +∞. Let M−1(u) = t, then u = M(t) and hence lim
t→∞

M(t)/t = +∞.

To prove (B), it suffice to prove M−1(u) is concave. Observe that

M−1(u) =
(Φ−1)

1
1−s

u
s

2(1−s)
,

d

du
M−1 =

1
1−s

(Φ−1)
s

1−s · 1
ϕ
· u

s
2(1−s) − s

2(1−s)
u

3s−2
2(1−S) (Φ−1)

1
1−s

u
s

1−s

=
u(Φ−1)

s
1−s − s

2
ϕ · (Φ−1)

1
1−s

u
2−s

2(1−s)ϕ
· 1

1− s

=
1− s

2
ϕ·Φ−1

u

u
2−s

2(1−s)ϕ
· u(Φ

−1)
s

1−s

1− s
≥

1− s
2
CΦ

u
2−s

2(1−s)ϕ
· u(Φ

−1)
s

1−s

1− s

=
2−CΦ
2−l

u
2−s

2(1−s)ϕ
· u(Φ

−1)
s

1−s

1− s
> 0,
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and that

d2

du2
M−1 =

d

du

[

u(Φ−1)
s

1−s − s
2
ϕ · (Φ−1)

1
1−s

u
2−s

2(1−s)ϕ

]

1

1− s

=

{[

s

1− s
(Φ−1)

s
1−s

−1 · 1
ϕ
· u+ (Φ−1)

s
1−s − s

2
· 1

1− s
(Φ−1)

s
1−s · 1

ϕ
· ϕ

−s

2
(Φ−1)

1
1−s · ϕ

′

ϕ

]

ϕu
2−s

2(1−s) −
[

ϕ′

ϕ
u

2−s
2(1−s) +

2− s

2(1− s)
ϕu

s
2(1−s)

]

(

u(Φ−1)
s

1−s − s

2
ϕ · (Φ−1)

1
1−s

)}

· 1
(

ϕ · u
2−s

2(1−s)

)2 · 1

1− s

=

[

s

1− s

(

u2 − Φ−1ϕ · u+
2− s

4
(Φ−1)2ϕ2

)

− ϕ′

ϕ
Φ−1 · u2

]

·

(Φ−1)
s

1−s
−1u

2−s
2(1−s)−1

(1− s)
(

ϕ · u
2−s

2(1−s)

)2

=

[

2(CΦ − l)

l(2− CΦ)

(

1− Φ−1ϕ

u
+

CΦ + l − CΦl

2CΦ(2− l)

(

Φ−1ϕ

u

)2
)

− ϕ′Φ−1

ϕ

]

·

(Φ−1)
2s−1
1−s

(1− s)ϕ2u
s

2(1−s)
.

Let Φ−1(u) = t, then u = Φ(t). It remains to check that

f(t) :=
2(CΦ − l)

l(2− CΦ)

(

1− tϕ

Φ
+

CΦ + l − CΦl

2CΦ(2− l)

(

tϕ

Φ

)2
)

− tϕ′

ϕ
< 0. (12)

We first prove

h(l) =
2(CΦ − l)

l(2− CΦ)

(

1− CΦ +
CΦ + l − CΦl

2CΦ(2− l)
(CΦ)

2

)

− (CΦ − 1) < 0, (13)

for any definite 1 < l < CΦ, or equivalently,

h(l) =
CΦ [−(CΦ)

2l + 4CΦl + (CΦ)
2 − 4CΦ − 4l + 4]

l(2− l)(2− CΦ)
< 0.

Let l → 1+, then h(l) → 0. On the other hand, since

h′(l) =
CΦ

2− CΦ
· − [l(CΦ − 2) + 2]2 − 8CΦ(l − 1)− 4

(2l − l2)2
< 0,

we see that h(l) is decreasing on (0, CΦ), and hence we deduce that h(l) < h(1+) = 0 on
(0, CΦ).

Secondly, note that the function

g(x) :=
2(CΦ − l)

l(2− CΦ)

(

1− x+
CΦ + l − CΦl

2CΦ(2− l)
x2

)

− (x− 1)

=
(CΦ − l)

l(2− CΦ)

[

CΦ + l − CΦl

CΦ(2− l)
x2 − CΦ(2− l)

CΦ − l
(x− 1)

]
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is decreasing for x ≤ [CΦ(l − 2)]2/[2(CΦ + l − CΦl)(CΦ − l)]. If CΦ < 2, then CΦ <
[CΦ(l− 2)]2/[2(CΦ + l−CΦl)(CΦ − l)] for a sufficiently small l > 1 (we will let l → 1+ in
the following context). It follows that

g(FΦ(t)) ≤ (CΦ − l)

l(2− CΦ)

[

CΦ + l − CΦl

CΦ(2− l)
(CΦ)

2 − CΦ(2− l)

CΦ − l
(CΦ − 1)

]

= h(l) < 0

since FΦ(t) ≥ CΦ at a neighborhood of ∞.

Thirdly, By L’Hospital’s theorem, we obtain

lim
t→+∞

tϕ′(t)

ϕ(t)
= lim

t→+∞

tϕ(t)

Φ(t)
− 1 = CΦ − 1.

Therefore, for 0 < ε < −h(l), there is a sufficiently large u0 such that

tϕ′(t)

ϕ(t)
>

tϕ(t)

Φ(t)
− 1− ε (14)

for u ≥ u0. Consequently, we have from (13) and (14) that

f(t) = g(FΦ(t))−
[

tϕ′

ϕ
−

(

tϕ(t)

Φ(t)
− 1

)]

≤ h(l) + ε < 0

and hence, we proved M is convex.

(ii) If FΦ(t) is increasing and CΦ > 2, then for every sufficiently small ε > 0, there is u0,
such that u1/CΦ ≤ Φ−1(u) < u1/CΦ+ε for u > u0. Therefore,

u

M−1(u)
=

(

u
2−s
2

Φ−1(u)

) 1
1−s

≥

(

u
2−s
2

u
1

CΦ
+ε

) 1
1−s

=

(

u
(CΦ−2)(l−1)

CΦ(l−2) −ε

) 1
1−s

→ ∞

as u → +∞. Therefore, lim
t→∞

M(t)/t = +∞, that is (A) holds.

To prove (B), we are reduced to prove (12). Since FΦ(t) = tϕ(t)/Φ(t) is increasing from
CΦ, we have

F ′
Φ(t) =

(tϕ′ + ϕ)Φ− tϕ2

Φ2
=

ϕ
(

tϕ′

ϕ
+ 1− tϕ

Φ

)

Φ
≥ 0.

Therefore,
tϕ′

ϕ
+ 1− tϕ

Φ
≥ 0,

or
tϕ′

ϕ
≥ tϕ

Φ
− 1.

Thus,

f(t) ≤ 2(CΦ − l)

l(2− CΦ)

(

1− tϕ

Φ
+

CΦ + l − CΦl

2CΦ(2− l)

(

tϕ

Φ

)2
)

−
(

tϕ

Φ
− 1

)

= g(FΦ(t)). (15)



Y.Q. Yan / On the Exact Value of Packing Spheres in a Class of Orlicz ... 397

Observing h(l) defined in (13), we found that lim
l→+∞

h(l) = 0, and h′(l) > 0. Therefore,

h(l) < 0 for l > CΦ.

Since the function g(x) is increasing for x ≥ [CΦ(l − 2)]2/[2(CΦ + l − CΦl)(CΦ − l)]. If
CΦ > 2, then CΦ > [CΦ(l − 2)]2/[2(CΦ + l − CΦl)(CΦ − l)] for a sufficiently big l. We
deduce that

f(t) ≤ g(FΦ(t)) ≤
(CΦ − l)

l(2− CΦ)

[

CΦ + l − CΦl

CΦ(2− l)
(CΦ)

2 − CΦ(2− l)

CΦ − l
(CΦ − 1)

]

= h(l) < 0

since FΦ(t) ≤ CΦ at a neighborhood of ∞. Thus, we proved M is convex. The proof is
finished.

Theorem 2.3. Let Φ be an N−function.

(i) If FΦ(t) = tϕ(t)/Φ(t) is decreasing, 1 < CΦ < 2, then

K(L(Φ)[0, 1]) = K(LΦ[0, 1]) = 2
1

CΦ . (16)

(ii) If FΦ(t) = tϕ(t)/Φ(t) is increasing, CΦ > 2, then

K(L(Φ)[0, 1]) = K(LΦ[0, 1]) = 2
1− 1

CΦ . (17)

Proof. (i) When FΦ(t) is decreasing and 1 < CΦ < 2, it follows from (10) and (11) that

max

(

1

αΦ
, 2βΦ

)

≤ {K(L(Φ)[0, 1]), K(LΦ[0, 1])} ≤ 21−
s
2 (18)

Since FΦ(t) is decreasing,
1
αΦ

= 2
1

CΦ by (6). On the other hand, in (18) let l → 1+, then

(2− s)/2 → 1/CΦ. Therefore, (16) holds.

(ii) Similar to (i), (17) follows from

2
lim
l→∞

1− s
2 = 2

1− 1
CΦ = 2βΦ.

Remark 2.4. In view of the equation (1), (16) and (17) are equivalent to

P (L(Φ)[0, 1]) = P (LΦ[0, 1]) =
21/CΦ

2 + 21/CΦ

and

P (L(Φ)[0, 1]) = P (LΦ[0, 1]) =
1

1 + 21/CΦ
,

respectively. Therefore, we obtained the expression of Packing constants in a class of
Orlicz function spaces. It is obvious to see that (16) also holds for CΦ = 1, and (17) holds
for CΦ = ∞ since the spaces generated by Φ is nonreflexive. One can easily deduces the
Kottman constants of Lp[0, 1], that is,

K(Lp[0, 1]) = max
(

21−
1
p , 2

1
p

)

.
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since CΦ = p for Φ(u) = |u|p.
The author have used the methods in this paper to study the other geometric constants
in Orlicz function spaces as well as sequence spaces. However, whether the formulae (16)
and (17) is fit for CΦ = 2 is still unknown.

Corollary 2.5. Let Φ be an N−function.

(i) If FΦ(t) = tϕ(t)/Φ(t) is decreasing, ϕ is concave, then (16) holds;

(ii) If FΦ(t) is increasing, ϕ is convex, then (17) holds.

Proof. (i) Note that ϕ(0) = 0 since Φ is an N−function. When ϕ is concave, ϕ(t) =
∫ t

0
ϕ′(s)ds+ ϕ(0) =

∫ t

0
ϕ′(s)ds ≥ tϕ′(t). Therefore,

[tϕ(t)− 2Φ(t)]′ = tϕ′ − ϕ ≤ 0,

and hence tϕ(t) − 2Φ(t) ≤ 0, in other word, FΦ(t) ≤ 2 which means CΦ ≤ 2. If CΦ < 2,
then (16) holds by Theorem 2.3. If CΦ = 2, then tϕ(t)/Φ(t) ≥ 2 since FΦ(t) is decreasing
from at a neighborhood of ∞, and hence,tϕ(t)/Φ(t) = 2 at a neighborhood of ∞. This
means that Φ(t) = at2(a > 0), which generates the Hilbert space L2[0, 1], so (17) holds
by the well known result. Analogously we can prove (ii).

Example 2.6. Let N−function be Φ(u) = 2|u|p + |u|2p, p > 1. Then

FΦ(t) =
tΦ′(t)

Φ(t)
= 2p

(

tp + 1

tp + 2

)

≤ 2p

and CΦ = 2p. Therefore, we have

K(L(Φ)[0, 1]) = K(LΦ[0, 1]) = 2
1− 1

CΦ = 21−
1
2p . (19)

Let 0 < s ≤ 1, then we can produce Φs by

Φ−1
s (u) = (

√
u+ 1− 1)

1−s
p u

s
2 .

We have the exact value:

K(L(Φs)[0, 1]) = K(LΦs [0, 1]) = 2
1− 1

CΦs = 21−
1−s
2p − s

2 . (20)

In fact,

αΦs = βΦs = lim
u→∞

Φ−1
s (u)

Φ−1
s (2u)

= lim
u→∞

( √
u+ 1− 1√
2u+ 1− 1

)
1−s
p

·
(

1

2

) s
2

=

(

1

2

) 1−s
2p + s

2

.

In view of Proposition 1.3 we see that FΦs(t) is increasing on (0,+∞) although it is

impossible to express, since it is easy to check that the function (
√
u+ 1−1)/(

√
cu+ 1−1)

is increasing on (0,+∞) for any c > 1. Thus,

CΦs =
1

1−s
2p

+ s
2

∈ (2,+∞).
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Particularly, let s = 1/2, then we obtain the N−function defined as:

Φ−1
1/2(u) = (

√
u+ 1− 1)

1
2pu

1
4 .

We have the value:

K(L(Φ1/2)[0, 1]) = K(LΦ1/2 [0, 1]) = 21−
1
4p−

1
4 . (21)

Example 2.7. Let

Φp(u) =
|u|p

ln(e+ |u|)
, p > 2

defining an N−function. Then

K(L(Φp)[0, 1]) = K(LΦp [0, 1]) = 21−
1
p . (22)

Indeed, we have

FΦp = p− t

(e+ t) ln(e+ t)
↗ p = CΦp , (t → +∞).

Example 2.8. Consider the N−function

Φp,r(u) = |u|p lnr(1 + |u|), 1 < p < 2.

Then

K(L(Φp,r)[0, 1]) = K(LΦp,r [0, 1]) = 2
1
p . (23)

Again for t > 0, we have

FΦp,r = p+
rt

(1 + t) ln(1 + t)
↘ p = CΦp,r (t → +∞).

Example 2.9. Let

Φp(u) = |u|p(C + |ln |u||), 1 < p < 2, c ≥ 2p− 1

p(p− 1)

It was introduced by Gribanow and revised by Maligranda. Since

FΦp = p+
1

C + ln t
> p, t > 1,

we have

CΦp = lim
t→+∞

FΦp = p.

Consequently,

K(L(Φp)[0, 1]) = K(LΦp [0, 1]) = 2
1
p . (24)
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[6] M.A. Krasnoselskĭı, Ya. B. Rutickĭı: Convex Functions and Orlicz Spaces, Noordhoff,
Groningen (1961).

[7] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces, (I) and (II), Springer, Berlin (1977)
and (1979).

[8] R.A. Rankin: On packing of spheres in Hilbert space, Proc. Glasgow Math. Assoc., 2 (1955)
145–146.

[9] M.M. Rao, Z.D. Ren: Applications of Orlicz Spaces, Marcel Dekker, New York (2002).

[10] M.M. Rao, Z.D. Ren: Packing in Orlicz sequence spaces, Stud. Math. 126 (1997) 235–251.

[11] Z.D. Ren: Packing in Orlicz function space with Luxemburg norm, J. Xiangtan Univ. 1
(1985) 51–60.

[12] Z.D. Ren: Packing in Orlicz Function Spaces, Ph. D. Dissertation, University of California,
Riverside (1994).

[13] Z.D. Ren, S. T. Chen: Jung constants of Orlicz function spaces, Collect. Math. 48 (1997)
743–771.

[14] T. F. Wang: Packing constants of Orlicz sequence spaces, Chinese Ann. Math., Ser. A 8
(1987) 508–513 (in Chinese).

[15] J. H. Well, L. R. Williams: Imbedding and Extension Problems in Analysis, Springer (1975).

[16] C.X. Wu, S.T. Chen, Y.W. Wang: Geometric characters of reflexivity and flatness of Orlicz
sequence spaces, Northeast. Math. J. 2(1) (1986) 49–57 (in Chinese).

[17] Y.Q. Yan: Some results on packing in Orlicz sequence spaces, Stud. Math. 147(1) (2001)
73–88.

[18] Y.N. Ye: Packing spheres in Orlicz spaces, Chinese Ann. Math., Ser. A 4 (1983) 487–493
(in Chinese).


