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A point x ∈ A ⊂ (X, ‖ · ‖) is quasi-denting if for every ε > 0 there exists a slice of A containing x
with Kuratowski index less than ε. The aim of this paper is to generalize the following theorem with a
geometric approach, see [19]: A Banach space such that every point of the unit sphere is quasi-denting
(for the unit ball) admits an equivalent LUR norm.
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1. Introduction

For a bounded set B in a metric space X, the Kuratowski index of non-compactness
of B is defined by

α(B) := inf{ε > 0 : B is covered by a finite family of sets of diameter less than ε}

Obviously α(B) ≤ diam (B) and α(B) = 0 if, and only if, B is totally bounded in X; i.e.
relatively compact when X is a complete metric space.
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If B is a closed convex and bounded subset of X, a point x ∈ B is said to be quasi-
denting for B if for every ε > 0 there exists an open half space H with x ∈ H and such
that the ‘slice’ H ∩ B has α(H ∩ B) < ε. When in the former definition we require the
diameter of H ∩ B to be less than ε instead of α(H ∩ B) < ε, the point x is said to be
denting for B. The notion of quasi-denting point was introduced in [4], under the name
of α-denting point, in connection with the investigation of differentiability properties of
convex functions in Banach spaces; the notion of denting point goes back to the early
studies of sets with the Radon-Nikodým property [1] and it was used in [18] to show that
a Banach space X admits an equivalent locally uniformly rotund norm if all the points
in its unit sphere SX are denting points for the unit ball BX . For an elegant proof of
this result see [17]. Let us recall that the norm ‖ · ‖ in X is said to be locally uniformly
rotund (LUR for short) if

lim
n→∞

‖xn − x‖ = 0 whenever lim
n→∞

(

2‖xn‖2 + 2‖x‖2 − ‖xn + x‖2
)

= 0.

For an up-to-date account of LUR renormings we refer to [2, 5, 7, 20]. It is not known
whether X admits an equivalent LUR norm if every bounded set in X has a slice of
arbitrarily small diameter (i.e. the Radon-Nikodým property). G. Lancien proved that X
admits an equivalent LUR norm whenever, for every ε > 0, BX is a union of complements
of a decreasing transfinite but countable family Cε

α of closed convex sets such that Cε
α\Cε

α+1

is a union of slices of Cε
α of diameter less than ε, [9, 10], see also [5].

Throughout this paper we shall denote by X a normed space and F ⊂ X∗ will be a
norming subspace for it; i.e. if we define

‖|x‖| := sup{|f(x)| : f ∈ BX∗ ∩ F} for every x ∈ X,

then ‖| · ‖| provides an equivalent norm for X. When the original norm coincides with
‖| · ‖| we say that F is 1-norming. As usual we denote by σ(X,F ) the topology in X of
convergence on the elements from F . We shall denote by H(F ) the family of all σ(X,F )-
open half spaces in X. So for a point x in a σ(X,F )-closed, convex and bounded subset
B of X, we shall say that x in σ(X,F )-denting (σ(X,F )-quasi-denting) for B whenever
the open half space in the definition of denting (quasi-denting) can be chosen from H(F ).

The following modification of the ‘Cantor derivation’ is a main tool used by Lancien to
obtain his result:

We fix a normed space X, a norming subspace F ⊂ X∗ and B ⊂ X a σ(X,F )-closed,
convex and bounded subset of X. Pick any ε > 0 and define

Dε,F (B) := {x ∈ B :‖ · ‖ −diam (H ∩B) > ε for all H ∈ H(F ), x ∈ H}

Again Dε,F (B) is a σ(X,F )-closed, convex and bounded subset of X and we can iterate
the construction and define

Dα+1
ε,F (B) := Dε,F

(

Dα
ε,F (B)

)

, where D0
ε,F (B) := B

and

Dα
ε,F (B) :=

⋂

β<α

Dβ
ε,F (B) if α is a limit ordinal.
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Then we set

δF (B, ε) :=

{

inf{α : Dα
ε,F (B) = ∅} if it exists

∞ otherwise

and δF (B) := sup{δF (B, ε) : ε > 0}.
Indeed, Lancien showed that δX∗(BX) < ω1 (resp. δX(BX∗) < ω1) implies X (resp. X∗)
admits an equivalent LUR norm (resp. dual LUR norm). For quasi-denting points,
refining probabilistic methods, it was shown in [19] that a Banach space X also admits an
equivalent LUR norm provided all points in the unit sphere SX are quasi-denting points
for BX . A modification of the derivation approach has been subsequently used by M.
Raja [17] who provided a transparent proof, and significative improvements, of the result
of the fourth author for denting points, [18]. Nevertheless, for quasi-denting points the
approach is still fully probabilistic. A first contribution in this paper will be to provide
Raja’s approach for quasi-denting points; i.e. to show with a geometric construction,
free from probabilistic arguments, the theorem for quasi-denting points. Indeed, for a
given subset S of a σ(X,F )-closed, convex and bounded subset B of a normed space X
we define its dentability index (with respect to the norming subspace F ⊂ X∗) in B as
follows:

δF (S,B, ε) :=

{

inf{α : Dα
ε,F (B) ∩ S = ∅} if it exists

∞ otherwise

and δF (S,B) := sup{δF (S,B, ε) : ε > 0}.
In other words we want to measure how many steps of Lancien’s derivation process for
B are necessary to “ eat outÔ the subset S. When all the points of the unit sphere are
denting points for the unit ball of X we obviously have δX∗ (SX , BX) = 1 and Raja’s
approach immediately gives the following:

Theorem 1.1 ([17]). If δF (SX , BX) < ω1 the normed space X admits an equivalent
σ(X,F )-lower semi-continuous LUR norm.

Indeed, the following is a tool for LUR renormings, [15].

Theorem 1.2 ([12, 17]). Let X be a normed space and let F be a norming subspace of
its dual. Then X admits an equivalent σ(X,F )-lower semi-continuous LUR norm if, and
only if, for every ε > 0 we can write

X =
∞
⋃

n=1

Xn,ε

in such a way that for every x ∈ Xn,ε, there exists a σ(X,F )-open half space H containing
x with diam (H ∩Xn,ε) < ε.

When in the above theorem we replace open slices with weak (σ(X,F )) open sets we
arrive to the concept introduced in [8]. Namely: a normed space X is said to have a
countable cover by sets of small local diameter if for every ε > 0,

X =
∞
⋃

n=1

Xn,ε
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in such a way that for every x ∈ Xn,ε there exists a weak (σ(X,F )) open set W containing
x with diam (W ∩Xn,ε) < ε. One could replace the diameter in the definition above by
Kuratowski index of non-compactness to measure the size of the set W ∩ Xn,ε. In this
case, since closed balls are weak (σ(X,F ))-closed, one can easily show that both notions
coincide.

Let us recall that a normed space has the Kadec property if the norm and weak topologies
coincide on the unit sphere. Using that an extreme point of continuity is denting ([11])
we reformulate the theorem mentioned before: a rotund Banach space with the Kadec
property is LUR renormable. It is well known that `∞ has a rotund norm but fails to
have a norm with the Kadec property. R. Haydon [7] proved that C(Υ), Υ diadic tree,
admits a norm with the Kadec property but fails to have a rotund norm if the height of
the tree is bigger or equal to ω1. However, both Kadec property and rotundity in different
combinations can be replaced by something weaker. In [12] is shown that if X has a
countable cover by sets of small local diameter and all points of SX are extreme for BX∗∗

then X admits a LUR norm. In [14] is shown that if X has the Kadec property and all
faces of its unit sphere have Krein-Milman property the it admits a LUR renorming.

Our main results in this paper will provide extensions of the former results when we use
the Kuratowski index of non-compactness instead of the diameter both in the derivation
process of Lancien and in the statement of the former theorem. Indeed, we shall prove
the following:

Theorem 1.3. Let X be a normed space and let F be a norming subspace of its dual.
Then X admits an equivalent σ(X,F )-lower semi-continuous LUR norm if, and only if,
for every ε > 0 we can write

X =
∞
⋃

n=1

Xn,ε

in such a way that for every x ∈ Xn,ε, there exists a σ(X,F )-open half space H containing
x with α (H ∩Xn,ε) < ε.

Taking advantage of homogeneity one can replace the space X in the former theorem by
its unit sphere, see Theorem 4.1.

In the course of the proof we shall show that a σ(X,F )-closed, convex and bounded subset
B of the normed space X has σ(X,F )-open slices of arbitrarily small diameter if, and
only if, it has σ(X,F )-open slices of arbitrarily small Kuratowski index (Corollary 2.4),
and therefore the index of non-compactness also gives characterizations of sets with the
Radon-Nikodým property; moreover, we shall show that

δF (σ(X,F )− quasi-denting points of B,B) < ω1

from where the theorem of the fourth named author [19] follows immediately (Corollary
3.7).

From the topological point of view we shall see that a normed space X admits an equiv-
alent σ(X,F )-lower semi-continuous LUR norm if, and only if, the norm topology has
a network N = ∪∞

n=1Nn such that for every n ∈ N and for every x ∈ ∪Nn there is a
σ(X,F )-open half space H with x ∈ H such that H meets only a finite number of el-
ements from Nn (Corollary 4.5), therefore turning the ‘discrete’ condition appearing in
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[13] into a ‘locally finite’ one.

Throughout the paper when dealing with a normed space X and F ⊂ X∗ a norming
subspace for it, in order to simplify the notation, all closures taken in X will be with
respect to the σ(X,F )-topology unless otherwise stated.

2. Kuratowski’s Index of non-compactness and dentability

In order to work with the index of non-compactness we need to introduce the following
definition for a bounded subset B of a normed space X and a positive integer p:

α (B, p) := inf{ε > 0 : B is covered by p sets of diameter less than ε}

and we have α (B) = inf{α (B, p) : p = 1, 2, . . .}.
The first result we need is the following:

Lemma 2.1. Let X be a normed space and F ⊂ X∗ be a 1-norming subspace. Let C, C0

and C1 be σ(X,F )-closed, convex and bounded subsets of X. Let p be a positive integer,
ε > 0 and M = diam(C0 ∪ C1). If we assume that

1. C0 ⊂ C and α(C0, p) < ε′ < ε;

2. C is not a subset of C1;

3. C is a subset of co (C0, C1).

Then if r is a positive number such that 2rM + ε′ < ε and we set

Dr := {(1− λ)x0 + λx1; r ≤ λ ≤ 1, x0 ∈ C0, x1 ∈ C1},

then

C \Dr 6= ∅ and α
(

C \Dr, p
)

< ε

Remark 2.2. For p = 1, the lemma above is just the Bourgain-Namioka superlemma,
see [1, 3]. Following the proof of that case it is not difficult to see that it remains true for
every p ∈ N. Since we shall make use of some of details from the proof we shall give it in
full detail.

Proof. For 0 ≤ r ≤ 1 we define

Dr := {(1− λ)x0 + λx1 : r ≤ λ ≤ 1, x0 ∈ C0, x1 ∈ C1}.

Note that Dr is convex, D0 ⊃ C (by condition 3), D1 = C1 and for 0 < r < 1 we have
Dr 6⊃ C. Let us show the last claim.

Since C 6⊂ C1 we can find x∗ ∈ F such that supx∗(C1) < supx∗(C). Now if C were
contained in Dr for some r > 0, then we would have

supx∗(C) ≤ supx∗(Dr) = supx∗(Dr)

≤ (1− r) supx∗(C0) + r supx∗(C1) ≤ (1− r) supx∗(C) + r supx∗(C1)

thus r supx∗(C) ≤ r supx∗(C1), and since r > 0 we would have supx∗(C) ≤ supx∗(C1),
a contradiction.
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Since α(C0, p) < ε′ < ε we should have C0 ⊂
⋃p

i=1 Bi with diam(Bi) < ε′. Finally fix
r > 0 such that 2rM + ε′ < ε.

Notice that C \Dr ⊂ D0 \Dr. Also

D0 \Dr ⊂ C0 +B(0; rM) ⊂
p
⋃

i=1

[Bi +B(0; rM)] .

Indeed, if x ∈ D0 \Dr, x = (1− λ)x0 + λx1 with x0 ∈ C0, x1 ∈ C1 and 0 ≤ λ < r. Then

‖x− x0‖ = λ‖x0 − x1‖ < rM.

Now

D0 \Dr ⊂
p
⋃

i=1

Bi +B(0; rM)

and the sets Bi +B(0; rM) have diameter less than 2rM + ε′ < ε.

An easy consequence of Lemma 2.1 for p = 1 is the following.

Proposition 2.3. Let X be a normed space and F ⊂ X∗ be 1-norming subspace. If B
is a σ(X,F )-closed, convex and bounded subset of X and H is a σ(X,F )-open half space
with H ∩ B 6= ∅ and α(H ∩ B) < ε, then there exists another σ(X,F )-open half space G
with ∅ 6= G ∩B ⊂ H ∩B and diam(G ∩B) < ε.

Proof. By induction on the integer p such that α(H ∩ B, p) < ε. For p = 1 there is
nothing to prove. Let us assume the assertion is true for p ≤ n− 1 and write

H ∩B ⊂ BH
1 ∪BH

2 ∪ . . . ∪BH
n

where every BH
i is a σ(X,F )-closed an convex set with diam(BH

i ) < ε. If we define

L1 := co (B \H,BH
1 ∩B)

we have two possibilities:

(i) B = L1 and we can apply Lemma 2.1 for p = 1 to the sets C0 = BH
1 ∩ B and

C1 = B \ H to obtain a σ(X,F )-open half space G with G ∩ BH
1 6= ∅, G ∩ B ⊂ H ∩ B

and diam(G ∩B) < ε.

(ii) L1  B, then for any y ∈ B\L1 we have, by Hahn-Banach’s Theorem, a σ(X,F )-open
half space H̃ with y ∈ H̃ and H̃ ∩B ⊂ H ∩B but

H̃ ∩B ⊂ BH
2 ∪BH

3 ∪ . . . ∪BH
n

and if we apply the induction hypothesis to this slice the proof is done.

As a corollary we obtain a better statement than the one given by Gilles and Moors in
[4], see Theorems 4.2 and 4.3.

Corollary 2.4. For a normed space X, a norming subspace F ⊂ X∗ and a σ(X,F )-
closed, convex and bounded subset B of X, the following are equivalent:



F. Garćıa, L. Oncina, J. Orihuela, S. Troyanski / Kuratowski’s Index and ... 483

1. B is σ(X,F )-dentable; i.e. B has σ(X,F )-open slices of arbitrarily small diameter;

2. B has σ(X,F )-open slices whose Kuratowski index of non-compactness is arbitrarily
small .

Proof. We can work with the equivalent norm ‖| · ‖| given by the norming subspace F
and apply Proposition 2.3 for every ε > 0.

3. Dentability index of quasi-denting points

We are going to iterate now Bourgain-Namioka superlemma together with the former
construction in Proposition 2.3 to describe when quasi-denting points are eaten out in
Lancien’s derivation process. For a normed space X and a norming subset F ⊂ X∗, we
shall denote by H(F ) the family of all σ(X,F )-open half spaces in X. Indeed, we shall
prove the following:

Theorem 3.1. For every ε > 0 there is a countable ordinal ηε such that if X is a normed
space and F ⊂ X∗ is a 1-norming subspace, then for every σ(X,F )-closed, convex and
bounded subset B of X, if

Qε := {x ∈ B;∃H ∈ H(F ), x ∈ H with α(H ∩B) < ε},

then we have
δF (Qε, B, ε) < ηε < w1

The proof of the theorem is based on a series of previous results. We begin with:

Lemma 3.2. Let B be σ(X,F )-closed, convex and bounded subset of X, where F is a
1-norming subspace for X and ε > 0 be fixed. Let B := L0 ⊃ L1 ⊃ L2 ⊃ . . . ⊃ Ln be
σ(X,F )-closed and convex. Let S be a subset of Ln, then

δF (S,B, ε) ≤ δF (L0 \ L1, B, ε) + δF (L1 \ L2, L1, ε) + . . .

+δF (Ln−1 \ Ln, Ln−1, ε) + δF (S, Ln, ε)

Proof. We shall prove it by induction on n. For n = 1 let B = L0 ⊃ L1 ⊃ S be as in the
statement and let: δF (L0 \ L1, B, ε) = α, δF (S, L1, ε) = β.

Since Dα
ε,F (B) ∩ (B \ L1) = ∅ we have Dα

ε,F (B) ⊂ L1. Given x ∈ Dα+1
ε,F (B), we have

diam(H ∩Dα
ε,F (B)) > ε for every H ∈ H(F ), so diam(H ∩ L1) > ε for every H ∈ H(F ),

thus x ∈ Dε,F (L1). So
Dα+1

ε,F (B) ∩ S ⊂ Dε,F (L1) ∩ S.

Since β is the first ordinal such that Dβ
ε,F (L1) ∩ S = ∅ one must have Dα+β

ε,F (B) ∩ S = ∅,
therefore δF (S,B, ε) ≤ α+ β.

Now suppose we have B := L0 ⊃ L1 ⊃ L2 ⊃ . . . ⊃ Ln ⊃ S as in the statement and
suppose the formula holds for n− 1 sets. Considering L0 ⊃ L1 ⊃ S, as we did before,

δF (S,B, ε) ≤ δF (L0 \ L1, B, ε) + δF (S, L1, ε) (∗)

If we consider now the sets L1 ⊃ L2 ⊃ . . . ⊃ Ln ⊃ S, by the induction hypothesis

δF (S, L1, ε) ≤ δF (L1 \ L2, L1, ε) + . . .+ δF (Ln−1 \ Ln, Ln−1, ε) + δF (S, Ln, ε)

To finish the proof we just need to use the later inequality in (∗).
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Lemma 3.3. Let B be σ(X,F )-closed, convex and bounded subset of a normed space X,
where F is a 1-norming subspace for X and ε > 0 be fixed. Let H be a σ(X,F )-open half
space with

α(H ∩B, n) < ε for some n > 1 fixed.

Then there exists a sequence of σ(X,F )-closed, convex subsets

B =: B0 ⊃ B1 ⊃ B2 ⊃ . . . ⊃ Bs ⊃ Bs+1 ⊃ . . .

such that
H ∩B ⊂ (B0 \B1) ∪ (B1 \B2) ∪ . . . ∪ (Bs \Bs+1) ∪ . . .

and for every s = 0, 1, 2, . . . and every y ∈ Bs \Bs+1 there is a σ(X,F )-open half space G
with y ∈ G, G ∩B ⊂ H ∩B, and

α(G ∩Bs, p) < ε for some p ≤ n− 1

Proof. Since α(H ∩B, n) < ε we can fix σ(X,F )-closed, convex non-void sets

{BH
1 , BH

2 , . . . , BH
n } with diam(BH

i ) < ε, for i = 1, 2, . . . , n

and H ∩B ⊂ BH
1 ∪ . . . ∪BH

n .

Let us define
L1 := co (B \H,BH

1 ∩B).

If y ∈ B \ L1, Hahn-Banach’s Theorem provides us with a σ(X,F )-open half space G,
with y ∈ G and G ∩ L1 = ∅, thus

G ∩B ⊂ H ∩B and G ∩B ⊂ BH
2 ∪ · · · ∪BH

n

and therefore α(G ∩B, p) < ε for some p ≤ n− 1.

Let us consider the sets C1
0 := BH

1 ∩B and C1 = B \H and apply Lemma 2.1 with p = 1,
to find 0 < r < 1, indeed it is enough if 2rdiam(B) + diam(BH

1 ) < ε, such that if

Dr,1 := {(1− λ)x0 + λx1; r ≤ λ ≤ 1, x0 ∈ C1
0 , x1 ∈ C1}

we have L1 \ Dr,1 6= ∅ and diam(L1 \ Dr,1) < ε. So for every y ∈ L1 \ Dr,1 we should
have a σ(X,F )-open half space G with y ∈ G, G ∩ Dr,1 = ∅, thus G ∩ B ⊂ H ∩ B and
G ∩ L1 ⊂ L1 \Dr,1, so diam(G ∩ L1) < ε and α(G ∩ L1, 1) < ε.

We set B1 := L1 and B2 := Dr,1. We shall iterate now the former construction to “ eat
outÔ the whole BH

1 and to reach all the points of B ∩H in a countable number of steps.
Let us define

L2 := co
(

B \H,BH
1 ∩Dr

)

If y ∈ Dr,1 \ L2, there is a σ(X,F )-open half space G with y ∈ G and G ∩ L2 = ∅, thus
G ∩B ⊂ H ∩B ⊂ BH

1 ∪BH
2 ∪ . . . ∪BH

n . Moreover

G ∩Dr,1 ⊂ BH
2 ∪ . . . ∪BH

n

since Dr,1 ∩BH
1 ⊂ L2, and then α

(

G ∩Dr,1, p
)

< ε for some p ≤ n− 1
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We shall now apply again the Bourgain-Namioka superlemma with the sets

C2
0 := BH

1 ∩Dr,1 and C1 := B \H

and with the same r as above we should have diam (L2 \Dr,2) < ε where

Dr,2 := {(1− λ)x0 + λx1; r ≤ λ ≤ 1, x0 ∈ C2
0 , x1 ∈ C1}.

As before, for every y ∈ L2 \Dr,2 there exists a σ(X,F )-open half space G with y ∈ G,
G ∩B ⊂ H ∩B and α(G ∩ L2, 1) < ε.

We set B3 := L2 and B4 := Dr,2. The process will continue by induction defining a
sequence of sets

B = B0 ⊃ L1 ) Dr,1 ⊃ L2 ) Dr,2 ⊃ . . . ⊃ Ls ) Dr,s ⊃ Ls+1 ) . . .

such that for every y ∈ Ls \ Dr,s there is a σ(X,F )-open half space G with y ∈ G,
G∩B ⊂ H∩B and α(G∩Ls, 1) < ε; and for every y ∈ Dr,s \Ls+1 there is a σ(X,F )-open
half space G with y ∈ G, G ∩B ⊂ H ∩B and α

(

G ∩Dr,s, p
)

< ε for some p ≤ n− 1.

If Dr,s0 ∩ BH
1 = ∅ for some s0 ≥ 1, then the process stops and the sequence should be

finite in that case. Note that when it happens we have

H ∩Dr,s0 ⊂ BH
2 ∪ . . . ∪BH

n

and α
(

H ∩Dr,s0 , p
)

< ε for some p ≤ n− 1 too.

If the process does not stop, we shall see now that for each y ∈ H ∩B there is an integer
s ≥ 2 such that either y ∈ Ls\Dr,s or y ∈ Dr,s−1\Ls whenever y /∈ (B \ L1)∪

(

L1 \Dr,1

)

.
Indeed, if H = {x ∈ X : f(x) > µ}, f ∈ F , then we have

sup f |Dr,1
≤ (1− r) sup f(BH

1 ∩B) + rµ

for the first step

sup f |Dr,2
≤ (1− r) sup f(BH

1 ∩Dr,1) + rµ

≤ (1− r)[(1− r) sup f(BH
1 ∩B) + rµ] + rµ = (1− r)2 sup f(BH

1 ∩B) + (1− r)rµ+ rµ

for the second step and by recurrence

sup f |Dr,s
≤ (1− r)s sup f(BH

1 ∩B) + rµ[1 + (1− r) + · · ·+ (1− r)s−1]

for s = 1, 2, . . .. Consequently for every y with f(y) > µ, y cannot be in all the sets Dr,s

for s = 1, 2, . . . because the former inequality should imply f(y) ≤ µ. Then if s is the
first integer with y /∈ Dr,s we will have either y ∈ Ls \Dr,s or y ∈ Dr,s−1 \Ls, when s ≥ 2
and y ∈ B \ L1 or y ∈ L1 \Dr,1 when s = 1.

The lemma is finished by defining B2n+1 := Ln+1 and B2n := Dr,n, n = 1, 2, . . . when the
process does not stop and Bs0 = Dr,s0 , Bs0+1 = . . . = ∅ when the process stops at the
s0-step. We have seen before that α

(

H ∩Dr,s0 , p
)

< ε for some p ≤ n − 1 in that case
too.
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Proposition 3.4. For every ε > 0, there exists a sequence of ordinal numbers

1 =: ξ1 < ξ2 < . . . < ξp < . . . < ω1

such that if X is a normed space and F ⊂ X∗ is a 1-norming subspace for it, we have

δF (H ∩B,B, ε) ≤ ξp (∗)

whenever B is a σ(X,F )-closed, convex and bounded subset of X and H is a σ(X,F )-open
half space with α (H ∩B, p) < ε.

Proof. We shall define by induction on p the sequence of countable ordinals (ξn)n. For
p = 1 the Kuratowski index α(·, 1) coincides with the diameter and H∩B should be eaten
at the first step of the derivation process, i.e., ξ1 := 1 verifies (∗).
Let us assume that we have already defined

ξ1 < ξ2 < . . . < ξn−1 < ω1

such that (∗) is satisfied for p ≤ n− 1. Let us fix a σ(X,F )-closed, convex and bounded
subset of X and H a σ(X,F )-open half space with

α (H ∩B, n) < ε

By Lemma 3.3 we have a sequence of σ(X,F )-closed, convex subsets

B = B0 ⊃ B1 ⊃ . . . ⊃ Bs ⊃ Bs+1 ⊃ . . . (∗∗)

such that
H ∩B ⊂ (B0 \B1) ∪ (B1 \B2) ∪ . . . ∪ (Bs \Bs+1) ∪ . . .

and for every s and every y ∈ Bs \ Bs+1 there exists a σ(X,F )-open half space G, with
y ∈ G, G ∩ B ⊂ H ∩ B, and α (G ∩Bs, p) < ε for some p ≤ n − 1. By our induction
assumption we should have

δF (G ∩Bs, Bs, ε) ≤ ξn−1

and consequently δF (Bs \Bs+1, Bs, ε) ≤ ξn−1, s = 0, 1, 2, . . . when (∗∗) is infinite and
δF (H ∩Bs0 , Bs0 , ε) ≤ ξn−1 too, when the sequence stops at the s0-step. In any case we
can apply Lemma 3.2 to obtain

δF (Bs \Bs+1, B, ε) ≤ (s+ 1)ξn−1 for s = 0, 1, 2, . . .

Therefore we have

δF (H ∩B,B, ε) ≤ sup{(s+ 1)ξn−1 : s = 0, 1, 2, . . .} =: ξn

which finishes the induction process.

Corollary 3.5. For every σ(X,F )-closed, convex and bounded subset B of X, if

Qε,p := {x ∈ B : ∃H ∈ H(F ), x ∈ H with α(H ∩B, p) < ε}

then we have
δF (Qε,p, B, ε) ≤ ξp < ω1, p = 1, 2, . . .
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Proof. Qε,p = ∪{H ∩B : H ∈ H(F ) and α (H ∩B, p) < ε} and

δF (Qε,p, B, ε) ≤ sup{δF (H ∩B) : H ∈ H(F ) and α (H ∩B, p) < ε} ≤ ξp

Now we arrive to the

Proof of Theorem 3.1. We have Qε = ∪{Qε,p : p = 1, 2, . . .}, by the former corollary
we see that δF (Qε,p, B, ε) ≤ ξp for p = 1, 2, . . . from where it follows

δF (Qε, B, ε) ≤ sup{ξp : p = 1, 2, . . .} =: ηε < ω1

because ω1 is not the limit of a sequence of countable ordinals.

Corollary 3.6. There is a countable ordinal η such that if X is a normed space and
F ⊂ X∗ is a norming subspace, then for every B ⊂ X a σ(X,F )-closed convex and
bounded subset of X, if Q is the sets of quasi-denting points of B, we have

δF (Q,B) < η < ω1

Proof. It is not a restriction to assume that the given norm is ‖|·‖|, making F a 1-norming
subspace, then we have

δF (Q,B) ≤ sup{ηεn ;n = 1, 2, . . .} =: η < w1

where εn tends to 0.

From Theorem 1.1 in the introduction we get the theorem of the fourth named author
with a geometric proof in full generality:

Corollary 3.7. If the normed space X has a norming subspace F ⊂ X∗ such that SX is
formed by quasi-denting points of BX , in σ(X,F ), then δF (SX , BX) < ω1 and consequently
X admits an equivalent σ(X,F )-lower semi-continuous LUR norm.

4. LUR renorming theorem

The aim of this section is to prove the following result, from where Theorem 1.3 in the
introduction is a particular case. Let us recall that a subset A ⊂ X of the normed space
X is said to be a radial set if for every x ∈ X there is ρ > 0 such that ρx ∈ A.

Theorem 4.1. Let X be a normed space and F ⊂ X∗ be a norming subspace for it. The
following conditions are equivalent:

1. X admits an equivalent σ(X,F )-lower semi-continuous LUR norm;

2. For every ε > 0, X = ∪{Xn,ε : n ∈ N} such that for every n ∈ N and x ∈ Xn,ε there
exists H, σ(X,F )-open half space with x ∈ H and α(H ∩Xn,ε) < ε;

3. There exists a radial set A ⊂ X such that for every ε > 0, A = ∪{An,ε : n ∈ N}
such that for every n ∈ N and x ∈ An,ε there exists H, σ(X,F )-open half space with
x ∈ H and α(H ∩ An,ε) < ε
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Let us observe that no convex assumption is required for the sets {Xn,ε} or {An,ε} in
the decompositions above. As for the proof of Theorem 1.2 in the introduction, see [17],
we need firstly a convexification argument that will reduce Theorem 4.1 to Theorem 1.2
because of the study we have done in the previous section.

We begin with a revision of Lemma 2.1 for an arbitrary set A and x ∈ A with a half
space H ∈ H(F ) with x ∈ H and α(H ∩ A) < ε (in this case we shall say that x is an
ε-σ(X,F )-quasi-denting point for A).

Lemma 4.2. Let A be a bounded subset of the normed space X, F ⊂ X∗ be 1-norming
for it. Set M := diam (A) and let ε > 0 be fixed. If x ∈ A is such that there is
H = {y ∈ X : g(y) > η}, with g ∈ F , η ∈ R, x ∈ H and α(H ∩ A) < ε, then there
exists r ∈]0, 1] which only depends upon ε and M such that we can fix a σ(X,F )-closed
and convex subset Dr(x) ⊂ co (A) with the following properties:

i) co (A) \Dr(x) 6= ∅;
ii) α (co (A) \Dr(x)) < 3ε;

iii) sup g(Dr(x)) ≤ (1− r) sup g(co (A)) + rη

Proof. Let us choose sets B1, B2, . . . , Bn with diam (Bi) < ε and ui ∈ Bi∩A, i = 1, . . . , n,
such that H ∩ A ⊂ ∪{Bi : i = 1, . . . , n}. Now let Kε := co (u1, . . . , un) and set

C0 := {y ∈ co (A) : dist (y,Kε) ≤ ε}

and
C1 := {y ∈ co (A) : g(y) ≤ η} = co (A) \H.

As we did in Lemma 2.1, for 0 ≤ r ≤ 1, let

Dr := {(1− λ)x0 + λx1 : r ≤ λ ≤ 1, x0 ∈ C0, x1 ∈ C1}.

To obtain the conclusion one must check that the sets C = co (A), C0 and C1 satisfy the
conditions in Lemma 2.1 to apply it.

C and C1 are clearly bounded, σ(X,F )-closed and convex. Kε is ‖ · ‖-compact, hence C0

is σ(X,F )-closed. Since Kε is convex it is easy to see that C0 is also convex.

1.- C0 ⊂ co (A); since Kε can be covered by finitely many balls of arbitrary small
radius, it is not difficult to check that α(C0) ≤ 2ε.

2.- co (A) is not a subset of C1, (since x /∈ C1).

3.- co (A) = co (C1 ∪ C0). To check it we show that co (A) ⊂ co (C1 ∪ C0). To do so,
set B1 = co (A ∩H) and B2 = co (A \H). It is clear that co (A) ⊂ co (B1 ∪ B2).
Now since A ∩H ⊂ C0 one must have C0 ⊃ B1 and clearly B2 ⊂ C1.

Since α(C0) ≤ 2ε, we have α(C0) < 3ε and we can take ε′ = 5ε
2
in Lemma 2.1 and then it

will be enough to take r < ε
4M

. Now the lemma applies to give the conclusion for i) and
ii). Property iii) easily follows from the definition of the set Dr =: Dr(x) and the fact
that g(y) ≤ η for y ∈ C1.

We shall iterate now the former lemma to be able to ensure that ε-quasi-denting points for
an arbitrary subset B should be 3ε-quasi-denting points in some convex set of a sequence
{Bn} associated to B.
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Lemma 4.3 (Iteration Lemma). Let B be a bounded subset of the normed space X,
F ⊂ X∗ 1-norming such that for some ε > 0 fixed, every x ∈ B is an ε-σ(X,F )-quasi-
denting point for B. Then there is a sequence

B0 = co (B) ⊇ B1 ⊇ B2 ⊇ . . . ⊇ Bn ⊇ . . .

of convex, σ(X,F )-closed subsets of co (B) such that for every x ∈ B there exists p ≥ 0
satisfying x ∈ Bp and x is a 3ε-σ(X,F )-quasi-denting point for Bp.

Proof. We shall construct by recurrence sequences of sets

B0 = co (B) ⊇ B1 ⊇ B2 ⊇ . . . ⊇ Bn ⊇ . . .

and B =: B̃0, B̃1, . . . , B̃n, . . . such that

Bn := co
(

B ∩ B̃1 ∩ B̃2 ∩ . . . ∩ B̃n

)

if B ∩ B̃1 ∩ B̃2 ∩ . . . ∩ B̃n 6= ∅

and given x ∈ B, if x ∈
(

B ∩ B̃1 ∩ B̃2 ∩ . . . ∩ B̃n−1

)

\ B̃n then x is a 3ε-σ(X,F )-quasi-

denting point for

Bn−1 = co
(

B ∩ B̃1 ∩ B̃2 ∩ . . . ∩ B̃n−1

)

.

Indeed, set B0 := co (B) and B̃0 := B. Now fix x ∈ B, by hypothesis we fix gx ∈ F ,
ηx ∈ R such that the half space Hx = {y ∈ X : gx(y) > ηx} satisfies

x ∈ Hx ∩B and α (Hx ∩B) < ε.

Let M = diam (B0). At each point x from B together with the correspondingHx ∈ H(F ),
we may apply the former lemma to obtainD1

r(x), σ(X,F )-closed and convex and r ∈ [0, 1]
with the properties described in Lemma 4.2. Now define

B̃1 :=
⋂

x∈B̃0

D1
r(x).

Note that if x ∈ B \ B̃1 then, there exists y ∈ B such that x ∈ co (B) \D1
r(y) and x is a

3ε-σ(X,F )-quasi-denting point for B0 = co (B).

Notice that if B ∩ B̃1 = ∅ we would have finished the proof since every x ∈ B would be a
3ε-σ(X,F )-quasi-denting point for B0. So assume B ∩ B̃1 6= ∅, we shall define a set B1 as

B1 := co (B ∩ B̃1).

Consider the set B ∩ B̃1 and Hx at every point x ∈ B ∩ B̃1. Since

diam (co (B ∩ B̃1)) ≤ M and α(Hx ∩B ∩ B̃1) < ε

we apply Lemma 4.2 to the set B ∩ B̃1 and this time we will obtain sets D2
r(x) with the

properties given by the lemma and r being the same r as above. Now define

B̃2 :=
⋂

x∈B∩B̃1

D2
r(x)
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As we did before, if x ∈ (B ∩ B̃1) \ B̃2 there must be y ∈ B ∩ B̃1 such that

x ∈ B1 = co (B ∩ B̃1) \D2
r(y)

and x is a 3ε-σ(X,F )-quasi-denting point for B1. It follows now by recurrence that such
sequences can be built and it will be finite if

B ∩ B̃1 ∩ B̃2 ∩ . . . ∩ B̃n = ∅

To finish the proof we need to show that for every x ∈ B there exists p ≥ 0 such that

x ∈
(

B ∩ . . . ∩ B̃p−1

)

\ B̃p. So suppose this is not the case, i.e., there exists x ∈ B (which

will be fixed from now on), such that x ∈ B ∩ B̃1 ∩ . . . ∩ B̃p for every p = 1, 2, . . . Let us
consider the sets Dp

r(x) defined for the point x, gx and ηx at each step p = 1, 2, . . . Recall
from Lemma 4.2 that

sup gx
(

D1
r(x)

)

≤ (1− r) sup gx(B0) + rηx.

So for p = 2, and bearing in mind that B1 ⊂ D1
r(x) we have

sup gx
(

D2(x)
)

≤ (1− r) sup gx(B1) + rηx

≤ (1− r) sup gx
(

D1
r(x)

)

+ rηx ≤ (1− r) [(1− r) sup gx(B0) + rηx] + rηx

= (1− r)2 sup gx(B0) + rηx(1 + (1− r))

Now by induction we should have

sup gx (D
n
r (x)) ≤ (1− r)n sup gx(B0) + rηx

[

1 + (1− r) + . . .+ (1− r)n−1
]

= (1− r)n sup gx(B0) + ηx(1− (1− r)n) = ηx + (1− r)n(sup gx(B0)− ηx)

for every integer n such that x ∈ B ∩ B̃1 ∩ . . . ∩ B̃n−1.

Now since (1− r)n tends to 0 as n goes to infinity and ηx < gx(x) one can choose n large
enough so that sup gx(D

n
r (x)) < gx(x) which is a contradiction with assuming x ∈ Dn

r (x).

Thus, there exists n ∈ N such that x ∈ B ∩ B̃1 ∩ . . . ∩ B̃n−1 and x /∈ Dn
r (x) hence

x ∈ (B ∩ B̃1 ∩ . . . ∩ B̃n−1) \ B̃n as we wanted.

The step connecting Kuratowski’s index with dentability follows now from Theorem 3.1:

Corollary 4.4. Let B be a bounded subset of the normed space X, F ⊂ X∗ 1-norming
subspace for it such that for some ε > 0 fixed, every x ∈ B is an ε-σ(X,F )-quasi-denting
point for B. Then there is a countable family {Tn : n = 1, 2, . . .} of σ(X,F )-closed and
convex subsets of co (B) such that for every x ∈ B there exists p > 0 such that x ∈ Tp

and there is H ∈ H(F ) with x ∈ H and diam (H ∩ Tp) < 3ε.

Proof. If we set B0 ⊃ B1 ⊃ . . . ⊃ Bn ⊃ . . . as in Lemma 4.3, we know that

δF (3ε− σ(X,F )− quasi-denting points of Bp, Bp, 3ε) < η3ε < ω1

and therefore the family of derived sets {Dβ
3ε,F (Bp) : β < η3ε, p = 1, 2, . . .}, provides us a

countable family {Tn : n = 1, 2, . . .} with the required properties.
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Now we arrive to the

Proof of Theorem 4.1. (1)⇒(2) Follows from Theorem 1.2 in the introduction.

(2)⇒(1) It is clear that condition (2) must be true for any equivalent norm and it is not
a restriction to assume that the given norm is ‖| · ‖| making F a 1-norming subspace for
it. Then we have the conditions of Corollary 4.5 for every set

Xn,ε ∩B(0,m) n = 1, 2, . . . ,m = 1, 2, . . .

and we will have countable families {T n,m,ε
p : p = 1, 2, . . .}, n = 1, 2, . . ., m = 1, 2, . . . such

that for every x ∈ Xn,ε ∩B(0,m) there is p ≥ 0 such that

x ∈ T n,m,ε
p and there is H ∈ H(F ) with x ∈ H and diam

(

H ∩ T n,m,ε
p

)

< 3ε

If we set

Y n,m,ε
p := {x ∈ T n,m,ε

p : there is H ∈ H(F ), x ∈ H and diam (H ∩ T n,m,ε
p ) < 3ε}

we have X = ∪{Y n,m,ε
p : n,m, p = 1, 2, . . .} and we have the decomposition fixed in

Theorem 1.2 which is equivalent to have a σ(X,F )-lower semi-continuous LUR norm on
X.

(2)⇒(3) Is obvious.

(3)⇒(2) Given x ∈ X \ {0} let r(x) > 0 such that r(x)x ∈ A. By hypothesis, for every
k ∈ N, A = ∪nAn,k with the property that for every x ∈ An,k there exists H ∈ H(F ),
x ∈ H such that α (An,k ∩H) < 1

k
. For q ∈ Q, n,m, k ∈ N define

Aq,m
n,k := {y ∈ X \ {0} : r(y)y ∈ An,k, 0 <

1

q
− 1

m
<

1

r(y)
<

1

q
}.

We shall show that X \ {0} = ∪{Aq,m
n,k : n,m, k ∈ N, q ∈ Q} and for every ε > 0,

and x ∈ X \ {0} there exist n,m, k ∈ N, q ∈ Q, H ∈ H(F ) with x ∈ H such that
α
(

Aq,m
n,k ∩H

)

< ε.

So, given ε > 0 and x0 ∈ X \ {0}, consider r(x0) > 0 and let k ∈ N such that 1
k
< r(x0)ε

2
.

For this k (fixed), let n ∈ N such that r(x0)x0 ∈ An,k. By the property of A, there exist
f ∈ F and µ ∈ R such that

r(x0)x0 ∈ H = {x ∈ X : f(x) > µ} and α (An,k ∩H) <
1

k
.

Therefore, there are sets Bi, i = 1, . . . , j with diam (Bi) <
1
k
such that

An,k ∩H ⊂
j
⋃

i=1

Bi.

For every i ∈ {1, . . . , j} fix xi ∈ Bi. Take m ∈ N such that m > 2M
ε

+ r(x0) and let
M = maxi{‖xi‖}. Finally let q ∈ Q such that

1

q
− 1

m
<

1

r(x0)
<

1

q
and f(x0) >

µ

q
>

µ

r(x0)
.
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Take now the σ(X,F )-open half space H ′ := {x ∈ X : f(x) > µ
q
}. It is clear that x0 ∈

Aq,m
n,k ∩H ′. Let, for every i ∈ {1, . . . , j}, ui =

1
r(x0)

xi. Let us prove that α
(

Aq,m
n,k ∩H ′) < 2ε

by checking Aq,m
n,k ∩ H ′ ⊂

⋃j
i=1 B(ui; ε). To do so take any y ∈ Aq,m

n,k ∩ H ′. In particular
f(y) > µ

q
, hence

f(r(y)y) = r(y)f(y) > r(y)
µ

q
> µ.

Therefore, r(y)y ∈ An,k ∩ H. So, there must be xi, for some i ∈ {1, . . . , j} such that
‖r(y)y − xi‖ < 1

k
thus, ‖y − 1

r(y)
xi‖ < 1

kr(y)
. So,

‖y − ui‖ = ‖y − 1

r(x0)
xi‖ ≤ ‖y − 1

r(y)
xi‖+ ‖ 1

r(y)
xi −

1

x0
xi‖

<
1

k

1

r(y)
+ ‖xi‖

∣

∣

∣

∣

(

1

r(y)
− 1

r(x0)

)∣

∣

∣

∣

<
1

k

(

1

r(x0)
+

1

m

)

+M
1

m
< ε

In order to give our last result we should introduce some terminology. Recall that in a
topological space X a family of subsets of X, A, is said to be relatively locally finite
(resp. isolated) if for every x ∈ ∪{A : A ∈ A} there exists an open set V 3 x such that
the set {A : A ∈ A, A ∩ V 6= ∅} is finite (resp. contains exactly one element). If P is any
of the properties above, as usual, the family A is said to be σ-P if A = ∪{An : n ∈ N} in
such a way that for each n ∈ N the family An has property P .

When dealing with a normed space X and F ⊂ X∗ norming, we shall talk of slicely P
whenever the open set V can be chosen to be an open half space from H(F ).

Finally a network for a topological space X is a collection N of subsets of X such that
whenever x ∈ U with U open, there exists N ∈ N with x ∈ N ⊂ U .

Recall that from [13] it follows that given a Banach space X and a norming subspace for
it F , X admits a σ(X,F )-lower semi-continuous LUR equivalent norm if, and only if,
the norm topology has a σ-slicely isolated network, see also [6, 15, 16].

Corollary 4.5. Let (X, ‖ · ‖) be a normed space and F ⊂ X∗ norming. The following
conditions are equivalent:

1. The norm topology admits a σ-slicely relatively locally finite network;

2. X admits an equivalent σ(X,F )-lower semi-continuous LUR norm.

Proof. By the result in [13] mentioned above we only have to show that (1)⇒(2) and
this will be done through the equivalent conditions in Theorem 4.1. To do so, one may
assume that the network N = ∪{Nn : n ∈ N} satisfying (1) is such that for each n ∈ N
the family Nn consists of pairwise disjoint sets. Indeed, if this is not the case then for
each n,m ∈ N we define the family

Nm
n := {N1 ∩ . . . ∩Nm : Ni ∈ Nn, i = 1, 2, . . . ,m}

and the sets Sm
n := {x ∈ X : x ∈ A ∈ Nm

n and ord(x,Nn) = m}. Now we set

{Nm
n ∩ Sm

n } := {A ∩ Sm
n : A ∈ Nm

n }
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It is easy to show that for each n,m ∈ N the sets in this family are pairwise disjoint,
∪{Nm

n ∩ Sm
n : m ∈ N} is a refinement for Nn and {Nm

n ∩ Sm
n : n,m ∈ N} is network for

the norm topology which is σ-slicely relatively locally finite.

Now fix ε > 0. For every positive integer n define

Xn,ε := {x ∈ ∪{N : N ∈ Nn} such that x ∈ N ⊂ B(x; ε)} ≡

{x ∈ X : there exists N ∈ Nn with x ∈ N ⊂ B(x; ε)}
Since N is a network for the norm topology we have X = ∪{Xn,ε : n ∈ N}. Fix x ∈ Xn,ε.
Since the network is σ-slicely relatively locally finite, there must be H ∈ H(F ) such that
x ∈ H and H ∩ ∪{N : N ∈ Nn} = H ∩ N1 ∪ . . . ∪ H ∩ Np for a finite number of sets
Ni ∈ Nn.

If we consider y ∈ H ∩ Xn,ε we have y ∈ H ∩ Nj for some j ∈ {1, 2, . . . , p}, and by the
very definition of Xn,ε and the disjointness of the family Nn, y ∈ Nj ⊂ B(y; ε). So for Nj

we have diam (Nj) < 2ε.

Therefore we have {p1, p2, . . . , pq} ⊂ {1, 2, . . . , p} so that H ∩Xn,ε ⊂ Np1 ∪ . . . ∪Npq and
diam (Npi) < 2ε. So α(H ∩Xn,ε) < 2ε and the proof is done.
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