
Journal of Convex Analysis

Volume 11 (2004), No. 2, 413–436

The Hamilton-Jacobi Equation
of Minimal Time Control

F.H. Clarke
Membre de l’Institut Universitaire de France, Institut Girard Desargues,
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1. Introduction

In this paper, we consider a control system governed by a differential inclusion. We are
given a multifunction F mapping IRn to the subsets of IRn, and a time interval [a, b].
Associated with F is the differential inclusion

Úx(t) ∈ F (x(t)) a.e. t ∈ [a, b]. (1)

A solution x(·) of (1) is taken to mean an absolutely continuous function x : [a, b] −→ IRn

which, together with Úx, its derivative with respect to t, satisfies (1). For brevity, we will
refer to any absolutely continuous function x from [a, b] to IRn as an arc on [a, b]. We also
refer to an arc x satisfying (1) as a trajectory of F .
The bilateral minimal time function T : IRn × IRn −→ [0,+∞] is defined as follows, for
(α, β) ∈ IRn × IRn, T (α, β) is the minimum time taken by a trajectory to go from α to β
(when no such trajectory exists, T (α, β) is taken to be +∞). We set

R0
+ := {α ∈ IRn : T (0, α) < +∞},

the set of points attainable by trajectories beginning at 0. The lower Hamiltonian
h : IRn × IRn −→ IR (resp. upper Hamiltonian H : IRn × IRn −→ IR) corresponding to F
is defined as follows

h(x, p) := min
v∈F (x)

〈p, v〉 (resp. H(x, p) := max
v∈F (x)

〈p, v〉).
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Given a lower semicontinuous function f : IRn −→ IR ∪ {+∞} and a point x in the
effective domain of f , that is, the set

domf := {x′ : f(x′) < +∞},

we say that a vector ζ ∈ IRn is a proximal subgradient of f at x if there exists σ ≥ 0 such
that

f(y)− f(x) + σ‖y − x‖2 ≥ 〈ζ, y − x〉,

for all y in a neighborhood of x. The set of such ζ, which could be empty, is denoted by
∂Pf(x) and referred to as the proximal subdifferential. Then the proximal superdifferential
of an upper semicontinuous function f at x is defined as ∂Pf(x) = −∂P (−f)(x). The
Proximal Density Theorem asserts that ∂Pf(x) 6= ∅ for all x in a dense subset of dom f .
We also define the limiting proximal subgradient of f at x ∈ dom f by

∂Lf(x) := {lim ζi : ζi ∈ ∂Pf(xi), xi −→ x and f(xi) −→ f(x)}.

For more information about the preceding definitions see [10].

This article focuses on the following problem for the Hamilton-Jacobi equation:

1 + h(x, ∂Pϕ(x)) = 0 ∀x ∈ R0
+, ϕ(0) = 0 (∗)

A solution of (∗) means a lower semicontinuous function ϕ : R0
+ −→ IR∪{+∞} such that

ϕ(0) = 0 and for every x ∈ R0
+, for every ζ ∈ ∂Pϕ(x) (if any), we have h(x, ζ) + 1 = 0.

This is equivalent to the statement that ϕ is a viscosity solution (see [11]) of the following
Hamilton-Jacobi equation:

H(x,−ϕ′(x))− 1 = 0 ∀x ∈ R0
+, ϕ(0) = 0,

see [8] and [10] for the proof of the equivalence. When F admits a standard control
representation F (x) = f(x, U), then this assumes the form

max{〈f(x, u),−ϕ′(x)〉 : u ∈ U} − 1 = 0,

a familiar object of study in connection with the dynamic programming approach to
optimal control, see for example [2].

When (∗) is modified by deleting the origin from the domain of the problem, there results
a well-studied problem. Essentially one finds that the solution is the familiar (unilateral)
minimum time function T (·, 0). However, T (·, 0) is never a solution on a set containing
the origin, since necessarily we have 0 ∈ ∂PT (·, 0)(0) and h(0, 0) = 0. We refer the reader
to [2], [5] and [21] for discussions of this case.

In this article we explore (apparently for the first time) the consequence of including the
origin in the domain. Our goal is to identify a framework in which such global solutions
can be usefully studied. In contrast to the classical case, it turns out to be the bilateral
minimal time function that plays a central role in determining the solutions of (∗) which,
as we shall see, are closely linked to global geodesic trajectories.

The layout of this article is as follows. In the next section we present our notations and
hypotheses. We give some results about the monotonicity of trajectories and the relation
with solutions of (∗) in Section 3. Section 4 is devoted to the continuity and Lipschitz
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continuity of T (·, ·). In Section 5, we show the existence of (minimal) solutions of (∗) and
then we study the regularity of solutions and the linear case in Section 6. The relation
between semigeodesic trajectories and solutions is examined in Section 7. In Section 8,
we define a dual equation for (∗) and we give necessary and sufficient conditions for the
existence of a geodesic passing through the origin.

2. Notations and hypotheses

The Euclidean norm is denoted ‖ · ‖, and 〈, 〉 is the usual inner product. For ρ > 0,
B(0; ρ) := {x ∈ IRn : ‖x‖ < ρ} and B̄(0; ρ) := {x ∈ IRn : ‖x‖ ≤ ρ}. The open (resp.
closed) unit ball in IRn is denoted B (resp. B̄). For a set S ⊂ IRn, intS is the interior of
S. We define

Rβ
+(t) := {α ∈ IRn : T (β, α) < t}, t > 0,

the set of points reachable from β in time less than t.
Similarly, we introduce

• Rβ
+ :=

⋃

t>0R
β
+(t) = {α ∈ IRn : T (β, α) < +∞},

• Rβ
−(t) := {α ∈ IRn : T (α, β) < t}, t > 0,

• Rβ
− :=

⋃

t>0R
β
−(t) = {α ∈ IRn : T (α, β) < +∞},

• R(t) := {(α, β) ∈ IRn × IRn : T (α, β) < t}, t > 0,

• R :=
⋃

t>0R(t) = {(α, β) ∈ IRn × IRn : T (α, β) < +∞}.

The basic hypotheses in force throughout the article are the following. We assume that
for x ∈ IRn, F (x) is a nonempty, compact convex set, and that F satisfies the linear
growth condition: for some positive constants γ and c, and for all x ∈ IRn,

v ∈ F (x) =⇒ ‖v‖ ≤ γ‖x‖+ c.

The multifunction F is also taken to be locally Lipschitz: every x ∈ IRn admits a neigh-
borhood U = U(x) and a positive constant K = K(x) such that

x1, x2 ∈ U =⇒ F (x2) ⊆ F (x1) +K‖x1 − x2‖B̄.

Under these hypotheses, any trajectory can be extended indefinitely both forward and
backward, so all trajectories can be considered as being defined on ]−∞,+∞[.

We say that F is β-STLC (β-small-time locally controllable), if β ∈ int Rβ
−(t) ∀ t > 0

(ie. ∀ t > 0 ∃ δ > 0 such that T (·, β) < t on B(β, δ)). There is a considerable literature
devoted to this property, see for example [2] and [18]. We can find in these references
that [0 ∈ intF (β) =⇒ F is β-STLC=⇒ 0 ∈ F (β)] and that the following statements are
equivalent:

(i) F is β-STLC.

(ii) T (·, β) is continuous at β.
(iii) Rβ

− is open and T (·, β) is continuous in Rβ
− and for any α0 ∈ ∂Rβ

− we have

lim
α−→α0

T (α, β) = +∞.

We posit throughout the article that −F is 0-STLC. Then in view of the above, and by
time reversal, we have:



416 F.H. Clarke, C. Nour / The Hamilton-Jacobi Equation of Minimal Time Control

• R0
+ is open.

• T (0, ·) is continuous in R0
+.

• For any α0 ∈ ∂R0
+ we have lim

α−→α0

T (0, α) = +∞.1

3. Monotonicity of trajectories

Let Ω be an open subset of IRn. The class of lower semicontinuous functions ϕ : IRn −→
IR∪{+∞} which are not identically +∞ is denoted F(Ω). We say that (ϕ, F ) is strongly
increasing on Ω if for any trajectory x on an interval [a, b] for which x([a, b]) ⊂ Ω, we have

ϕ(x(s)) ≤ ϕ(x(t)) ∀s, t ∈ [a, b], s ≤ t.

The system (ϕ, F ) is said to be weakly decreasing on Ω if for every α ∈ Ω there is a
trajectory x on a nontrivial interval [a, b] satisfying

x(a) = α, ϕ(x(t)) ≤ ϕ(α) ∀t ∈ [a, b];

by reducing b if necessary we may also arrange to have x([a, b]) ⊂ Ω. In each case,
one obtains an equivalent definition by requiring the inequality to hold on [a, τ [, where
τ ∈]a,+∞] is the exit time of the trajectory x from Ω: the supremum of all T > 0 having
the property that x([a, T ]) ⊂ Ω. The following proposition is proven in [10, Chapter 4,
§6].

Proposition 3.1. Let ϕ ∈ F(Ω). The system (ϕ, F ) is strongly increasing on Ω iff

h(x, ∂Pϕ(x)) ≥ 0 ∀x ∈ Ω,

and weakly decreasing on Ω iff

h(x, ∂Pϕ(x)) ≤ 0 ∀x ∈ Ω.

If ϕ satisfies both these properties, then for any α ∈ Ω ∩ domϕ there is a trajectory x
satisfying x(0) = α and

ϕ(x(t)) = ϕ(α) ∀t ∈ [0, τ [,

where τ ∈]0,+∞] is the exit time of the trajectory x from Ω.

Now let ϕ be a solution of (∗). Applying the preceding proposition to the function ϕ+t and
the multifunction F (x)×{1} (and Ω := R0

+×IR), we deduce that the system (ϕ+t, F×{1})
is both weakly and strongly increasing. Because of the nature of the t-dependence here,
the latter property (for example) amounts to saying that for any trajectory x of F on an
interval [0, T ] such that x([0, T ]) ⊂ R0

+ (this being equivalent to x(0) ∈ R0
+), we have

ϕ(x(s)) + s ≤ ϕ(x(t)) + t ∀s, t ∈ [0, T ], s ≤ t.

4. Regularity of the bilateral minimal time function

In this section2 we study the regularity of T (·, ·). We can easily verify that T (·, ·) satisfies
the following:

1It is these properties that make (∗) a suitable framework for the global study that we carry out.
2It is not necessary to assume in this section that −F is 0-STLC.
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• T (·, ·) is lower semicontinuous.

• If T (α, β) < +∞ then the minimum defining T (α, β) is attained.

• For all (α, β, γ) we have the following triangle inequality:

T (α, β) ≤ T (α, γ) + T (γ, β).

Now we begin to study the continuity of T (·, ·). In the following proposition, we give a
necessary and sufficient conditions for T (·, ·) to be continuous at a point (α, β).

Proposition 4.1. Let (α, β) ∈ IRn × IRn. Then we have:

(i) T (·, ·) is continuous at (α, α) ⇐⇒ F and −F are α-STLC.

(ii) Assume that one of the following conditions holds:
1. (α, β) ∈ R, F is α-STLC and −F is β-STLC.
2. F and −F are α-STLC and β ∈ Rα

+.

3. F and −F are β-STLC and α ∈ Rβ
−.

Then T (·, ·) is continuous at (α, β).

Proof. (i) Let α ∈ IRn. Then we have

T (α, ·) and T (·, α) are continuous in α ⇐⇒ F and −F are α-STLC.

But using the triangle inequality we also have

T (α, ·) and T (·, α) are continuous at α ⇐⇒ T (·, ·) is continuous at (α, α).

The result follows.
(ii) 1) Let (α, β) ∈ R and suppose that F and −F are respectively α-STLC and β-STLC.
Then we know that Rα

− and Rβ
+ are open. Using the fact that (α, β) ∈ R we get that

(α, β) ∈ Rα
− ×Rβ

+ ⊂ R. Hence (α, β) ∈ intR. Now let (αn, βn) be a sequence such that
(αn, βn) −→ (α, β). By the triangle inequality we have

T (αn, βn) ≤ T (αn, α) + T (α, β) + T (β, βn) (2)

Then by the continuity of T (·, α) and T (β, ·) we get that T (·, ·) is upper semicontinuous
and hence continuous.
2) Clearly we have (α, β) ∈ intR since (α, β) ∈ Rα

− × Rα
+ ⊂ R. Now let (αn, βn) be a

sequence such that (αn, βn) −→ (α, β). By the triangle inequality we have

T (αn, βn) ≤ T (αn, α) + T (α, βn).

Since T (·, α) and T (α, ·) are continuous in Rα
− and Rα

+ respectively, the result follows as
above.
3) We proceed as in 2) and we find the result.

For the global continuity we have the following proposition which asserts that the conti-
nuity of T (·, ·) at every point of the diagonal D := {(α, α) : α ∈ IRn} is equivalent to the
continuity in R.

Proposition 4.2. The following statements are equivalent:
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(i) R is open, T (·, ·) is continuous in R and for any (α0, β0) ∈ ∂R we have

lim
(α,β)−→(α0,β0)

T (α, β) = +∞.

(ii) T (·, ·) is continuous at (α, α) for all α ∈ IRn.

(iii) F and −F are β-STLC for all β ∈ IRn.

Proof. Clearly we have (i)=⇒(ii).
(ii)=⇒(iii): Follows from (i) of Proposition 4.1.
(iii)=⇒(i): The first part (R is open and T (·, ·) is continuous in R) follows from (ii) of
Proposition 4.1. Now we show the second part. Let (α0, β0) ∈ ∂R. Suppose that there
exist a sequence (αn, βn) ∈ R and a constant K such that (αn, βn) −→ (α0, β0) and
Tn := T (αn, βn) ≤ K. Since 0 ≤ Tn ≤ K we can assume that Tn converges to T̄ ∈ [0, K].
Now let xn be a trajectory of F on [0,+∞[ which satisfies xn(0) = αn and xn(Tn) = βn.
By the compactness property of trajectories, there exists a subsequence of xn (we do not
relabel) which converges uniformly on [0, T̄ ] to a trajectory x̄ of F . Hence x̄(0) = α0 and
x̄(T̄ ) = β0. Therefore (α0, β0) ∈ R and this contradicts the fact that R is open.

We proceed to study the Lipschitz continuity of T (·, ·). First we recall that for β ∈ IRn, the
(unilateral) minimal time function T (·, β) is locally Lipschitz in Rβ

+ iff 0 ∈ intF (β) (see
[2], [4], [19] and [21]). The following proposition studies the (local) Lipschitz continuity
of T (·, ·).
Proposition 4.3. Let (α, β) ∈ IRn × IRn. Then we have:

1. If (α, β) ∈ R then
[ 0 ∈ int F (α) and 0 ∈ int F (β) ] =⇒ T (·, ·) is Lipschitz near (α, β),

2. 0 ∈ int F (α) ⇐⇒ T (·, ·) is Lipschitz near (α, α),

Proof. 1) Let (α, β) ∈ R and assume that 0 ∈ intF (α) and 0 ∈ intF (β). By a simple
continuity argument there exist ρ > 0 and δ > 0 such that

h(α′, γ) < −δ for all α′ ∈ B(α; ρ) and for every unit vector γ
h(β′, γ) < −δ for all β′ ∈ B(β; ρ) and for every unit vector γ

}

(+)

Since (α, β) ∈ intR (see Proposition 4.1) we arrange to have

(α, β) ∈ B(α; ρ)×B(β; ρ) ⊂ R.

Now let (α′, β′) ∈ B(α; ρ)×B(β; ρ) and let (θ, ξ) ∈ ∂PT (·, ·)(α′, β′). Then

(θ, ξ) ∈ ∂PT (·, β′)(α′)× ∂PT (α
′, ·)(β′).

Hence

h(α′, θ) ≥ −1 and h(β′,−ξ) ≥ −1.3

3This follows since T (·, α) is a solution on IRn of the Hamilton-Jacobi inequality

1 + h(x, ∂Pϕ(x)) ≥ 0.



F.H. Clarke, C. Nour / The Hamilton-Jacobi Equation of Minimal Time Control 419

Using (+) we get that

−1 ≤ h(α′, θ) ≤ −δ‖θ‖ and − 1 ≤ h(β′,−ξ) ≤ −δ‖ξ‖.

Hence

‖θ‖ ≤ 1

δ
and ‖ξ‖ ≤ 1

δ
.

Therefore ∂PT (·, ·) is bounded on B(α; ρ)× B(β; ρ). Then by [10, Theorem 1.7.3] T (·, ·)
is Lipschitz on B(α; ρ)×B(β; ρ).
2) The necessary condition follows from 1) and the sufficient condition follows from the
fact that if T (·, ·) is Lipschitz near (α, α) then T (·, α) is Lipschitz near α and this is
equivalent to 0 ∈ intF (α).

The following proposition gives a necessary and sufficient condition for T (·, ·) to be locally
Lipschitz in R. As in the continuity case, if T (·, ·) is Lipschitz near every point of D then
T (·, ·) is locally Lipschitz in R.

Proposition 4.4. The following statements are equivalent:

(i) R is open and T (·, ·) is locally Lipschitz in R.

(ii) T (·, ·) is Lipschitz near (α, α) for all α ∈ IRn.

(iii) 0 ∈ int F (β) for all β ∈ IRn.

Proof. Clearly we have (i)=⇒(ii).
(ii)=⇒(iii): Follows from Proposition 4.3.
(iii)=⇒(i): By Proposition 4.2 we have R is open, and by Proposition 4.3, T (·, ·) is locally
Lipschitz in R.

Remark 4.5. We can find more properties for the bilateral minimal time function in [14]
(semiconvexity, differentiability, characterization by a system of partial Hamilton-Jacobi
equations....).

5. Existence of solutions

We begin this section by the following proposition which gives some properties of a solution
of (∗).
Proposition 5.1. Let ϕ a solution of (∗). Then we have:

1. T (α, β) + ϕ(β) ≥ ϕ(α), for all α, β ∈ R0
+.

2. T (α, 0) ≥ ϕ(α) ≥ −T (0, α), for all α ∈ R0
+.

3. R0
− ∩R0

+ ⊂ domϕ.
4. For every α ∈ domϕ there exists a trajectory x of F such that x(0) = α and

ϕ(x(t)) + t = ϕ(α), ∀t ≥ 0.

Proof. The statements 2) and 3) follow immediately from 1). For the proof of 1), let
ϕ a solution of (∗) and let α, β ∈ R0

+. We can assume that (α, β) ∈ R, then let
x̄ : [0,+∞[−→ IRn be a trajectory which realizes the (finite) minimal time from α to β,
that is, x̄(0) = α and x̄(T (α, β)) = β. Because the system (ϕ + t, F × {1}) is strongly
increasing in the sense explained above, we get that

ϕ(α) = ϕ(x̄(0)) ≤ T (α, β) + ϕ(x̄(T (α, β))) = T (α, β) + ϕ(β).
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The statement 1) follows.
Now we give the proof of 4). We consider α ∈ domϕ. Since the system (t+ϕ, {1}×F ) is
strongly increasing and weakly decreasing and using the fact that every trajectory which
begins at α remains in R0

+, there exists a trajectory x : [0,+∞[−→ IRn of F in R0
+ such

that x(0) = α and
ϕ(x(t)) + t = ϕ(α), ∀t ≥ 0.

This completes the proof.

Now we define the following set (of subsets of R0
+):

G := {Γ ⊂ R0
+ : there exists a sequence βi ∈ Γ such that T (0, βi) −→ +∞}, which is

nonempty since for any α0 ∈ ∂R0
+ we have

lim
α−→α0

T (0, α) = +∞.4

The following theorem implies that the set of solutions of (∗) is nonempty. We use the
set G and the function T (·, ·) for the construction of solutions.

Theorem 5.2. Let Γ ∈ G and let ϕΓ : R0
+ −→ IR ∪ {−∞,+∞} be the function defined

as follows:
ϕΓ(α) := lim inf

α′−→α, β∈Γ
T (0,β)−→+∞

[T (α′, β)− T (0, β)].

Then ϕΓ is a solution of (∗).

Proof. By the triangle inequality we have that for all α′, β ∈ R0
+

T (α′, β)− T (0, β) ≥ −T (0, α′), (3)

then using the continuity of T (0, ·) we get that ϕΓ(0) ≥ 0 and ϕΓ(α) > −∞ for all α ∈ R0
+.

But clearly we have ϕΓ(0) ≤ 0, then ϕΓ(0) = 0. The function ϕΓ is lower semicontinuous
by the definition. Let us show that this function satisfies the Hamilton-Jacobi equation. It
is sufficient to show that the function t+ϕΓ is strongly increasing and weakly decreasing.
We begin by weakly decreasing.
Let α ∈ domϕΓ. Then there exist two sequences αi and βi in R0

+ such that αi −→ α,
T (0, βi) −→ +∞ and

ϕΓ(α) = lim
i−→+∞

[T (αi, βi)− T (0, βi)].

Then T (αi, βi) −→ +∞ and for i sufficiently large there exists a trajectory xi of F on
[0,+∞[ such that xi(0) = αi and xi(T (αi, βi)) = βi (xi realizes the minimum time between
αi and βi). Then for i sufficiently large we have

T (xi(t), βi) = T (αi, βi)− t, ∀t ∈ [0, 1]

and then
T (xi(t), βi)− T (0, βi) = T (αi, βi)− T (0, βi)− t, ∀t ∈ [0, 1]. (4)

By the compactness of trajectories we can assume that there exists a trajectory x̄ of F
on [0,+∞[ such that xi converges uniformly to x̄ on [0, 1]. Then

x̄(0) = lim
i−→+∞

xi(0) = lim
i−→+∞

αi = α.

4If R0
+ is unbounded then we have lim

‖α‖−→+∞
T (0, α) = +∞ (by the linear growth condition).
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Moreover, taking i −→ +∞ in (4) we get that

ϕΓ(x̄(t)) + t ≤ ϕΓ(α), ∀t ∈ [0, 1].

The weak decrease follows.
To prove strong increase, we consider an interval [a, b] ⊂]−∞,+∞[ and a trajectory x of
F such that x([a, b]) ⊂ R0

+. It is sufficient to show that

ϕΓ(x(b)) + b ≥ ϕΓ(x(t)) + t, ∀t ∈ [a, b].

We set α = x(b) and we consider the sequence αi and βi as above. Letting t ∈ [a, b],
we invoke continuous dependence on the initial (or terminal) condition to deduce the
existence of a sequence xi of trajectories of F on [t, b] such that xi(b) = αi and

lim
i−→+∞

xi(t) = x(t).

By the triangle inequality we have

T (xi(t), βi) ≤ b− t+ T (αi, βi)

then
T (xi(t), βi)− T (0, βi) + t ≤ T (αi, βi)− T (0, βi) + b.

Taking i −→ +∞ we get
ϕΓ(x(t)) + t ≤ ϕΓ(x(b)) + b.

The strong increase follows.

We denote by ϕ0 the function ϕΓ corresponding to the choice R0
+ of Γ.

Theorem 5.3. The function ϕ0 defined above is the minimal solution of (∗).

Proof. By Theorem 5.2, ϕ0 is a solution of (∗). For the minimality, let ϕ be a solution of
(∗) and let α ∈ domϕ (we can take α ∈ domϕ since we need to show that ϕ0(α) ≤ ϕ(α)).
By Proposition 5.1, there exists a trajectory x : [0,+∞[−→ IRn of F in R0

+ such that
x(0) = α and

ϕ(x(t)) + t = ϕ(α), ∀t ≥ 0.

Hence
T (0, x(t)) ≥ −ϕ(x(t)) = t− ϕ(α), ∀t ≥ 0,

and then
lim

t−→+∞
T (0, x(t)) = +∞.

Therefore

ϕ0(α) ≤ lim
t−→+∞

[T (α, x(t))− T (0, x(t))] ≤ lim
t−→+∞

[t− t+ ϕ(α)] = ϕ(α),

which completes the proof.

Now we give some examples. We show in the first that the Hamilton-Jacobi equation (∗)
does not necessarily admit a maximal solution.
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Example 5.4. For n ∈ IN∗, let F (x) := C, for all x ∈ IRn, where C ⊂ IRn is a nonempty,
convex and compact set with 0 ∈ intC. In this case h(x, ζ) = hC(ζ), ∀(x, ζ) ∈ IRn × IRn,
where hC is the lower support function of C:

hC(ζ) := min{〈ζ, c〉 : c ∈ C}.

The bilateral minimal time function is defined on IRn × IRn by

T (α, β) = gC(β − α),

for all (α, β) ∈ IRn × IRn, where gC is the Minkowski gauge of C:

gC(x) := min{λ ≥ 0 :
x

λ
∈ C}.

Then R0
+ = IRn and the Hamilton-Jacobi equation (∗) becomes the “eikonal equationÔ:

1 + hC(∂Pϕ(x)) = 0, ∀x ∈ IRn, ϕ(0) = 0.

For every θ ∈ IRn \ {0}, the function

ϕθ(x) = 〈 −θ

hC(θ)
, x〉

is evidently a solution of (∗). The upper envelope of all such solutions is seen to be the
function x 7→ gC(−x) = T (x, 0). In view of Proposition 5.1, this coincides with the upper
envelope of all solutions of (∗). It follows that no maximal solution to (∗) exists.
The lower envelope of all solutions exhibited above is given by ϕ0 = −gC . This is a concave
function nondifferentiable at 0, so that ∂Pϕ0(x) 6= ∅ implies x 6= 0 and ∂Pϕ0(x) = {ϕ′

0(x)}.
Then since 1 + hC(∂PT (·, 0)(x)) = 0 for all x 6= 0 we get that

1 + hC(∂Pϕ0(x)) = 0 ∀x ∈ IRn,

so that ϕ0 is a solution of (∗). Since ϕ0 is a lower bound on all solutions of (∗), it is
revealed as the minimal solution.

Example 5.5. For n = 1 we consider F (x) := [−|x − 1|,+|x − 1|]. In this case R0
+ =

{α ∈ IR : α < 1} and h(x, ζ) = −|ζ||x− 1|, ∀(x, ζ) ∈ IR× IR. For α ∈ R0
+ we calculate

T (α, β) =

{

ln(1− α)− ln(1− β) if β > α
ln(1− β)− ln(1− α) if β < α

Then for Γ1 = [0, 1[ (resp. Γ2 =] −∞, 0]) the corresponding solution of (∗), obtained as
in Theorem 5.2, is:

ϕ1(x) = ln(1− x) (resp. ϕ2(x) = − ln(1− x)),

and the minimal solution ϕ0 is calculated to be −| ln(1− x)|.
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6. Regularity of solutions and the linear case

In this section we study the regularity of a solution of (∗). We begin by the following
proposition which gives a sufficient condition for the continuity and the Lipschitz conti-
nuity of a solution ϕ of (∗) at a point α ∈ domϕ.

Proposition 6.1. Let ϕ be a solution of (∗) and let α ∈ domϕ. Then we have:

1. F is α-STLC =⇒ ϕ is continuous at α.

2. 0 ∈ intF (α) =⇒ ϕ is Lipschitz near α.

Proof. 1) Since R0
+ is open and F is α-STLC there exists ρ > 0 such that

B(α; ρ) ⊂ R0
+ and B(α; ρ) ⊂ Rα

−.

Then for β ∈ B(α; ρ) and by Proposition 5.1 we have

ϕ(β) ≤ ϕ(α) + T (β, α) < +∞, (5)

hence ϕ is finite on B(α; ρ). Now let αi be a sequence such that αi −→ α and let ε > 0.
By the lower semicontinuity of ϕ it is sufficient to prove that for i sufficiently large we
have

ϕ(αi) ≤ ϕ(α) + ε,

but this follows immediately from (5) since T (·, α) is continuous in Rα
−.

2) Since 0 ∈ intF (α) and by Proposition 4.3 we have that T (·, ·) is Lipschitz near (α, α).
Hence there exist ρ > 0 and K > 0 such that T (·, ·) is K-Lipschitz on B(α; ρ)×B(α; ρ).
By 1) and since [0 ∈ intF (α) =⇒ F is α-STLC], we can assume that B(α; ρ) ⊂ R0

+ and
that ϕ is finite on B(α; ρ) . We claim that ϕ is K-Lipschitz on B(α; ρ). Indeed, let α1,
α2 ∈ B(α; ρ). By Proposition 5.1 we have

−T (α1, α2) ≤ ϕ(α1)− ϕ(α2) ≤ T (α2, α1),

but since T (·, ·) is K-Lipschitz on B(α; ρ)×B(α; ρ) we have

|T (α2, α1)| = |T (α2, α1)− T (α1, α1)| ≤ K‖α1 − α2‖,

and
|T (α1, α2)| = |T (α1, α2)− T (α1, α1)| ≤ K‖α1 − α2‖.

Then
−K‖α1 − α2‖ ≤ ϕ(α1)− ϕ(α2) ≤ K‖α1 − α2‖,

and the Lipschitz continuity follows.

Proposition 6.2. We have the following statements:

1. Assume that F is β-STLC for all β ∈ R0
+ ∩ R0

−. Then all solutions of (∗) are
continuous in the open set R0

+ ∩R0
−.

2. Assume that 0 ∈ intF (β) for all β ∈ R0
+ ∩R0

−. Then all solutions of (∗) are locally
Lipschitz in the open set R0

+ ∩R0
−.

Proof. Since 0 ∈ R0
+ ∩ R0

−, we have that F is 0-STLC in 1) and 2). Then R0
− is open

and hence R0
+ ∩ R0

− is open. By Proposition 5.1 we have R0
+ ∩ R0

− ⊂ domϕ for all ϕ a
solution of (∗). Then by Proposition 6.1 we find the two results.
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We recall that for f : IRn −→ IR ∪ {+∞} an extended real-valued function and for x ∈
dom f , the directional derivative of f at x in the direction v ∈ IRn is defined by

f ′(x; v) := lim
t−→0

f(x+ tv)− f(x)

t
,

when the limits exists. For f Lipschitz near x and given v ∈ IRn, one defines the generalized
directional derivative of f at x in the direction v as

f ◦(x; v) := lim sup
y−→x
t↓0

f(y + tv)− f(y)

t
.

The generalized gradient of f at x (f still assumed Lipschitz near x), is the following
(nonempty) set

∂f(x) := {ξ ∈ IRn : f ◦(x ; v) ≥ 〈ξ, v〉 ∀v ∈ IRn}.

For more information about the preceding definitions see [7] or [10]. A function ϕ :
IRn −→ IR is said to be regular at x ∈ IRn, if it is Lipschitz near x and admits directional
derivatives ϕ′(x; v) at x for all v, with ϕ′(x; v) = ϕ◦(x; v). If U ⊂ IRn is open, then we
say that ϕ is regular in U if it is regular at x for all x ∈ U . A necessary condition for
the regularity of ϕ at x is ∂Lϕ(x) = ∂ϕ(x). We say that ϕ is semiconvex on an open set
U ⊂ IRn if it is continuous on U and for all x0 ∈ U there exist δ, C > 0 such that

2ϕ(
x+ y

2
)− ϕ(x)− ϕ(y) ≤ C‖x− y‖2 ∀x, y ∈ B(x0; δ).

We can show (see [5]) that a semiconvex function is regular. For more information about
these properties, see [5], [7] and [10].
We proceed to introduce a new property that will play an important role. A continuous
function ϕ is said to be mildly regular at a point x if it satisfies

∂Pϕ(x) ⊂ ∂Lϕ(x).

The following proposition gives sufficient conditions for a continuous function to be mildly
regular at a point x.

Proposition 6.3. Let ϕ be continuous in a neighborhood of a point x. Suppose that one
of the following conditions holds:

1. ϕ is regular at x,

2. ϕ is differentiable at x,

3. ∂Pϕ(x) is nonempty.

Then ϕ is mildly regular at x.

Proof. 1) If ϕ is regular at x then we have

∂Pϕ(x) = −∂P (−ϕ)(x) ⊂ −∂(−ϕ)(x) = ∂ϕ(x) = ∂Lϕ(x),

so ϕ is mildly regular at x.
2) If ϕ is differentiable at x, then we have ∂Pϕ(x) ⊂ {ϕ′(x)}. Moreover by Subbotin’s
Theorem (see [10, Theorem 3.4.2]) we have ϕ′(x) ∈ ∂Lϕ(x). Then ∂Pϕ(x) ⊂ ∂Lϕ(x) and
this gives that ϕ is mildly regular at x.
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3) Suppose that ∂Pϕ(x) is nonempty. Then there are two cases. First, if ∂Pϕ(x) is empty,
then ϕ is mildly regular at x. Second, if ∂Pϕ(x) is nonempty, then ∂Pϕ(x) and ∂Pϕ(x)
are simultaneously nonempty, which implies that ϕ is differentiable at x (see [10]). By 2)
ϕ is mildly regular at x.

We remark that the property of mild regularity, like the stronger ones of regularity or
semiconvexity, can be thought of intuitively as one which rules out “concave cornersÔ. Its
first use here is in the following theorem which gives an important characterization for
the function ϕ0.

Theorem 6.4. Suppose that the function T (0, ·) is mildly regular on R0
+ \ {0}. Then ϕ0

coincides with −T (0, ·).

Proof. By Proposition 5.1 we have that ϕ0 ≥ −T (0, ·) then by the minimality of ϕ0 it is
sufficient to prove that −T (0, ·) is a solution of (∗). First we have that −T (0, 0) = 0. Let
us show that −T (0, ·) satisfies the Hamilton-Jacobi equation of (∗). Let α ∈ R0

+, then
there are two cases:

Case 1. α 6= 0.
Let ζ ∈ ∂P (−T (0, ·))(α). Then −ζ ∈ ∂PT (0, ·)(α) ⊂ ∂LT (0, ·)(α), since T (0, ·) is mildly
regular at α. But we have

1 + h−F (α, ∂PT (0, ·)(α)) = 0, 5

Hence since h−F is continuous and ∂L is constructed from ∂P by a limiting process we get
that

1 + h−F (α,−ζ) = 0,

and then
1 + h(α, ζ) = 0.

Case 2. α = 0.
We claim that ∂P (−T (0, ·))(0) = ∅. Indeed, if not then ∂PT (0, ·)(0) 6= ∅. Hence since
0 ∈ ∂PT (0, ·)(0) we get that T (0, ·) is differentiable at 0 and we have

∂PT (0, ·)(0) = {0},

and this gives a contradiction since 0 ∈ int ∂PT (0, ·)(0)6.

Corollary 6.5. Let F admit a representation of the form

F (x) = {Ax+ u : u ∈ U},

where A is an n×n matrix and U is a convex and compact set such that 0 ∈ intU . Then
ϕ0 is semiconcave on R0

+ and coincides with −T (0, ·). Moreover, if we assume that ∂U
is of class C1 then ϕ0 ∈ C1(R0

+ \ {0}).
5This follows since T (0, ·) is a solution on IRn \ {0} of the Hamilton-Jacobi equation

1 + h−F (x, ∂Pϕ(x)) = 0,

where h−F is the lower Hamiltonian corresponding to −F .
6∂PT (0, ·)(0) = {ζ ∈ IRn : h(0, ζ) ≥ −1}, see [21, Theorem 5.1].
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Proof. Clearly F satisfies our hypotheses (−F is 0-STLC since 0 ∈ intF (0)) and when
F has the stated form, it is known that the function T (0, ·) is semiconvex on R0

+, see
[4, Theorem 4.1]. Then T (0, ·) is mildly regular on R0

+ and by Theorem 6.4 we find the
result. When ∂U is of class C1 it is known that T (0, ·) ∈ C1(R0

+ \ {0}) (see [4, Corollary
5.10])7 then ϕ0(·) = −T (0, ·) ∈ C1(R0

+ \ {0}).

It is known that if ∂U is not of class C1 in the preceding corollary then T (0, ·) (and thus
ϕ0) fails in general to be in C1(R0

+ \ {0}), see [4, Example 3.5]

Remark 6.6. Let us return to Example 5.4 and Example 5.5. We remark that in these
two examples we have ϕ0(·) = −T (0, ·). This follows from that fact that in these examples
the function T (0, ·) is mildly regular. In the next section we give an example in which
ϕ0(·) does not coincide with −T (0, ·), see Example 7.8.

7. Semigeodesics

Let α ∈ IRn. A trajectory x : [0,+∞[−→ IRn of F is a semigeodesic from α iff x(0) = α
and T (x(s), x(t)) = t−s for all s ≤ t ∈ [0,+∞[. In this section we present the relationship
between the solutions of (∗) and semigeodesic trajectories. We begin with the following
proposition which affirms that for a given solution ϕ of (∗) (there exist such solutions by
Theorem 5.2), there exists a semigeodesic from every point α ∈ domϕ.

Proposition 7.1. Let ϕ be a solution of (∗). Then for every α ∈ domϕ there exists a
semigeodesic x from α such that

ϕ(x(t)) + t = ϕ(α), ∀t ≥ 0.

Proof. Let ϕ be a solution of (∗) and let α ∈ domϕ. By Proposition 5.1, there exists a
trajectory x : [0,+∞[−→ IRn of F in R0

+ such that x(0) = α and

ϕ(x(t)) + t = 0, ∀t ≥ 0. (6)

We claim that x is a semigeodesic from α. Indeed, let s ≤ t ∈ [0,+∞[, then by (6) and
Proposition 5.1 we have

T (x(s), x(t)) ≥ ϕ(x(s))− ϕ(x(t)) = t− s,

but
T (x(s), x(t)) ≤ t− s,

therefore T (x(s), x(t)) = t− s.

Remark 7.2. The preceding proposition implies that under our hypotheses, there exists
at least one semigeodesic from the origin. This can be deduced directly as follows. We
consider a sequence αn in R0

+ such that T (0, αn) −→ +∞ (this sequence exists since −F
is 0-STLC). Let xn be the trajectory of F which realizes the minimum time between 0
and αn. By the compactness property of trajectories, there exists a trajectory x of F on
[0,+∞[ such that x(0) = 0 and xn converges uniformly to x on compact interval. We
claim that x is a semigeodesic from 0. Indeed, let t ∈ [0,+∞[, then since T (0, αn) −→ +∞
there exists nt such that for n ≥ nt we have

T (0, xn(t)) = t.
7This result was first conjectured in [12] and then proved in [3].
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Using the continuity of T (0, ·) we get that

T (0, x(t)) = lim
n−→+∞

T (0, xn(t)) = lim
n−→+∞

t = t,

and this shows that x is a semigeodesic from 0.

Remark 7.3. Using Proposition 7.1, we can show that under our hypotheses the Hamil-
ton-Jacobi equation (∗) does not necessarily admit a solution on IRn (if we consider lower
semicontinuous functions and exclude the value −∞). Let us give an example. For n = 1
we consider F (x) := −x+ [−1, 1] for all x ∈ IR. In this case, we have R0

+ =]− 1, 1[ and

T (0, x) =

{

− ln(1− x) if 0 ≤ x < 1,
− ln(1 + x) if −1 < x ≤ 0.

There exist only two semigeodesics from the origin, namely

• x(t) = 1− e−t, t ≥ 0.

• y(t) = e−t − 1, t ≥ 0.

Now assume that there exists a lower semicontinuous function ϕ : IR −→ IR ∪ {+∞}
which is a solution of (∗) on IRn, we shall derive a contradiction. By Proposition 7.1,
there exists a semigeodesic z from the origin such that

ϕ(z(t)) + t = 0 ∀t ≥ 0.

We assume that z = x (the case z = y follows using the same argument). Then we have

ϕ(1− e−t) = −t ∀t ≥ 0.

Hence if t −→ +∞ then
ϕ(1− e−t) −→ −∞,

and this gives a contradiction since (1− e−t) −→ 1 and ϕ is lower semicontinuous on IR.

The following theorem proves that semigeodesics from 0 are closely related to the minimal
solution ϕ0 of (∗).
Theorem 7.4. Let x : [0,+∞[−→ IRn be a trajectory of F from 0. Then the following
statements are equivalent:

1. The trajectory x is a semigeodesic from 0.

2. For all t ≥ 0, we have ϕ0(x(t)) + t = 0.

Proof. 2)=⇒1): Follows immediately by Proposition 5.1 (as in the proof of the preceding
proposition).
1)=⇒2): Since T (0, x(t)) = t and by the definition of ϕ0 we have that for all s ≥ 0

ϕ0(x(s)) ≤ lim inf
t−→+∞

[T (x(s), x(t))− T (0, x(t))] = lim inf
t−→+∞

[t− s− t] = −s,

then
ϕ0(x(s)) + s ≤ 0.

The reverse inequality follows by the strong increase property.
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In the following proposition, we present the relationship between an arbitrary solution of
(∗) and a solution of the type ϕΓ.

Proposition 7.5. Let ϕ be any solution of (∗). Then there exists a solution ϕΓ of (∗)
of the type provided by Theorem 5.2 such that ϕΓ ≥ ϕ ≥ ϕ0, and a semigeodesic from 0
along which ϕ, ϕΓ and ϕ0 all coincide.

Proof. Let ϕ be any solution of (∗), then by Proposition 7.1 there exists a semigeodesic
x from 0 such that

ϕ(x(t)) + t = 0, ∀t ≥ 0.

Let Γ := {x(t) : t ≥ 0}, then since T (0, x(t)) = t we have Γ ∈ G. We consider the
solution ϕΓ of (∗) corresponding to Γ. Then we have:

ϕΓ(α) = lim inf
α′−→α
t−→+∞

[T (α′, x(t))− T (0, x(t))].

But using Proposition 5.1 and since T (0, x(t)) = t and ϕ(x(t)) + t = 0 we get that

T (α′, x(t))− T (0, x(t)) ≥ ϕ(α′)− ϕ(x(t))− t = ϕ(α′).

Then ϕΓ(α) ≥ ϕ(α) since ϕ is lower semicontinuous.
By Theorem 7.4, ϕ and ϕ0 agree along x(·). But for any τ > 0, we have

ϕΓ(x(τ)) ≤ lim inf
t−→+∞

[T (x(τ), x(t))− T (0, x(t))]

= lim inf
t−→+∞

[t− τ − t]

= −τ

= ϕ(x(τ)) ≤ ϕΓ(x(τ)),

which establishes that ϕ and ϕΓ agree along x(·).

In Corollary 6.5, we have proved that in the linear case the function ϕ0 coincides with
−T (0, ·). For α ∈ R0

+, the following theorem gives a necessary and sufficient conditions
for ϕ0(α) to be equal to −T (0, α) at a given point a.

Theorem 7.6. Let α ∈ R0
+. Then the following statements are equivalent:

1. The point α lies on a semigeodesic from 0.

2. ϕ0(α) = −T (0, α).

Proof. 1)=⇒2): Let α ∈ R0
+ and assume that there exists a semigeodesic x from 0 and

t ≥ 0 such that x(t) = α. By Theorem 7.4, we have ϕ0(x(t)) + t = 0. But T (0, α) = t,
then ϕ0(α) = −T (0, α).
2)=⇒1): Let α ∈ R0

+ and assume that ϕ0(α) = −T (0, α). We can assume that α 6= 0.
Since ϕ0(α) is finite and by Proposition 7.1 there exists a semigeodesic y from α such that

ϕ0(y(t)) + t = ϕ0(α) = −T (0, α), ∀t ≥ 0. (7)

Let x : [0, T (0, α)] −→ IRn be the minimal trajectory between 0 and α and let z be the
trajectory of F on [0,+∞[ obtained by concatenating x and y. We claim that z is the
required semigeodesic from 0. Indeed, by Theorem 7.4 it is sufficient to prove that

ϕ0(z(t)) + t = 0, ∀t ≥ 0.
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We note that z is defined as follows, z(t) = x(t) for t ∈ [0, T (0, α)] and z(t) = y(t−T (0, α))
for t ≥ T (0, α). Then by (7) we have

ϕ0(z(t)) + t = 0, ∀t ≥ T (0, α).

For t ∈ [0, T (0, α)[ and by Proposition 5.1, we have

ϕ0(z(t)) ≥ −T (0, z(t)) = −T (0, x(t)) = −t,

hence
ϕ0(z(t)) + t ≥ 0 = ϕ0(α) + T (0, α).

The reverse inequality follows by the strong increase property.
This completes the proof.

Corollary 7.7. Let F admit a representation of the form

F (x) = {Ax+ u : u ∈ U},

where A is an n×n matrix and U is a convex and compact set such that 0 ∈ intU . Then
every point in R0

+ lies on a semigeodesic from 0.

Proof. Follows from Corollary 6.5 and Theorem 7.6.

In the following example, we show that ϕ0(·) does not always coincide with −T (0, ·). We
also prove that ϕ0(·) can take positive values.

Example 7.8. We take n = 2 and we define the following two multifunctions:

1.

F1(x, y) =







{(x
2 − y2

x2 + y2
,

2xy

x2 + y2
)} if y 6= 0

{(1, 0)} if y = 0

2. F2(x, y) = B̄ for all (x, y) ∈ IR2.

Now we consider the multifunction F defined by the following:

• F (x, y) = F2(x, y) for all (x, y) such that ‖(x, y)‖ ≤ 1.

• F (x, y) = F1(x, y) for all (x, y) such that ‖(x, y)‖ ≥ 2.

• F (x, y) = {(2− r)v2 + (r− 1)v1 : v1 ∈ F1(x, y) and v2 ∈ F2(x, y)} for all (x, y) such
that 1 < ‖(x, y)‖ := r < 2.

Clearly F satisfies our hypotheses (0 ∈ intF (0)). We note that for all (x, y) ∈ IR2\{(α, 0) :
α ∈ IR}, F1(x, y) is the unit tangent vector at (x, y) (pointing clockwise if y < 0 and
counterclockwise if y > 0) to the unique circle centered on the y-axis and passing through
both (x, y) and the origin. This implies that in the region ‖(x, y)‖ > 2, the trajectories
of F move along such circles.

Claim 7.9. R0
+ = IR2\]−∞,−2]× {0}.

Proof. It can be seen without much difficulty that we have

IR2\]−∞,−1[×{0} ⊂ R0
+ ⊂ IR2\]−∞,−2]× {0}.

Let us prove that the points of the form (−a, 0) where 1 < a < 2 are in R0
+. We fix

ε ∈]0, 1[ and we consider the multifunction Fε defined exactly like F but replaced B̄ by
(1− ε)B̄. We can easily verify that we have:
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• Fε(·) ⊂ F (·).
• There exist ω > 0 and ν > 0 such that

Fε(x, y) + νB̄ ⊂ F (x, y) ∀(x, y) ∈ B((−a, 0);ω),

and B((−a, 0);ω) ⊂ {(α, β) : 1 < α2 + β2 < 4}.
Now let K > 1 be the Lipschitz constant of Fε on B̄((−a, 0);ω) and let µ > 0 such that

µ ≤ { ν

2K
,
ω

2
}.

We consider a point (x, y) and an arc z(·) which verify:

• ‖(x, y)− (−a, 0)‖ =
µ

2
, x < −a and y > 0.

• z : [0,+∞[−→ IR2 and satisfies the following differential inclusion:

Úz(t) ∈ F1(z(t)) a.e. t ∈ [0,+∞[, z(0) = (x, y).

We take T > 0 and (x′, y′) ∈ IR2 such that (x′, y′) := z(T ) ∈ {(−a, β) : β > 0}. Clearly

we have T ≥ ‖(x, y) − (x′, y′)‖ and z(t) ∈ B̄((−a, 0);
µ

2
) for all t ∈ [0, T ]. Then by

the definition of Fε, the arc z(·) is a trajectory of Fε and taking (x, y) sufficiently near

(−a− µ

2
, 0), we can assume that

‖(x′, y′)− (−a, 0)‖
T

≤ ‖(x′, y′)− (−a, 0)‖
‖(x, y)− (x′, y′)‖

≤ ν

2
. (8)

Now we define the arc w(·) by

w(t) := z(t) +
(−a, 0)− (x′, y′)

T
t ∀t ∈ [0, T ].

Then for all t ∈ [0, T ] we have

‖w(t)− (−a, 0)‖ ≤ ‖z(t)− (−a, 0)‖+ ‖(−a, 0)− (x′, y′)‖ < µ+ µ ≤ ω,

hence
w(t) ∈ B((−a, 0);ω) ∀t ∈ [t0, T ].

Using the fact that Fε is K-Lipschitz on B̄((−a, 0);ω) we get that for all t ∈ [0, T ]

Fε(z(t)) ⊂ Fε(w(t)) +K‖z(t)− w(t)‖B̄
⊂ Fε(w(t)) +KµB̄

⊂ Fε(w(t)) +
ν

2
B̄.

This gives that

Fε(z(t)) +
ν

2
B̄ ⊂ Fε(w(t)) + νB̄ ⊂ F (w(t)) ∀t ∈ [0, T ]. (9)

On the other hand, we have

Úw(t) = Úz(t) +
(−a, 0)− (x′, y′)

T
a.e. t ∈ [0, T ].
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Then by (8) and (9), we get that a.e. t ∈ [0, T ] we have

Úw(t) = Úz(t) +
(−a, 0)− (x′, y′)

T
∈ Fε(z(t)) +

ν

2
B̄ ⊂ F (w(t)),

and this shows that w(·) is a trajectory of F on [0, T ]. By the definition of w(·) we have

w(0) = (x, y) and w(T ) = (−a, 0), whence (−a, 0) ∈ R(x,y)
+ . Since (x, y) ∈ R0

+ we get that
(−a, 0) ∈ R0

+, and this completes the proof of the claim.

Claim 7.10. The trajectory z(t) = (t, 0), t ∈ [0+∞[ is the unique semigeodesic from the
origin.

Proof. Clearly the trajectory z(t) = (t, 0), t ∈ [0 +∞[ is a semigeodesic from the origin
since all velocities are bounded by 1 in norm, and no arc between two points is shorter than
a straight line. To prove the uniqueness, first we remark that there exists −2 < b < −1
such that the set S := {(α, β) : α2+β2 < 4 and −2 < α < b} satisfies the following: for all
(x, y) ∈ S and for all v = (v1, v2) ∈ F (x, y) we have v1 > 0. Using this fact, the continuity
of T (0, ·) and the fact that if z is a semigeodesic from 0 then T (0, z(t)) −→ +∞, we can
easily establish our claim (details are omitted).

Claim 7.11. ϕ0(·) does not coincide with −T ((0, 0), ·)

Proof. Since z(t) = (t, 0), t ∈ [0 +∞[ is the unique semigeodesic from the origin and by
Theorem 7.6 we get that ϕ0 agrees with −T ((0, 0), ·) at points of the form (x, 0) (x ≥ 0),
and is strictly greater otherwise.

Claim 7.12. ϕ0 takes positive values.

Proof. We consider the point (−1

2
, 0), and we remark that as for the origin, there exists

only one semigeodesic from this point, namely the trajectory w(t) = (t− 1

2
, 0), t ∈ [0+∞[.

Then since (−1

2
, 0) ∈ R0

+ ∩R0
− ⊂ domϕ0 and by Proposition 7.1 we have

ϕ0(−
1

2
, 0) = t+ ϕ0(w(t)),

hence for t =
1

2
we get that ϕ0(−

1

2
, 0) =

1

2
+ ϕ0(0, 0) =

1

2
> 0.

8. Geodesics and the dual problem

A trajectory x :]−∞,+∞[−→ IRn of F is a geodesic iff

T (x(s), x(t)) = t− s,

for all s ≤ t ∈] − ∞,+∞[. We have proved in the preceding section that the solutions
of (∗) are closely linked to semigeodesic trajectories. A natural question concerns the
relationship between solutions of (∗) and geodesic trajectories.
We remark that in each of the three examples above (5.4, 5.5 and 7.8), there is in fact a
geodesic through the origin8. We now give an example to show that such a geodesic need
not exist in general.
8See Remark 8.7 for the proof of the existence of a geodesic through the origin for these examples.
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Figure 8.1: Example 8.1

Example 8.1. We take n = 2 and we define the following two multifunctions:

1. F1(x, y) is the closed segment between the points
(x, y)

√

x2 + y2
and

(y,−x)
√

x2 + y2
if (x, y) 6=

(0, 0) and the set {(0, 0)} if (x, y) = (0, 0).
2. F2(x, y) = B̄ for all (x, y) ∈ IR2.

Now we consider the multifunction F defined by the following:

• F (x, y) = F2(x, y) for all (x, y) such that ‖(x, y)‖ ≤ 1.

• F (x, y) = F1(x, y) for all (x, y) such that ‖(x, y)‖ ≥ 2.

• F (x, y) = {(2− r)v2 + (r− 1)v1 : v1 ∈ F1(x, y) and v2 ∈ F2(x, y)} for all (x, y) such
that 1 < ‖(x, y)‖ := r < 2.

Clearly F satisfies our hypotheses and it is easily seen that we have

R0
+ = IR2, R0

− = 2B .

Now assume that there exists (x(t), y(t)) a geodesic passing through the origin at t = 0;
we shall derive a contradiction. Since points in the complement of 2B cannot be steered
to (0, 0) we have that

‖(x(t), y(t))‖ < 2, ∀t < 0.

Since (0, 0) ∈intF (0, 0) we have T ((0, 0), ·) is continuous on IR2 and then bounded above
on 2B. Then there exists a first b > 0 such that ‖(x(b), y(b))‖ = 2. But for all (u, v) ∈ 2B
we have

T ((u, v), (x(b), y(b)) ≤ T ((u, v), (u′, v′)) + T ((u′, v′), (x(b), y(b))

≤ 2 + 4π,

where (u′, v′) is as in Figure 8.1.
It follows that T ((x(t), y(t)), (x(b), y(b))) = b − t is bounded for t < 0 and this gives the
desired contradiction.
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We refer to the following as the dual equation to (∗):

1 + h(x, ∂Pψ(x)) = 0, ∀x ∈ R0
−, ϕ(0) = 0. (∗−)

A solution of (∗−) refers to an upper semicontinuous function. It is easy to see that ψ
satisfies (∗−) iff ϕ = −ψ is a solution of the version of (∗) obtained by replacing F by
−F . Since the trajectories of −F correspond to trajectories of F in reversed time, our
previous results, applied to (∗−), give rise to consequences for F with respect to past
(rather than future) time. For this purpose, the following hypothesis is relevant:

F is 0-STLC.

To illustrate the use of the dual problem, suppose that ψ is a solution of (∗−), and that
F is 0-STLC. Then we deduce the existence of a trajectory x of F on ]−∞, 0] such that
x(0) = 0 and

ψ(x(t)) + t = 0, ∀t ≤ 0.

In the following theorem we use the dual problem to show the existence of a geodesic
passing through the origin.

Theorem 8.2. Assume that the following hypotheses hold:

1. F is 0-STLC.

2. R0
− ⊂ R0

+.
3. There exists solutions ϕ and ψ of (∗) and (∗−) respectively such that ϕ ≥ ψ on R0

−.

Then there exists a geodesic passing through 0.

Proof. There exists a trajectory x with x(0) = 0 such that

ϕ(x(t)) + t = 0 ∀t ≥ 0,

and a trajectory y with y(0) = 0 such that

ψ(y(t)) + t = 0 ∀t ≤ 0.

We have then
ϕ(y(t)) + t ≥ 0 ∀t ≤ 0,

but the opposite inequality holds by strong increase. Then the trajectory z defined on
]−∞,+∞[ by concatenating y and x satisfies

ϕ(z(t)) + t = 0 ∀t ∈ IR.

This gives using Proposition 5.1 that z is a geodesic.

Remark 8.3. We can replace the second and third hypotheses of the preceding theorem
by the following hypotheses and we find the same result:

1. R0
+ ⊂ R0

−.
2. There exist solution ϕ and ψ of (∗) and (∗−) respectively such that ϕ ≤ ψ on R0

+.

Remark 8.4. In Example 8.1 we have that F and −F are 0-STLC (0 ∈ intF (0)) and
R0

− ⊂ R0
+, but there is no geodesic passing through 0. This shows the necessity of the

third hypothesis in Theorem 8.2.
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Corollary 8.5. Assume that the following hypotheses hold:

1. F is is 0-STLC.

2. R0
− ⊂ R0

+.
3. There exists a continuous solution ϕ of (∗) which is mildly regular on R0

+.

Then there exists a geodesic passing through 0.

Proof. The function ϕ satisfies

1 + h(x, ∂Lϕ(x)) = 0, ∀x ∈ R0
+, ϕ(0) = 0,

since h is continuous, and since ∂L is constructed from ∂P by a limiting process. Then
since ϕ is mildly regular on R0

+, we get that ϕ is a solution of (∗−). The result follows
from Theorem 8.2.

The pointwise upper envelope E(·) of all solutions of (∗) defines a lower semicontinuous
function on R0

+ that is bounded above by T (·, 0). This function will play an important
role to give a necessary and sufficient condition for the existence of a geodesic passing
through the origin.

Theorem 8.6. Assume that the following hypotheses hold:

1. R0
− ⊂ R0

+.
2. F and −F are β-STLC for all β ∈ R0

−.
9

Then the following statements are equivalent:

(i) There exists a geodesic passing through 0.

(ii) lim sup
α∈R0

−
T (α,0)−→+∞

[E(α)− T (α, 0)] = 0.

Proof. (i)=⇒(ii): Let x be a geodesic passing through the origin. Set Γ := {x(t) : t ≥ 0},
and consider the solution ϕΓ of (∗). Set αi = x(−i). Then for any α ∈ R0

+ and for t > 0
we have

T (α, x(t))− T (0, x(t)) = T (αi, x(t))− T (0, x(t)) + T (α, x(t))− T (αi, x(t))

≥ T (αi, 0)− T (αi, α).

Using the definition of ϕΓ and since T (·, ·) is continuous at (αi, αi) ∈ R0
− × R0

+ we get
that

ϕΓ(αi) ≥ T (αi, 0).

Then E(αi) = T (αi, 0). Since T (αi, 0) −→ +∞ and αi ∈ R0
−, the result follows.

(ii)=⇒(i): Let αi be a sequence inR0
− such that T (αi, 0) −→ +∞ and E(αi)−T (αi, 0) −→

0. Then for each i there exists a solution ϕi of (∗) such that

ϕi(αi) ≥ T (αi, 0)− εi,

9Since R0
− ⊂ R0

+ and using Proposition 4.1 we can show that this condition is equivalent to the continuity

of T (·, ·) on R0
− ×R0

+.
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where εi is a positive sequence converging to 0. Set τi = T (αi, 0), and let xi be an optimal
trajectory on the interval [−τi, 0] joining αi to 0. By Proposition 7.1 we can extend xi to
[0,+∞[ by a trajectory satisfying

ϕi(xi(t)) + t = 0, ∀t ≥ 0.

Since xi(t) ∈ R0
− ⊂ R0

+ ∀t ∈ [−τi, 0] and by the strong increasing property, we have that
for any t ∈ [−τi, 0],

0 = ϕ(xi(0)) + 0 ≥ ϕi(xi(t)) + t

≥ ϕi(xi(−τi))− τi

= ϕi(αi)− T (αi, 0)

≥ −εi.

We deduce that
−εi ≤ ϕi(xi(t)) + t ≤ 0, ∀t ∈ [−τi,+∞[.

By Proposition 5.1, we get that for any two points s ≤ t ∈ [−τi,+∞[ we have

t− s ≥ T (xi(s), xi(t)) ≥ t− s− εi. (10)

By the compactness property of trajectories, we can assume that the sequence xi converges
uniformly on bounded intervals to a trajectory x. We claim that x is a geodesic. Indeed,
let s ∈] −∞, 0] and let t ∈ [0,+∞[. We have x(s) ∈ R0

− and x(t) ∈ R0
+. Then T (·, ·) is

continuous at (x(s), x(t)) and by (10) we get that

T (x(s), x(t)) = t− s,

which completes the proof.

Remark 8.7. In this remark, we show how to prove the existence of a geodesic passing
through the origin for the examples 5.4, 5.5 and 7.8.

1. Example 5.4. In this example we have that:
• R0

+ = R0
− = IRn.

• T (·, ·) is continuous in R = IRn × IRn.
• E(·) = T (·, 0).
Then by Theorem 8.6 there exists a geodesic passing through the origin.

2. Example 5.5. In this example we have that:
• F is 0-STLC (0 ∈ intF (0)).
• R0

+ = R0
− = {α ∈ IR : α < 1}.

• The function ϕ(·) = ln(1− ·) is a solution of (∗) which is mildly regular on R0
+.

Then by Corollary 8.5 there exists a geodesic passing through the origin.

3. Example 7.8. In this example, clearly the trajectory z(t) = (t, 0) is a geodesic
passing through the origin.
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