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We consider regularity at the boundary for minimizers of variational integrals whose integrands have
nonquadratic growth in the gradient. Under relatively mild assumptions on the coefficients we obtain a
partial regularity result. For coefficients of a more particular type, namely those satifying a particular
splitting condition, we obtain full boundary regularity. The results are new for the situation under
consideration. The key ingredients are a new version of the usual Gehring-type lemma, and a careful
adaptation of the technique of dimension-reduction to the current setting.

1. Introduction

In this paper we are concerned with the question of boundary regularity for minimizers
of variational integrals whose integrands have nonquadratic growth in the gradient. We
provide a partial regularity result for a general class of integrands (see Theorem 4.2 for a
precise statement), and we also show full boundary regularity for a more restricted class
of minimizers (see Theorem 5.4). The results are new for the nonquadratic case (the
quadratic case having been dealt with in [21]).

We consider a bounded Lipschitz domain €2 in R”, where we take n > 2. For a fixed
exponent p € (1,00) we consider functionals of the form

F(u,Q) = /Q(A(x, w)Du - Du)?*dx (1)

defined for v € WP(Q,RY) for some N > 1. Here Du = (Dyu'))1<a<n, 1<i<n is the

derivative of u. We require that the coeflicients A(-, -) = ((A%B(-, Ni<a,B<n,1<ij<N, are
defined and uniformly continuous, uniformly elliptic and uniformly bounded on € x RV,

It has been known for some time that W!'P-minimizers of F' need not be everywhere
regular even in the quadratic case p = 2, see [17]. This motivates the study of the partial
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regularity theory associated to minimizers of F. The first object is to obtain estimates
on the size of the singular set Singu of a minimizer u. Here Regu is the set of regular
points of u, i.e. the set of points for which u is continuous, and Sing u is the complement
of Regu. The second object is to obtain higher regularity for u on Regu.

A particular class of coefficients to consider are those which satisfy a so-called splitting
condition, i.e.:

(Sl) A?}B(xau) = Gaﬁ('rvu)gij(x?u)’

and each of the coefficient matrices G = (Gag) = (G*°)~! and g = ((g;)) is uni-
formly continuous, uniformly elliptic and uniformly bounded on  x RY. In the quadratic
case, (local-)minimizers of (1) with coefficients of the form (S1) were considered by
Giaquinta-Giusti ([13]): the authors showed that, for such a minimizer u, there holds
H"27¢(Singu) = 0 (where here H* denotes s-dimensional Hausdorff-measure) for some
e > 0. For general p, Fusco-Hutchinson (p > 2) and Acerbi-Fusco (1 < p < 2) showed that
there holds H" P~¢(Singu) = 0 for some ¢ > 0: see [9, Theorem 7.1], [1, Theorem 1.2]
(and the remarks following the latter theorem).

In the current paper we establish the boundary analogue of this partial regularity re-
sult. To formulate the boundary-value problem appropriately we consider a function
h € Whs(Q,RY) for some s > n. We then consider u minimizing F' with coefficients of
the form given by (S1) subject to the boundary condition

- h‘ ,
09

and in Theorem 4.2 we establish that v is regular on a relatively open subset of Q whose

complement has vanishing H" P~*-measure; we further show that u is Holder continuous

with Holder exponent 1 — % on this regular set. This result is new for p # 2: for p = 2 it

was shown by Jost-Meier, see [21, Lemma 2].

In order to obtain better regularity — indeed full boundary regularity — we consider a fur-
ther restriction on the coefficients, namely we consider coefficients satisfying the structural
conditions (S1), and additionally we assume:

(S2) G depends only on z; and G and ¢ are symmetric, with moduli of continuity satis-
fying a Dini-condition.

This latter condition is defined in (64): we note here that, in particular, Holder-continuous
coefficients are included.

In the interior such a restriction makes possible an improvement of the estimate for
the singular set of a bounded minimizer u of the corresponding functional F. In the
quadratic case, Giaquinta-Giusti showed H — dim(Singu) < n — 3, and Singu is discrete
in Q2 for n = 3 (see [14, Theorem 1, Theorem 2]). For p > 2 Fusco-Hutchinson showed
H — dim(Singu) < n — [¢] — 1 for some ¢ > p, and Singu is discrete in € for n = [¢] + 1
(here [q] is the integer part of q).

In the current paper we are able to show full boundary regularity in this situation i.e. we
show (see Theorem 5.4) that u is Holder continuous in a neigbourhood of 02 with Holder
exponent 1 — 2 on this regular set. This result is new for p # 2: for p = 2 it was shown
by Jost-Meier, see [21, Lemma 2.
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We note here that minimizing problems for functionals with coefficients having the special
form (S2) arise in a number of settings, for example various geometrically motivated energy
functionals for maps into Riemannian manifolds, such as harmonic maps or more generally
p-harmonic maps. In the particular case of energy minimizing harmonic and p-harmonic
maps, interior partial regularity and full boundary regularity has been established: see
23], [24], [22], [18], [5], [6], [7]. We also note that full interior regularity (i.e. everywhere
Holder continuity) for minimizers of

/Q |\ DulPdz @)

for p > 2 was shown by Uhlenbeck in [28]. In fact her results are applicable to critical
points of (2), and also to somewhat more general coefficients (though not as general as
(S2)). See also [27] and [1] for the case 1 < p < 2.

We next provide a brief outline of the remainder of the paper. In the next section we
assemble some technical results we will need later. Most of these are elementary — albeit
somewhat tricky — algebraic estimates available in the existing literature. The notable
exception is the final result in that section, Theorem 2.4. This result, which is of inde-
pendent interest, is a combined local and global version of the usual Gehring—type LP—L4
estimate to be found, for example [11, Chapter V, Theorem 1.2]. The proof is provided
in the appendix at the end of the paper. In Section 3 we prove higher integrability at the
boundary for minimizers of variational integrals with the same structure as (1), but with
constant coefficients. The key steps are deriving the global Caccioppoli-type inequality
(13), and combining this with the new version of the Gehring-type estimate, Theorem 2.4.
In Section 4 we prove partial boundary regularity for minimizers of F' under the split-
ting condition (S1). The procedure is relatively standard, making use of the technique of
“freezing the coefficients" to enable one to bring into play the higher-regularity estimate
of the previous section. In Section 5 we establish full boundary regularity for bounded
minimizers of functionals with coefficients which satisfy (S1) and (S2). The technique
is that of dimension reduction, a technique originally used by Federer in the setting of
geometric measure theory in [4]. The technique has been applied to bounded minimizers
of functionals with coefficients satisfying (S1) and (S2) with quadratic growth to obtain
the above-mentioned improvement of the estimate of singular set in the interior (see [14])
and full boundary regularity (see [21]).

We close this introductory section with a few remarks on our results and techniques. For
most of the preliminary results we admit more general coefficients than those satisfying
the splitting conditions (S1) and (S2), restricting the structure at each stage only as it
becomes necessary. The combined local and global version of the Gehring-type estimate,
Theorem 2.4, enables us to treat the boundary situation in manner which analogous to
that used in the interior. In particular we are able to avoid the technical difficulties
associated with the reflection-type arguments which are usually a feature of boundary-
regularity results. As a consequence, we are able to treat the superquadratic case (i.e.
p > 2) and the subquadratic case (i.e. 1 < p < 2) simultaneously for large portions of
the paper: this is not possible even in the interior using existing techniques. As noted
above, the essential ingredient required to enable our new version of the Gehring-type
estimate to be applied in order to produce a global higher-integrability result is a (global)
Caccioppoli-type inequality of the form (13). As such, Theorem 2.4 has the potential to
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be applied to a range of more general partial-regularity problems. Finally, we note that a
number of intermediate results, particularly in the subquadratic case, are new, and even
their interior analogues have not appeared in the literature: for example, the monotonicity
formula, Lemma 5.3.

2. Preliminary technical results, notation

We start with some remarks on notation. We denote n—dimensional Lebesgue measure
and n-dimensional Hausdorff measure by £" and H", respectively. We write B,(x) =
{r € R" : |x — xo| < p}, and further B, = B,(0). Similarly we denote upper half balls
as follows: for zp € R*™ x {0} we write B (x) for {x € R" : 2, > 0, |z — x0| < p},
and set BY = Bf(0), B = B*. For zp € R""' x {0} we further write D, () for
{r eR":2,=0, |z — 20| <p}, and set D, = D,(0), D; = D. For bounded, measurable
X C R™ with £"(X) > 0 we denote the average of a given h € L'(X) by f,hdz, ie.
Fhde = ﬁ [ hdz. In particular, we write hy,, = JCBp(xo)h dx. We let o, denote the

volume of the unit ball in R™, i.e. a,, = L"(By) = RQF?Z//{;)

For completeness, we also note here a number of technical results which will be used in
our proofs. The results are elementary — albeit technical — inequalities.

Lemma 2.1. Let h be nonnegative and bounded on [p/2, p|, and satisfy
h(t) < Oh(s)+ A(s—t) >+ B(s—t) "+ D

for nonnegative constants A, B, D, k and 0 with 0 < 0 < 1, for all s and t with p/2 <
t < s < p. Then there exists a constant ¢ depending only on 0 and k such that

h(p/2) < c(Ap™> + Bp™" + D).

Lemma 2.2. Given nonnegative numbers Ry, A, B, a and 8 with o« > [ there exist,
corresponding to every v € |o, ), a positive constant gy depending only on o, and A
and a constant ¢ depending only on «, 3, v and A such that the following is true: whenever
® is nonnegative and nondecreasing on (0, Ry) and satisfies

P\ 3
< —
P(p) < A (< ) + 5) ®(R)+ BR for all p € (0, R)
for some R < Ry and some € € (0,&¢), then there holds:

P(p) <c {(%)ﬁ(b(R) + Bpﬂ} for all p € (0, R).

See [8, Lemma 3.2] respectively [12, Chapter III, Lemma 2.1] for a proof.
Throughout the paper we shall use the functions V', V,,: R* — R¥ defined by

b p—2
Vi) =272 Vz) = (P42 T 2

(here 4 > 0 and p > 1). We note that V = Vj. The following lemma collects some
algebraic properties of the functions V' and V,, we shall use in the remainder of the paper.
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Lemma 2.3. There exists a constant ¢ > 1 depending only on k and p such that

p=2 p=2
I+ P+ 11P) T Lz =yl < Vil2) = Vi) S e(@® + 122+ 1yPP) e =yl (3)
holds for any z, y € R¥ and p € (1,2). Moreover there holds

(12772 = |yl 2n) - (z = y) = |V (2) = V(y)|”

Finally in the case p > 2 we have

ly — 2P < 2°(Jyf Py — |2[P722) - (y — 2) (5)

for any z, y € RF.

The first inequality can be directly inferred from [1, Lemma 2.2], while the second one is
an easy consequence of this lemma. The last inequality can be found in [19, Corollary 1].

Throughout the paper we will be considering bounded Lipschitz domains. For such a
domain €2 in R"™ this means that the boundary 02 can be represented as the graph of a
Lipschitz function in a neighbourhood of every boundary point (after a suitable rotation).
In view of the compactness of 9€) these functions have a uniform Lipschitz constant Lipg.
The regularity of the boundary ensures that we can find a constant Ry depending only
on € such that B,(z) N is simply connected for all p with 0 < p < Ry and any z € 09Q.
This then allows us to deduce the existence of a positive constant v depending only on €2
and n such that for such p and z there holds:

H (B, (2) N OQ)
H™ (0B, (z) N Q)

> . (6)

As a further consequence of the condition imposed on the regularity of 02, we note
that there exists a positive constant 7 (also depending only on n and €2) such that for
0 < p < Ry and z € 0N there holds:

CBENY L LBENY)
o) ™ Ts)

>7. (7)

Since we also have the trivial inclusion B,(z) N Q C B,(z), we deduce that the measure
E"‘Q satisfies a so—called Ahlfors regularity condition, i.e. there exists a positive constant
kq depending on n and €2 such that there holds:

kap" < £7(B,(2) Q) < anp” (®)
for all z € Q and 0 < p < diam 2. We note that the constant kg depends only on the
similarity class of Q, i.e. ko = kq for any t > 0.

In particular for any such p there holds

«Q

= LM(By(2)NQ)

LMB,(2)NQ) < 2
ko

uniformly for z € Q, meaning that £"| is a doubling measure. This doubling property
)

of the measure £"| implies the validity of Vitali’s covering theorem (see for example [3,
Q
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2.8.7, 2.8.8]), i.e. for any covering F of a subset A C , consisting of “balls” B,(z) N,
x €  with uniformly bounded radii, there exists a countable and disjoint subfamily
{B,,(xr) N Q} such that A C J, Bs,, (zx) N L.

We close this section by stating the following version of the Gehring lemma, cf. the
standard version given in, for example, [11, Chapter V, Theorem 1.2].

Theorem 2.4. Let A be a closed subset of Q. Consider two nonnegative functions g, f €
LY () and p with 1 < p < oo, and such that there holds

p
([ pac) v |([ o)+ If!”daf] o
B, /2(z)NQ B, (z)NQ B, (z)NQ

for almost all x € Q\ A with B,(z) N A = 0, for some constant b. Then there exist
constants ¢ = c¢(n, p,q,b, kq) and ¢ = e(n, p,b, kq) such that

(][Q'quf) T [( ][Q |9|de) o ( ][Q o dx) 1/1

for all q € [p,p+ ¢€), where g(x) = waﬁ’—w (z).

The proof of this theorem is given in the appendix at the end of this paper.

In the definition of § we use the convention d(x,)) = oo. In particular, for A = (), we have
g = ¢ and this theorem implies a global version of the usual Gehring estimate. Moreover,
for Qa5 ={r € Q:d(z, A) > §}, the conclusion of the theorem can be rewritten as

(/ Mlglqu) Yoz [(/ s " (f1sac) 1/1 | (10)

where the constant ¢ only depends on n, p, q, b, kq and §.

3. Higher integrability at the boundary

The first preliminary result is a higher—integrability result at the boundary for local
minimizers of functionals whose integrands have p—growth in the gradient. This result
was given in the quadratic case as Lemma 1 in [21]. Given a bounded Lipschitz domain
Q0 C R™ we consider a functional F(-,Q) defined for RN¥—valued functions and given by

F(,0) = [ f(oule), Du(a) da
Q
(with suitable restrictions on f and u to ensure that the integrand is locally integrable in
Here we make the (relatively mild) structural assumption:

(H1) f: OxRY xR™ — [0, 00) is a Carathéodory-Function, i.e. f(-,¢,2) is measurable
in Q) for every (£,2) € RV x R"™W, f(z, -, -) is measurable for every x € 2, and there
exist p in (1,00) and A, A € (0, 00) such that:

Mz|P < fx, &, 2) < Alz|P for all (z,&,2) € Q2 x RY x R™V,
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Under this assumption, F(v;€) is defined for v € WP (Q, RY).

In particular for the consideration of boundary regularity we restrict attention to the
case that Q = B}, for some R > 0. An R¥-valued function v is called a minimizer
(more precisely, a W'P—minimizer in Bf; U D) for F satisfying (H1) on B} if, for every
o € WyP(Bj,RN), there holds:

F(u; By) < Fu+¢; By).

Lemma 3.1. Consider u € W'(B}, RY) which is a minimum of F in B}, U Dg, where
F satisfies (H1) for some p > 1. Further assume that there holds u’DR = h}DR for some

function h € WY4(Br,RY) for an exponent ¢ > p. Then there erists an exponent q
depending only on n, N, X\, A and p with p < q < q such that u € VVI})’E(BE,RN). Further
fory € BfUDpg and 0 < p < R — |y| there holds:

v 1/p 1/q
][ | Dul? dx < cK][ |Du\pdm> + (][ \Dh|qd9§> ] (11)
B2 (y)NBF Bp(y)NB, Bp(y)NBE

for a constant ¢ = ¢(n, N, X\, A, p,q). If B,(y) € B, this estimate can be improved to

1/p

1/q
<][ |Du|qd:v> <c (][ |Du|pd:v> : (12)
Bp/2(y) By (y)

Proof. We consider zq € Bj, U Dg, 0 < r < R — |z¢/, and distinguish two cases.

Case 1. 2| < %f. Here we consider t, s with 0 < t < s < r and choose a cut—off function
n € C3°(By(xo)) with 0 < < 1 and n = 1 on By(xg), |[Vn| < ;. Since u is a local
minimum of F', we have:

F(u; Bs(xo) N BY) < F(u — n(u — h); Bs(xo) N BE) .

Using (H1), Young’s inequality and the convexity of z — |z|P we see:

)\/ | Du|Pdz < A/ |D(u —n(u— h))|Pdx

By(zo)NB}, By (z0)NB}

< A (/ \Du|pd:1:+/ nP|Dh|Pdx
(Bs(z0)\B(z0))NBY Bs(xo)

2P
+ / |u — h|Pdz | .
(s = 1)” JB,(z0)nB5:

We add 2°7'A [ g [DulPdz to both sides of this inequality and obtain
R

/ \DuPdz < 9 / \Dufdz + / \Dh|Pdz
Bi(z0)NB} Bs(z0)NB} B (z0)NB}
P
+ / |u — h|Pdz,
(S - t)P Bs(mo)ﬁBg
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where we have abbreviated v = % Since ¥ € (0,1) we can apply Lemma 2.1 to

establish the following Caccioppoli-type inequality: there holds

]/ |Du|Pdz < ¢ T_p/ |u — h|Pdx +/ |Dh|Pdx (13)
B,./2(z0)NBE; By (z0)NB} Byr(z0)NB}

R
for all zg € B, 0 <r < R — |x|, 25 < %’", for a constant ¢ = ¢(n, p, A\, A).

To estimate the first term on the right-hand side of (13) we extend g = u — h to Bg by
letting g = 0 on Bg \ Bj,. Since u = h on Dy we have that g € W (Bg,RY). Noting

that B,(zg) \ B contains a ball of radius § we can apply the Sobolev inequality in the
form given, for example, by [29, Theorem 4.4.2] to obtain

r_p/ lu—hPdx < Z"T_p/ |lu— hPdx < c(]/ |D(u — h)
Br(z0)NB} Bi(z0) Bi(z0)

P/Dx
< c / |D(u — h)|Pdx :
BT(IU)QBE

where ¢ = ¢(n, N, p). Inserting this into (13) and using Hélder’s inequality we arrive at

p/p+
f \DulP dz < c[(]/ |Du\p*d:c) + f |Dh]pdx} (14)
B,./2(x0)NBE Br(z0)NB} Br(z0)BY

for a constant ¢ depending only on A\, A, n, N and p.

P/ Px
p. dx)

Case 2. zj > %. Here we have Bs,/4(zo) € Bf;. For 0 < s <t < %r we consider the

comparison function u — 1n(u — g, 3,/4) in place of u —n(u — h) in the above argument to

obtain the inequality
p/p*
P dac) <ec < / |Du
By (z0)NB

]/ | Du|Pdz < c(]f | Du
Br/2($0) BSr/4($0)

for a constant ¢ depending only on n, N, A\, A and p.

P/Dx
p*dx) ,  (15)

Hence for any ball B,(y) with y € BfUDg and 0 < p < R—|y| inequality (14) holds for any
ball B,.(xo) N B} \ B,(y) = 0. Therefore we can apply Theorem 2.4 with Q = B,(y) N B}
and A = 9B,(y) N B;;,. We note that we can choose the constant kg independent of p and
R because any such (2 satisfies a uniform interior and exterior cone-condition.

The interior result follows by the same reasoning from (15). O

The next result of this chapter is a global higher-integrability result for weak solutions
of certain degenerate elliptic systems with p-Laplacian type behaviour. We consider a
bounded Lipschitz domain © in R”, p > 1 and a given function h € W4(Q, RY) where
G > p. We denote by u € WP(Q, RY) the solution of the Dirichlet problem

/(ADU~D?});722ADU'Dg0dSE:O for all ¢ € C§°(Q,RY) (16)
Q

uw=~h on 0f)
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where here the constant coefficients A = (A?jﬁ ) are assumed to satisfy
Az 2> Mz)? and Az-w < Alz||w| for all z, w € R™Y. (17)

Lemma 3.2. Consider u € WP(Q,RN) which is a weak solution of the Dirichlet problem
(16) where p > 1, A satisfies (17), and h € WH4(Q,RY) for an exponent ¢ > p. Then
there exists an exponent q depending only onn, N, X\, A, kq and p with p < q < q such
that uw € WH4(Q,RN). Furthermore, there holds:

1/q 1/p 1/q
(][ |Du|qu) <c (][ | Dul|? dx) +c (][ |Dh|qu) (18)
Q Q Q

for a constant ¢ = c¢(n, N, \, A, kq,p,q).

Proof. The proof closely follows the lines of the proof of Lemma 3.1. For z, € Q and
r > 0 we consider seperately the two cases dist(z, 9Q) < 3r and dist(zo,0) > 3r. In
the first case we test our system with n?(u — h) where n € CY(B,(x¢)) with 0 < n < 1,
n =1 on Bys(zo) and |Vp| < 2. The argument from Lemma 3.1 applies since in
this case L™(B,(zo) \ ) > ~vya,r™ for some v > 0 (note that © is a bounded Lipschitz
domain and therefore fulfills a uniform exterior cone-condition). In the second case we
use 1P (U — Uz, 3,/4) a5 a test-function in (16), where 7 is a suitable cut-off function with
support in Bs,/4(xo) € 2. With these modifications it is straightforward to show that the
hypotheses of Theorem 2.4 are fulfilled with A = (), ¢ = Du and f = Dh. m

Finally, for v € W?(Q, RY) minimizing
Fulu) = /(A Du - Du)? da
Q

with respect to the Dirichlet boundary condition u = h on 99 for some h € W19(Q, RY)
where § > p > 1 we have the following global higher-integrability result.

Lemma 3.3. Consider u € WYP(Q,RY) which is a minimum of F 4 subject to the Dirich-
let boundary condition uw = h on 9Q where A satisfies (17), and h € WH4(Q,RY) for an
exponent ¢ > p > 1. Then there exists some exponent q depending only on n, N, \, A,
ko and p with p < q < q such that v € WH(Q,RY). Furthermore, there holds:

1/q 1/p 1/q
(][ ]Du|qda;) < c(][\pu|pd:c> +c(][|Dh|qu> (19)
Q Q Q

for a constant ¢ = c(n, N, \, A, ko, p, q).

We will need the following scaled a priori estimate for p~harmonic functions.

Lemma 3.4. Consider v € W'P(BE,RY), p > 1, which solves

div(|Dv[P™2Dv) =0 on B},
v=~h on Dpg
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for a given h € Wh*(BE,RY), s > p. Then for all p € (0, R] and any 7 in [n(1 — 2),n)
there holds:

i p/s
/ | Du|Pdx < c{ <£> / | DulPdz + p"(l_i)(/ |Dh|sdx> }
BY R B} B

for a constant ¢ depending only on n, N,p, s and n.

Proof. Denote the minimizer of [y |Df[Pdz in {f € W"?(Bf,RY) : f=v—h on B}
R

by w. Then w is a weak solution of div(|Dw[P~?>Dw) = 0 on B}, and further w = 0 on Dg.
We denote by w the extension of w to Bg(0) by odd reflection. Then w is p-harmonic on
Bgr(0), and hence we have the standard estimate (which follows in the case p > 2 directly
from [16, Theorem 3.1], and cf. also [28, Theorem 3.1], and from [1, Proposition 2.13] in
the subquadratic case 1 < p < 2):

/ |Dw|Pdx < ¢ (%)n/ |Dw[Pdxr  forall 0 < p <R, (20)
By By,

for a constant ¢ depending only on n, N and p.

We first consider the super-quadratic case p > 2. Here we calculate, using (5), the fact
that v and w are weakly p-harmonic on Bj,, Young’s inequality and Holder’s inequality,
for e > 0:

p/s
/ |Dv — Dwl|Pda Sc{a/ (yDvyp+\Dw|p)dx+glp</ \Dh|sda:> R”(lp/s)}(ﬂ)
B, 3 B,

Br

for a constant ¢ = ¢(n, p, s). The minimizing property of w yields, with Hélder’s inequality:

p/s
/ |DwPdr < C[/ |Du|Pdx + </ |Dh]3dx) Rﬂ(lp/S)] :
By, Bf; B}

where ¢ has the same dependencies as above. Combining this with (21) we have:

p/s
/ |Dv — Dw|Pdx < c{s / |Dv|pd:c+81p< / \Dh|5da;) R”“p/s)] (22)
B}, Bf; By

R

where ¢ = ¢(n,p, s). From (20) and (22) we infer:

n P/S
/ |DofPdx < 6{ ((ﬁ) +5>/ |Dv|pdx—|—61_p(/ th|de) R”U—P/s)} ,
By R By, Br

for a constant ¢ depending on n, N, p and s.

Hence the conditions of Lemma 2.2 are fulfilled with ®(p) = [+ [Dv[Pdz, A =¢ a=n

and 3 = 1 — 2. Choosing € < &g, with gy given by Lemma 2.2, we obtain the desired
conclusion.
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In the subquadratic case 1 < p < 2 we can apply (4) with z = Du, y = Dv and
k =nN, to obtain

/Bﬁz(l‘o)

with ¢ = ¢(n, N, p). This is the analogous estimate to (21). This means that the remainder
of the proof can be carried through as in the case p > 2. O

_ . 2
\Dv\gDv — |Dw|T2Dw) dr < c/ (|Dv[P~2 Dv—|Dw|P~* Dw)-(Dv—Dw)dx

B]Jg(x())

We next consider symmetric matrices g in RY *and G in R” with

€]? < g;y6¢0 = g€ - € <AL forall € € RY,
> < G nang = G- < AP for allp € R™.

We set A =G ®g=(G*g,;) € R®™*  Note that we have
mPlEP < An®E-n@& < AP forall € e RY, n e R",
i.e. A is elliptic in the sense of Legendre-Hadamard with ellipticity constant 1 and upper

bound A.

Lemma 3.5. Consider a fized exponent p > 1 and v € WHP(B}, RY) which solves

fB+ (ADu - Du) " ADu- Dodr =0 for all p € Wy ? (B, RY)
=h

U}DR

where h is a gwen function in W4*(Bj, RY) for some s > p. Then for all p € (0, R] and
any v in [n(1 — B),n) there holds:

7 p/s
/ |DulPdz < c{ (ﬁ) / |DulPda + p”“’s’)(/ th\de> }
BF R BY B

for a constant ¢ depending only onn, N, p, A, s and n.

Proof. Since g and G~ are positive definite and symmetric there exist 1nvert1ble matrlces
~v and I' such that g& - 5—75 vgforanyggeRNandG n-n=I"1y. Ty
for any n,77 € R™. For y = 'z we set w(y) = yu(I'y) and £(y) = vh(I''y). Then
w € W'P(I'B}, RY) solves the Dirichlet problem

(23)

Jr g |DwP?Dw - Dpdy =0 for all p € W,y (TB;;, RN) }
=/

w‘FDR

where £ € W's(I'Bf,RY). Since G~ has ellipticity constant 1 and upper bound VA > 1,
we have for any r > 0: TB* ) VR C I'B}f for some orthogonal matrix 7. Therefore w solves

(23) with I'B}, replaced by TB; Vi and T'Dp replaced by T'Dy, 45, so we can apply
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Lemma 3.4 to deduce that, for all 0 < p < r < % and fixed 7 € [n(1 — 2),n), there
holds:

n p/s
/ | DwlPdz < cK3> / | Dwl|Pda + ( / |D€\8da:) pn(lp/s)]
TB} r TB} TB

for a constant ¢ depending only on n, N, A, p, s and n. Transforming back to the original
functional yields the desired estimate. O

4. Partial boundary regularity

In this section we consider the boundary analogue of the results of [9] and [1], i.e. the
case of an integrand with p-growth for some fixed exponent p > 1. We consider u €
Wt?(Bf, RY) which is a local minimizer for

F(u) = /B+ (A(z,u)Du - Du)p/2 dx

with u = h on Dy for a given h € Wh*(B}, RY), where s > p. Here F(u) is given in
components by [+ (Af‘j’ﬁ(x,u)DauiDguj)p/Q.
R

We impose the following structure conditions on A.

(C1) There exists A > 0 such that
Az, &)z -Z < Alz| 7] for all 2,7 € RV (2,€) € Bj, x RV,

(C2) The coefficients A(x,&) are uniformly strongly elliptic, i.e. there exists A > 0 such
that
Az, 8z -2 > N|z|? for all z € R™V, (z,€) € E; x RY.

(C3) There holds A € C O(EE x RN R™) and further A is uniformly continuous, i.e.
there exists a concave and nondecreasing function w : [0, 0c0) — [0, 00) with w(0) =0
and w < 1 such that

Az, 8) = Aly, )| Sw |z —y[" + ¢ —nl"). (24)

For the results of this section, the requirement of uniform continuity in (C3) can be
relaxed; see the remarks at the end of the section. For the full regularity results of
Section 5 we will require uniform continuity in (C3).

In view of the fact that we are considering minimizers, and since A(x,&)z-z = A(x, €)'z - z,

we can henceforth assume that A is symmetric, i.e. A(x,§)z-2 = A(z,£)z-z for any = € E;,
£ RV, and 2, 2 € R™V,

We begin with a few remarks concerning higher integrability. We observe that the
functional w +— F(w) satisfies the hypothesis (H1) from Section 3 with A replaced by
N/2 and A replaced by AP/2. Therefore we can apply Lemma 3.1 to obtain that v €
Whi(Bt . RY) for some p < ¢ < s. Furthermore, we have

R/2’
Vi 1p Vi
(/ ]Du|qu) gc</ ]Du\pda:) —1—0(][ \Dh!qu) (25)
Bf BY B

R/2
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where ¢ = ¢(n, N,\,A,p,s). (Applying Lemma 3.1 directly we see that the constant
depends on ¢, but by choosing ¢ systematically, e.g. halfway between p and the supremum
of the exponents yielded by Lemma 3.1, we see that the dependency on ¢ can be expressed
in terms of the remaining parameters and s.) Next, we consider v € u + W, *(Bj; /2o RY)

to be a minimizer of [, (A(0,ugrs2)Dv- Dv)P?dz, where up/» denotes f ,+ udz. Then,
R/2 R/2

by Lemma 3.2 we obtain that v € W&’q(BE/Q,

1/q 1/p 1/q
(/ |Dv|qd$) < c</ | Duvl? d:v) —l—c(/ | Dul? d$) ; (26)
BT, B}, Bf;

R/2 R/2 R/2

RY) for some ¢ € (p,G). Moreover, we have

for ¢ having the same dependencies as the constant in (25). Our next aim is to prove the
following estimate for Du — Dv:

Lemma 4.1. Under the above assumptions there holds:

][ |Du — Dv|Pdx
Bt

R/2

p/s .
< c<f |Du|pdx+(f |Dh|5dx) )w"q(Rpf [1+|Du|”]dcp> (27)
B}, B}, B},

in the case p > 2, respectively

][B+ |V (Du) — V(Dv)|*dz

R/2

p/s
< c(][ \Du|pdx+<f |Dh|5dx> >wq?’<3p][ [1+|Du]p]dx), (28)
B}, Bj; Bj;

in the case 1 < p < 2, where the constant ¢ depends only onn, N, p, A\, A and s.

After having established this lemma the remainder of the section is concerned with de-
ducing partial boundary regularity for v under suitable restrictions on the structure of

A.

Proof of Lemma 4.1. We write A for A(0,ug/2), and define a function F° : RV —
0, 00) via:

FO(6) = (Ag-&)P2. (29)
We first look at the superquadratic case p > 2: The Taylor expansion for F° about Du
yields:

/B+ F(Du)dr = /B+

R/2 R/2

F°(Dv)dz + / DF°(Dv) - (Du — Dv)dx
Bz

+ /+ {/1(1 — 5)D?*F°(Du + s(Dv — Du))ds(Du — Dv)| - (Du — Dv)dx
B, LJo

= T4+ I1I1+1II (30)
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with the obvious labelling for I, IT and I11.

From the Euler equation for Dv we see:
I1=0.
In order to estimate 11, we begin by observing:

RV
(D*F°(&)n) - = p(AE - €)P* {An n+(p— 2)% > cl¢|P?n)?,

for £, n € R™, £ #0, for a constant ¢ = pAZ. Note that the inequality also holds in the
case that & = 0, because D*F°(0) = 0. Thus we can estimate [11 from below as follows:

1
111 > c/ / (1 — s)|Du + s(Dv — Du)[P~?|Du — Dv|*dsdx .
Bf ., Jo

R/2

In order to estimate the integral f01(1 — 8)|Du + s(Dv — Du)[P~2ds we consider the cases
|Dv| > |Du| and |Dv| < |Du| separately. In the case |Dv| < |Du| we note that for
s € [0,1/4] there holds:

(1 —5)|Du + s(Dv — Du)[P~2 > ¢(p)(|Du| + | Dv|)P~2.

1

Thus by integrating s from 0 to 3

|Dv| > |Dul, we can estimate

in this case, and analogously from % to 1 in the case

111 > c(p,A)/ |Du — Dv|Pdzx,

+
BR/2

and hence from (30) we have:

f]ﬁ |Du — Dv|Pdx < c]/ (F°(Du) — F°(Dv))dx (31)

+
R/2 Bg s

for a constant ¢ = ¢(p, A). In order to estimate the integral on the left-hand side of (31),
we begin by writing

fﬁ (F°(Du) — F°(Dv))dx

R/2

— /+ [(ADu - Du)P? — (A(z,u)Du - Du)p/g} dx

R/2

—l—/ (A(z,u)Du - Du)P/? — (A(z,v)Dv - Dv)?/?dx
Bt

R/2

+/ (A(x,v)Dwv - DU)I”/2 — (ADv - Dv)p/Qd:v
B/

= IV4+V+VI (32)
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with the obvious labelling. The minimality of u yields
vV <0.
In order to estimate IV, we begin by using (24) and (C1) to observe:
(A€ - "2 — (Al w)e - 7] < clp, NlePwllal? + [u—unpul?). (39

Applying (33), (25) (with ¢ € (p, s|] being the higher integrability exponent from (25)),
Jensen’s inequality and Poincaré’s inequality for half-balls (keeping in mind that w < 1,
and that w is nondecreasing and concave) we derive:

v < cf |Dul? w((R/2)” + |u — ugys|’)dx
By

p/& q
c f | Du|idx f wior ((R/2)P + |u — upgya|?)dx
B Bg/z

R/2

c</B§|Du|pdx+ (/BE]Dh]sda:>p/s) (]fB+

R/2

p/s
c(/ |Du|Pdx + (/ |Dh|5dx> ) w'T ((R/Q)p —i—f lu — uR/glpda:>
B B} B}

R/2

p/s -
< (f |Du|”dx+(/ |Dh18da:) )w (RP+RP/ |Du|pdx),
Bj, B B}

where here the constant ¢ depends only on n, N, p, s, A and A. In order to estimate VI
we begin by calculating directly as above to see

IA

a—p

W((R/2)? + |u — uR/2yp)dx) ’

IA

=l
|

IN

VI<c(p,A) /

. |Dv|P w((R/2)P + |v — vgyelf) dx. (34)

R/2

Similarly to above we use the higher-integrability of Dv from (26) with exponent ¢ € (p,
(note that we need here the global version valid for Lipschitz domains) to estimate the
right-hand side of (34), keeping in mind w < 1, as follows:

vle
VI < c(/ ]Dv]qda:> w'T ((R/Q)p —1—/ v — UR/Q‘pdx) (35)
Bt +

R/2 Brs
p/q
< c{f | Dv|Pdx + (]/ |Du|qu> } W' (R” + Rp]/ \Dv\pdx) , (36)
BE/2 Bg/g BE
for a constant ¢ = ¢(n,N,\,A,p,q,G). Here we have also used Jensen’s inequality,

Poincaré’s inequality (on half-balls) and Holder’s inequality.

We next note that (C1), (C2) and the minimizing property of v yield the estimate:

A p/2
/ Dul? dz < <—) / \DulP dz. (37)
B+ >\ B+

R/2 R/2
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Using this and the higher-integrability estimate for u, i.e. (25), we obtain from (35):

p/s .
VI < c(/ | Du|Pdx + </ ]Dh\sdx> ) w'T (Rp + Rp/ ]Du|pdx>
Bf; Bj; Bj,

where ¢ = ¢(n, N, A\, A, p, s). Using the estimates obtained for IV, V and VI in (32), and
using this in turn in (31), we finally obtain the desired estimate (27).

Now we consider the subquadratic case 1 < p < 2. The fact that 1 < p < 2 means
that the second derivative D*F°(z) (with F° defind in (29)) does not exist for z = 0, so
we cannot carry over the arguments for p > 2 in the form presented above. Instead we
proceed by defining a family of mollifications of F° via

Fe(2) = (2 + Az - 2)P/* for z € R,

for € > 0. Since A is symmetric, we have that (z, Z) — Az - Z defines an inner product on
R™Y meaning that we have via the Cauchy-Schwarz inequality:

(A(x,8)z- 2 < (A(x,8) 2 2)(A(2,€)2-2) forallz €Q, £ €RY and z, 2 € R™. (38)

We then write

/B X (F°(Du) — F°(Dv)) dx (39)
— /+ [(FO(DU) — FY(Dv)) — (F*(Du) — FE(DU))}dij/Jr (F*(Du) — F*(Dv))dx
BR/2 BR/2

with the obvious labelling. The dominated convergence theorem shows immediately:
I. -0 as e — 0. (41)

In order to study I1I., we begin by observing that the Taylor expansion for F¢ about Du
yields:

I, = DF¢(Dv)(Du — Dv)dx

+
Br/a

1
—|—/ / (1 —s)D*F*(Dv + s(Du — Dv))ds(Du — Dv, Du — Dv)dx
Bf /0

= I 41II (42)

with the obvious labelling. We have

lir% II = lin% (e? + ADv - DU)in.ADU - (Du — Dv)dx
- T B
= / (ADv - Dv)"2" ADv - (Du — Dv)dz = 0. (43)
By
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In order to estimate I1. we begin by estimating (using (38) and noting that 1 < p < 2):

D?Fe(2)(w,w) > p(p — DA™T A(u? + |2%) "7 |w]?,

where we have abbreviated y = Z=. Setting further z = Dv + s(Du — Dv) and w =

Du — Dv (note that —1/2 < 222 < 0) and using (3) we thus have the estimate:

1
/ (1 —s)D*F*(Dv + s(Du — Dv))(Du — Dv, Du — Dv)ds
0

Lp(p — A" A% + |Dul* + | Dv|*) "> | Du — Do)’

Vv

pP— pP— 2
> ¢|(u? + |Duf*)"T Du — (i + |Du|?) "5 Dol

where ¢ = ¢(n, N,p, A\, A). Applying Fatou’s Lemma we can thus conclude, writing V'(2)
for |2|"%"

limiglflfé > c/ |V (Du) — V(Dv)|*dz . (44)

+
BR/2

Allowing ¢ to tend to 0 in (39) and combining (44) with (41) and (43), we thus see

/B  V(Dw - V(DoPds<e [ (F(Du) - F'(Du))ds, (45)

+
R/2 BR/2

where ¢ depends only on n, N, p, A and A. As in the case p > 2 we decompose the
right-hand side of (45) as

/B (F°(Du) — F°(Dv))dz = fB+ (ADu - Du)p/2 — (A(z,u)Du - Du)p/zdx

+
R/2 R/2

—i—/ (A(z, u)Du - Du)p/2 — (A(z,v)Dv - Dv)p/2dx
Bt

R/2

+/ (A(z,v)Duv - Dv)p/2 — (ADv - Dv)p/zdx
Bl

= IV4+V+VI, (46)

with the obvious labelling. We have V' < 0 due to the minimality of u. The term I'V can
be estimated similarly to the case p > 2. Since 1 < p < 2 we have via (C2), for z € R™Y,
2#0,0<s<1:

[(sA+ (1= 8) Az, w)z - 227 < (sA2” 4+ (1= )M = (A2
and hence, using (24):

‘(.AZ 2P — (Az,u)z - Z)p/Q‘

= g/o [(sA+ (1= 8)A(z,u))z - 2> (A = Az, u))z - 2|ds
< czfPw(lz — 2ol + [u — url?),
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where ¢ depends only on p and A. This inequality is analogous to (33), and the remainder
of the estimate for IV can be performed exactly as in the superquadratic case. Further
the term VI can be estimated in exactly the same manner as in the case p > 2, meaning
that we obtain from (46) and (45) the estimate (28). O

We are now in a position to derive the desired C%* estimate.

Theorem 4.2. Consider coefficient matrices G = (G*?) and g = (gi;) which are uni-

formly continuous on E; x RY | and which satisfy:

€17 < g(x,8) € - € < AV¢)? for all x € B, £, € RY,

) > 4
> < G Y, &)n-n < AY2n>  foralz e Bf, £ € RN, neR™. (47)

Consider further fized p > 1, s > n, and a given function h € Wh*(B},RN). Then there
exist constants g > 0 and Ry > 0 depending only onn, N, p, X\, s and w(-) such that the
following is true: For u € WYP(BE RN) which minimizes

/ (Gaﬁ(l',u)gij(m,u)DauiDﬁuj)p/2 dx  subject to the boundary condition u| =h
Bf; Dr

and which fulfills the smallness condition

p/s
Rp—”/ |Du|Pda:+Rp<1—”/8>(/ |Dh|8dx) < &g
Bf; Bf;

for some 0 < R < Ry, there holds u € Co’l_"/s(EE/Q,RN).

Proof. The assumptions yield the existence of a bounded and continuous modulus of
continuity w which is concave, nondecreasing, and which satisfies w(0) = 0, w < 1, such
that the coefficients A = G~! ® g given in components by Af‘jﬁ(:v, u) = G%(z,u)gi;(x, )
satisfy: B B

|A(z, &) — A@, )| < w(lz — T + 1§ — &)

for all x,feﬁz, f,fe RV,

Consider =y € Dg, a half ball Bf (zy) C B} and v € u + W,” (B:“/2(x0),RN> which

minimizes

[e% 7 i 2
/B+ ( )(G 6(xo,ur/2)gij(xo,uT/g)Dav ngj)p/ dx .
/2 o

First we restrict to the superquadratic case p > 2: For 7 € (0,1/4] we have

(rr)P ™ / | Du|Pdz
Bir (iﬂo)

c(p) [(Tr)p_”/ |Du — Dv|Pdx + (Tr)p_”/
B:—/Q(IO)

IA

\Dv|pdx]

Bﬂ-!—r (10)

= co(p)[I+11]
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with the obvious labelling. By replacing B/, by B:/Z(xo) and and taking § = 1 — § in

(27) we obtain

p/s
I< CT””{TP”/ \Du|p—|—7“p(1"/s)(/ \Dh|sdx> 1 W° <rp/ (1+]Du|p)d:c)
Bif (z0) B (z0) Bif (zo0)

for ¢ = ¢(n, N, A, p, s). Here we have also used the concavity of w.

In order to estimate I1 we can apply Lemma 3.5 with p = 7, and R replaced by r/2 to
obtain:

. p/s
I < C(Tr)p—n [TTL/ |Dv|pdx + </ |Dh|sd$) (TT)n(l_p/s):|
B, (o) B, (o)

p/s
< C{TH"”TP”/ |DulPdx + (Tr)p(1”/3)</ ]Dh\‘%l:c) } )
B;F (x0) Bt (z0)

Here we have also used the fact that [, 12 (e0) |DolP < AP/2 [, ) |Du|Pdz (see (37)).

/2(wo

Fixing an exponent 72 in [n(1 — £),n) and combining these estimates we obtain:

(Tr)p_”/ | Du|Pdz

Bj}(xo)

< erpTm [1 + 770 (rp/ (1+ |Du|p)da:>] rp”/ | Du|Pdx
B (z0) B (z0)

p/s
+ crP(1—n/s) </ |Dh|sdx> (Tp—nwé (Tp/ (1+|DU|P)dx> + 7'17(1n/8))7 (48)
B:r(xo) B:r(xo)

where ¢ = ¢(n, N, A, p, s,n). Define now the function ¢ : (0, R — |x¢|] — R via

o(r) = r”_”/ | DulPdx .
Bif (z0)
After setting

p=p+n-—n, a:a(r):w‘s(rpf (1+|Du|p)dx)
Bﬂ'(mo)

p/s
and b=0b(r) = (/ \Dh!sdx)
Bif (z0)

equation (48) can be rewritten as
p(rr) < er? (1+ 7 "a(r)) ¢(r) + er? = Db(r) (77 "a(r) + 7PE)

We are now in a position to apply a standard iteration procedure yielding the desired
result. In particular, we obtain the excess—decay estimate

p(l—n/s p/s
ooy <e| ()" o+ ([ onpar)” ]
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for any 0 < p < R/2 and xy € Dg/, where the constant ¢ depends on n, N, p, s, A and
w(-). Combining this estimate with the analogous interior excess—decay estimate (cf. [9,
Section 6]) yields, by Poincaré’s inequality and Campanato’s characterization of Hélder
continuous functions, the desired result follows in a standard manner, cf. [21, Lemma 2].

In the subquadratic case 1 < p < 2 we argue as follows: For 0 < 7 < % there holds

()P / \DuPdz = (rr)y" / V(Du)[2dz
B, B,
< 2y / V(Du) — V(D) 2dz + 2(r)7~" / \Dof? da
B, A

The second term on the right-hand side can be estimated in exactly the same manner
as the corresponding term appearing in the case p > 2, because Lemma 3.5 is valid
in the current setting. The first term can be estimated completely analogously to the
corresponding term for p > 2, with inequality (28) now playing the role of (27). The
remainder of the proof proceeds identically. n

Remark. As noted earlier, the results of this section can be extended to the case that A
is merely assumed to be continuous in (C3), and similarly for G™! and ¢ in Theorem 4.2.
In this case we have to work with moduli of continuity w(M, -) for A(z,§) on sets of the

form B_;g x {£ € RN : |¢] < M}. Under the assumption of boundedness of |ur| we then
obtain the analogous results; cf. [9, Sections 5,6].

5. Full boundary regularity

In this section we prove full boundary regularity for a class of minimizers. Obviously in the
case p > n the Sobolev embedding theorem immediately shows that an F-minimizer v is
everywhere regular, and by Theorem 4.2 we immediately have that « is Holder-continuous
with Holder exponent 1 — 2 in a neighbourhood of 0.

The first result is a compactness theorem. The interior analogue is proven in the case
p =2 in [14, Lemma 1], and in the case p > 2 in [9, Lemma 8.1].

Lemma 5.1. Consider a sequence {A¥) (-, -)} of continuous functions defined on B* x
RY which converge uniformly on BT x RN to a function A(-, ), and such that each
function AW) satisfies:

(H1)() AV (2,8)z- 2> Nz> forallz e R, £ e RY, 2 € R"V;
(H2)(,) AV (2,8)z-w < Alz|jw| for allz € R", £ €RY, and z, w € R"Y;

(H3).,) | AW (2, &) — AW)(T, g)] <w(lz—2zP+ € — E]p) for all z,7 € R"™, and &, Ee RN

for a bounded and continuous modulus of continuity w which is concave, nondecreasing,
and which satisfies w(0) = 0, w < 1. Consider further sequences {u} in WlP(B* RY)
and {hW)} in Whs(B* RYN) for some fized s > n such that each u") is a local minimum
of the functional F®) (-, B¥) in W'P(BT RY) relative to the boundary values h') on D,
where here
FW(y, X) :/ (A(”)(:v,v)Dv . Dv)p/qu:
X

for X C B*, v € W'"(BT,RY). We further assume h*) — h weakly in W'*(B* RY)
and u") — u weakly in LP(BT,RY).
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Then w is a local minimum of the functional F (-, B%) relative to the boundary values h
on D, where for X C BT,

Fv,X)= /X (A(z,v)Duv - Dv)p/2dx.

Further there holds for any 0 < R < 1:

F(u, Bf) = lim F" (u"), B}) . (49)

V—00

v)»

Proof. We begin by observing that the weak LP-convergence of the u()’s to u yields, in
the light of the Caccioppoli inequality (13) and its interior analogue, the higher integra-
bility result Lemma 3.1 and a standard covering argument, the following bound: for each

R € (0,1) there holds

/ |Du9dz < ¢(R) (50)
By,

for a constant ¢(R) which can also depend on the parameters n, N, p, q, A\, A, s, as
well as on the quantities sup,; [|h*)|lyrs(p+) and sup,s, [[u®||zs(5+), but which is, in
particular, independent of v. Here the exponent ¢ > p (given by Lemma 3.1) is, of course,
independent of R. In view of (50) and the weak LP-convergence of the u*)’s to u we
see that uw € WHP(BE,RY) for all R € (0,1), and we can pass to a subsequence, again
labelled {u("}, such that there holds:

u) — u strongly in L?; (51)
Du") — Du weakly in LY, (52)
u”) — u pointwise a.e. (53)

Since u € WHP(B%,RY) the Sobolev embedding theorem yields v € L(B%,RY), and
hence by (52) there holds u € W4(Bf, RY) for all p € (0, R), and indeed, after passing
to a further subsequence, u*) — w strongly in L?. (The choice of subsequences depends
a priori on the radius R, but obviously a subsequence fulfilling the conditions on B} will
fulfill them on B for all p € (0, R).)

We next consider
FO@WW B = / (A(z,u)Du) - Du)P/? dy
Bf;
n / (A (2, ™) Dul®) - DU P2 — [(A(z, u) Du® - Du®)P'2 da
By
= I+1] (54)

with t@g obvious labelling. To estimate /I we begin by noting that the mqrglotoniggty of
t ¢z on (0,00) yields the elementary estimate: [s2 —t2| < 2|s —¢|(s"2 +¢"2) for



458 F. Duzaar, J. F. Grotowski, M. Kronz / Partial and Full Boundary Regularity ...

s,t > 0. Using this in //, and using also (H2)(,y, Holder’s inequality and (50), we have:

I < e / A®) (@ u®) = Az, )| - |Dul) P da
B+

R

c(/ |A) (2, u™)) — A(z,u)|» da:) ( ]Du(”)\qu)
Bt

R

QI3

IN

q—-p

< c(R)( /B ; |A (2, 0®)) — A(z, u)|77 m:) (55)

where the constant ¢ depends only on p, A and A, and the constant ¢(R) has the same
dependencies as the constant from (50). This term tends to 0 as v — oo due to (53)
and the uniform convergence of the A®)’s to A (noting also that the integrand in the

last line is pointwise dominated by (2A)a7 in view of (H2)(y). For I we note that
v — [ (A(z,u)Dv - Dv)P/?dz is weakly lower semicontinuous on WP in view of the
R

convexity of the integrand in Dv. Hence we can conclude from (54):

F(u, Bf) <liminf F* (u™), Bf) for R < 1. (56)

V—00

We now consider a given function w € W'P(B* RY) which satisfies w = u on B™ \ B},
w = h on D. As in the interior situation, the idea is to compare the F")-energy of w with
that of «*). This can’t be done directly due to the fact that the boundary values of w and
those of u*) do not coincide on D. This motivates the following construction: we map

B}, onto Bp with a bi-Lipschitz transformation ® in such a manner that ®: B}; — Bp is
the identity on OBgr\ Dg, and such that ®(Dg) = {x € 0Bg : x, < 0}. For p € (0, R) we
choose a cut-off function n € Cj(Bg) with 0 <7 <1, and n=11in B,, and |Vy| < Ri_p.
We then define:

o (x) = w(x) + (1 = n(®(x))) () (2) = u(x)) for z € By.

For x € Dp we then have v (z) = h")(x) and for z € B}, \ D we have v (z) = u)(z),
meaning that there holds, via the local F®)-minimality of v):

FU @, BE) < FW (™, Bf). (57)

We next wish to estimate F*)(v®), B}) in terms of F)(w, B;). To this end we estimate,
with the same argument as in the beginning of estimate (55):

[FO (", BE) = F(o¥), B

I,

< c/ ’A(V)(QZ,U(V)) —A(x,v(”))‘ | Dv®)|P dz (58)
Bt

(AW (z,v®)Dv™ - DY) — (A(z,v™)Do® - Dv®)}| do

IN

where ¢ = ¢(p, A\, A) In order to control this, we begin by noting:

|Dv™| < |Dw|+ |1 —no®| - |Du®|+|1 —no®| - |Du|+|Vno®| Lip®lu—u"|. (59)



F. Duzaar, J. F. Grotowski, M. Kronz / Partial and Full Boundary Regularity ... 459

We have the following estimates:
/ ’A(.ZE,U(V)) - A(”)(x,v(”))} |Dw|P dx — 0 as v — oo
Bj

since the integrand tends to zero as v tends to co, and is pointwise bounded by the
L'-function 2A|Dw? via (H2),); by the same reasoning there holds

/ ‘A(x,v(”)) - A(”)(x,v(”))| |Dul? dx — 0 as v — o0
By

by (H2),y and (51) there holds:

J

and finally by using Hélder’s inequality and arguing as in (55) we observe

}A(:B,U(”)) — A(”)(x,v(”))| [u) — ufPdz < QA/ [u") — u|Pdz — 0 as v — oo;
+ B+
R R

/ |A(x,v(”)) — A(”)(a:,v(”))‘ | Du”|Pdz
By

< (/ |A(x,v(”)) - A(”)(x,v(”))lﬁ d:c)q(/ |Du(”)\qu>p/q —0as v — 0.
By Bj,
Combining these estimates with (58) and (59) we can conclude:
|[F W), BE) — F(o"), Bf)| — 0 as v — oo. (60)
We wish to estimate F(v®), B}) as v — oo, and to this end we define the two sets
B, = {x € B} : n(®(x)) =0}, By = {x € B}, : n(®(x)) > 0}.

We then write, recalling the definition of w:

/ (A(z, ™) D™ . D" dy
B

+
R
= / (A(ZE, w)Dw . Dw)p/2dx + / (A(l‘7 U(V))DU(V) . DU(V)>p/2dx
Bi1 B
= / (A(z,w)Dw - Dw)p/Qda: +1+11, (61)
Bf;

where here

I= —/ (A(z,w)Dw - Dw)?dz, 11 :/ (A(z,v™)Do® . DyW)P2dy .
B By
The term I can be estimated using (H2)(,) and the transformation rule via:

|| < Ap/2/ | Dw|Pdzx < c/ |D(wo ® 1| dax
B2 BR\Bp
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for a constant ¢ depending only on p, A, Lip® and Lip ®~!. The same argument can be
applied to 11, yielding:

11| < c/ |D(v™) o ®~Y)|Pdz
Br\B,

The integrand | D(v®*) 0 ®71)|? can be decomposed and controlled in a manner completely
analogous to that used above to control |[Dv®)|P, yielding the estimate

limsup (|| + |[11]) < c[/ \ |D(woq)—1)|pdm+(Rn_pn)?]7
Br\B,

V—00

for a constant ¢ depending on the same parameters as the constant from (50) as well as on
Lip ® and Lip ®~!. In particular the right-hand side approaches 0 as p /* R. Combining
this with (56), (57) and (60) we have the chain of inequalities

F(u,B%) < liminf F“(u™ B}) <liminf F® (v BE) = liminf F(v™), BY)

< limsup F(v"), Bf) < F(w, Bf) +o(R — p), (62)

i.e. we have established F(u, B}) < F(w, B}), and hence that u is a local F-minimizer.
If we choose w = u in (62), we immediately obtain the inequality (49). O

Note that (49) yields, in the light of (54) and (55):

V—00 BE
A similar argument shows:

F(u, Bf) = lim F(u"), Bf).

V—00

The compactness theorem yields a result concerning the limit of a sequence singular
points of minimizers of the F*)’s. This result was shown in the special case p = 2 as [21,
Lemma 3], and the proof for general p is very similar, but for completeness we include a
sketch here.

Lemma 5.2. Under the same conditions as Lemma 5.1, consider a sequence of points
{x(”)} in Bt N D such that ) is a singular point of u'), and xy such that ) — xy as
v — o00. Then xq is a singular point of u.

Proof. The interior situation - i.e. the case o € BT - is considered for p = 2 in [14,
Lemma 1], and for p > 2 in [9, Lemma 8.1]. In view of [1, Remark 3.5, the arguments
of [9, Lemma 8.1] can be carried over to the interior situation in the case 1 < p < 2. We
hence consider zy € D, and R’ € (0, R) sufficiently such large that ") € B}, U Dp.

In view of Theorem 4.2 and the uniform boundedness of the ||h®)||;1.5 there exist positive
constants £; and R; independent of v such that the fact that ) is a singular point of
u™ implies

PP |Du|Pdz > &2 for all p < min{R;, R — R'}.

Bp(a:("))ﬂBE
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The Caccioppoli inequality (13) (applied to u)) thus yields
p"/ [u®™ — hM|Pde > €5 for all p < Ry, (63)
Bp(x(”))ﬁBg

where g5 > 0 and R, € (0,3 min{R;, R — R'}) are constants independent of v. After
passing to a suitable subsequence such that u®) — h") converges strongly to u — h in
LP(Bf, g, RY), we can pass to the limit in (63), to see

,0”/ |u — hlPdz > &5 for all p < Ry,
By (x)

meaning that z( is a singular point of w. [

The next result is a monotonicity inequality. In general we need to somewhat restrict the
class of coefficients under consideration, but note that the monotonicity of the function
® defined below follows trivially from the monotonicity of F' for p > n for any F' of the
form (1).

Lemma 5.3. Consider fized p € (1,n) and R € (0,1). Let u be a local minimizer for the
functional F(-, Bf) in WYP(BE RY), where here

Flv, B = /B+ [A(x,v)Dv - Do} dz = / [Gaﬁ(x)gij(%U)DaviDﬁvj}pm dz,

By

= & for a given constant vector & € RY. Here
Dgr

the coefficients G and g are assumed to be uniformly continuous on Bj x RN, and to
satisfy the ellipticity and boundedness conditions given by (47). We further assume that
the associated modulus of continuity w (cf. the proof of Theorem 4.2) satisfies

/OT@dKoo (64)

relative to the boundary condition u

S

for some (and hence for all) T > 0. Fort € (0, R], set

d(t) = exp (cl /Ot @ ds)tp_”F(u, B,

for a suitable constant ¢; depending only on n, p and A. Then the function t — ®(t) is
nondecreasing on (0, R].

In the case p > 2, this can be sharpened to

||

ww—mmz@/ 2P

BI\BF

<i Du>‘pdx forall0<p<o<R (65)

for a suitable constant co with the same dependencies as cy.
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Proof. After a suitable change of coordinates in the domain (and possibly increasing the
constant A) we can assume that there holds G*?(0) = §*°. We define x; = try and set

u(z) = u(zy) for x € B,0 <t < R. In particular v and u; have the same boundary
values on OB;", so the fact that u is a local F-minimizer on B}, means that there holds:

F(u, B;“) < F(uy, B;L) . (66)
We write

F(uta Bt+)

Lo Ty TRT

. . ' 42 p/2
= /;;r |:5 ﬁgZ](07Ut(I))D7U ({Et)DHUJ(I't)W (5047—‘1‘?) ((Sﬁn—W)] dl’

+ /B+ {[Gaﬁ(x)gij(x,ut(az))Dwui(xt) Do () % (5(17_9@';?) (5%_%)}13/2

t

. i A £2 T AN L
R O I O |
= 1411,

with the obvious labelling. In order to estimate I, we begin by noting that the coarea
formula yields, for functions f defined on S;" = {z € B, : z, > 0}:

/B+ jz[7"f (ﬁ%) dr= " fly) dH* " (y). (67)

n—pJsr
We further note that there holds:

Ty

o Lol Tolw i ~i
0.9 (5= 57 i =00 (B = 52 ) (B 37 i 20 (09

for all y € B*, ¢ € RN and w, w € R™. Thus we can rewrite I as

2 T i 1p/2
I = /B+ [gw(O,ut)W (575 — ’;ﬁ) D»yUtD,{Ug:| dx

t

- ! / (0,0) (0.0 — D25) Dy Dyl " dH"! (69)
- n—p Sj‘ gz] ) TR ’fEP v K :

Further from (47) we have the inequality

LyTx i j x 2
6i;(0,u) =D~ u' D’ > ’<— Du>‘ . (70)

P 2k

For p > 2 we can continue to estimate from (69) (keeping in mind (70) and the elementary
inequality (a — b)?/2 < aP/? — bP/2 valid for 0 < b < a and p > 2):

t A |
I's (/ [gij(07u>D7u1D7uJ}p/2 dH! _/
Ch

n—p
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We decompose:

/ 10:4(0,w) Dy Dyl JPRaH = / (G () gig (2, w) Do D2~
S,

+
t St

+ / ([(Wﬁgij(o, u)Dyu' Dgu?|P/? — [Gaﬂ(x)gij(x,u)DauiDguj]p/2> dH" ' = IIT+ 1V
S

with the obvious labelling. Using in turn the elementary estimate |s§ — t%| <
Bls — t](sp%2 + tpTﬁ) for s,t > 0 and (47) we estimate IV by

IV < pAp_zw(tp)/

s

| DulP dH" ™ < pAP~2w(tP) / [A(z,u)Du - DulP/* dH"*

s

and hence we obtain, for ¢ = ¢(p, A) = pAP~2,

t
I< ((1 + cw(tp))/ [A(z,u)Du - DulP’? dH"™" — / <W ,Du>’de”_1> .
n—p St st
To estimate I we argue as in the above estimate of IV and deduce

1T < ctPu(t?) / 12| Duy ()P da

By
On applying (67) and then (47) we arrive at the estimate:

ct
n—p

t
< -~ w(t”)/ |Dul? dH" ! <
n—p s

/ [A(z,u)Du - DulP/*> dH" .
S+
Combining the estimates for I and 11 we have

/ [A(z, u)Du - DulP’? dz
B

t
n—p

<

m )

[(1 + cw(t?)) /5)3+ [A(z, u)Du - DulP/? dH™ ™ — /S+ < - Du>‘p dH”_l] . (72)

We now set
o(t) = tp_"/ [A(z,u)Du - DulP/* dz ,
B

and observe from (72) that there holds:

c(n — p)w(t)p(t) T
t = 1+ cw(tr) /S+

¢'(t) +

m 3

(&, Du)|" ar

where c¢ is the constant from (72). Recalling the definition of ® and the fact that w <1

we see that there holds:
P
vz |
1 + C St+

< : Du>‘p dH™ 1 (73)

m )
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Integrating (73) from p to o yields the desired conclusion, i.e. (65).

In the case 1 < p < 2 we see that the calculation as far as (70) remains valid. From this
inequality and (68), we obtain in place of (71) the weaker estimate

t . )
1< / 9:i(0,u) D u' D’ PRAHT
e L

P
<ﬁ , Du>‘ dH !
by 0 throughout. In particular (73) now reads ® > 0, which immediately leads to the
desired conclusion. O

The remainder of the proof carries through, if we replace the term |, s+

Remark. If the coefficients are independent of x then the term I in the above cal-
culations vanishes identically, and the desired monotonicity holds for ®(t) = t*=" [,

[5o‘ﬁgijDauiD/3uj}p/2 dx.

We are now in a position to prove full boundary regularity for a suitable class of mini-
mizers. In the quadratic case this result was shown in [21, Theorem].

Theorem 5.4. Consider fized p > 1, R € (0,1), and a bounded Lipschitz-domain 2 €
R™. Let u be a local minimizer for the functional F(-,Q) in WhP(Q RN) N L>*(Q,RY),
where here, for X C ), we define

F(v,X) = / [Go‘ﬁ(x)gij(:p,v)Davingj]p/Q dx
X

relative to the boundary condition u’a = h for a given function h € W1*(Q,RY) for
Q

some s > n. Here the coefficients G and g are assumed to be uniformly continuous on
OF x RN, and to satisfy the ellipticity and boundedness conditions given by (47). We
further assume that the associated modulus of continuity w satisfied condition (64). Then

u 1s Holder continuous with Holder-exponent 1 — % in some neighbourhood of 0€2.

Proof. We consider a fixed boundary point zy. By a suitable bi-Lipschitz transformation
¥ we can map some neighbourhood B, (z¢) N Q of 2y onto B such that zy maps to 0,
B,y (1) NOQ to D. A straightforward calculation shows that the transformed function
u=uoW ! e W(BT RY) is a local minimizer on BT of a functional which has
coefficients satisfying conditions analogous to (47) and (64), relative to the boundary

condition & = h = ho WL, Since h € W (Q,RY) we have h € WL*(BT RN). This
D

means that it suffices to show the desired Holder continuity for the transformed function
u: equivalently, in view of the above remarks, we can restrict our attention to the case
Q = BT, xg = 0. As in the proof of Lemma 5.3 we can further assume that there holds
G*8(0) = 6*?. In view of Theorem 4.2 it suffices to show that 0 is not a singular point
for u.

For each v € N we define on B} the rescaled functions
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and on B U D, x R the rescaled coefficients

AW (z,0) = A(2,v).

v

For v € WhP(BS, RY), and X C B} we set

FW(p, X) = / [AY) (2, v)Dv - Dv]P/? dx

X

Consider now a fixed o > 0. For all v > ¢ we have that ©u*) and h*) are defined on Bt.
We calculate

/ |DRW)|* dx = 1/”3/ |Dh|°dx — 0asv — . (74)
BY BY
g o/v

Via Morrey’s inequality we have the existence of a constant ¢ depending on n and s such
that supg+ [h — h(0)] < csp*~ % ||h||wrs. This means that there holds

/ WS de = y"/ |\h|* da
BF BT

o/v
< Vn/ [11(0)]+ ¢ (2)'~* hllw] dr

B,
< c(n, s)a" (|R(O)° + [|2][fyr.00° 70" 7%) (75)

In view of (74) and (75) we see that h") — h, strongly in W*( B} R¥) for some constant
vector hoo: from (75) we see that there in fact holds he = h(0).

Further in view of (47) and (64) the coefficients A" satisfy conditions (H1)(,) to (H3)(,)
of Lemma 5.1 (replacing A by 1, and A by A?), and converge uniformly on B x R¥ to
coefficients A given by

Afj’g(oo)(x,v) = A?j’g((),v) = (5aﬁgij(0,v).
From the boundedness of u we see that the u*)’s are uniformly bounded in L?(B},RY),
and hence after passing to a weakly convergent subsequence we can apply Lemma 5.1 and
a suitable diagonalization argument to deduce the existence of ¢ € WhHP (Rﬁ,RN ) with

% = hs which is a local minimizer of the functional
OR™

Fw,57) = [ [5000.0)Datt D!

BY

for all o > 0. If 0 is a singular point of u it is a singular point of each of the u*)’s and
hence, by Lemma 5.2, of ¢: thus the proof of the theorem will be completed if we show
that 0 is a regular point for .

We begin by noting, from Lemma 5.1:

P "F) (o, BY) = lim o? " F® (4", B}) = lim (¢/v)? " F(u, B, )

V—00 V—00 U/V
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for all ¢ > 0: in particular the limit on the right-hand side exists and is finite by the
monotonicity formula from Lemma 5.3. This implies that the term on the left-hand side
is constant, i.e. independent of ¢. In particular there holds %}(pp_"F(‘X’)(gp, B:;)) =0, i.e.

(writing g,;(&) for g;;(0,&))

7 Da lDa']p/2d =
/Bj(gg(@) @' Do’ )P* dx —

/@B+ (95(¢) Dot Dop? )P2dH" 1,

Since ¢ is locally F(*)-minimizing we have from Lemma 5.3, in particular from (69)
(keeping in mind the remark immediately following the lemma) and using also (70):

2\ p/2
)

, , A oy
ij Dq ZDoa ! p/2d < P / ij D, ZDa e
/+(gg(90) @' Do’ )" dx < P - 9ii(9) Doy Dap” — | -

B,

By combining these last two results we see immediately that there holds g—f =0, ie ¢
is homogeneous of degree 0 on R’;. (Such a function is called a minimizing tangent map,

cf. [25, Chapter 3]).

The final step in the proof consists in showing that ¢ must be constant. To this end we
consider the one parameter family of diffeomorphisms {®,},>o on R", where

Oy(x) =+ t(1 — |z|)epn.

For t > 0 we define Cy = {z € R" : 0 <z, < (1 — (Ja]* — 22)"/?) (Le. Cyis the cone
with base D and apex (0,...,0,t)). Then ®;(B*) = B+ \ C}, so the 1-parameter family
of functions {y; }+>0, with

| P8 e n(B)
= ©(0) = hy x€Cy

is well defined. Further there holds ¢,

gt — P h(0). Then we calculate

F) (¢, BT) = / +(gij(sot)DasOiDa¢§)p/2dw
B

= /B+ (A(@)Dp(D®) " - Dp(D®,) )" | det D®,|da,

where we have abbreviated A(¢) = (§*%g;;(€)). Since ¢ is a local minimizer for F(),
there holds:

d

dt

. /B+ (A(9)Dp(DB;) ™" - Dp(D®,) ™) | det Ddy|da > 0, (76)

assuming of course that the one-sided derivative on the left-hand side exists. In order to
calculate the left-hand side, we begin by observing:

X i

®en,  (DOy(x)) ' =1d+t— ®e, + O?).

||

DOy(z) =1d — ¢

]
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We then calculate

d

x x
dt lo+

A(@)Do(D®;) " Dp(D®,) ™" = 2A(p)Dyp- Dp— ®e, = 2A(90)D90|x|

|z
where here the first equality follows by the symmetry of A, the second by the matrix
identity B-Cx®y = Bz -Cy, and the last from the degree zero homogeneity of ¢. Hence
there holds:

Dype, =0,

d

dt
(.%'j(gp)DaSOlDa(Pj )pﬂa‘ | det D<I>t|dx
0

[(A60)Dp(D2) " Dp(DB) )" | det D |

o+

From (76) and keeping in mind the above calculation for D®;, we thus have

. d . . n
0< / (9i(#) Datp' Dop? )P/ 2—’ | det D®,|dx = — / (9i(#) Dot Dop? )P/ 22 4z < 0.
B+ dt lo+ B ||

+

This shows that ¢ must be constant, and completes the proof. Il

Appendix: A Gehring-type lemma
The aim of this section is to prove Theorem 2.4.

For a closed subset A C Q and h € L'(Q2\ A) we define the maximal functions on Q2 \ A

Mgy, ah(z) =  sup / hdr and Méd(%/‘)h(m) = sup / hdz.
0<p<d(z,A) J B,(z)NQ 0<p< dd(z,4) J B,(y)NQ
yEBp(z)NQ

Here d(-, A) denotes the distance function to A; we adhere to the convention d(z, ) = oo
for any € R". Using (8) it is straightforward to show that there holds

M g ayh() < c3Mage ayh(z) (77)
for all z € Q\ A and h € L'(Q\ A), where we choose c3 = 5" 22 (indeed, by (8), 2" 3=
suffices).

We will need the following Calderon-Zygmund covering argument.

Lemma A.1. Consider z € Q, r > 0 and a nonnegative function h € L*(B,(z) N Q) with
+ Bo(2)n9 hdx < s. Then for any T > 1 there exists a countable family of pairwise disjoint

balls { B,, (zx)} such that
(@) pr < grd(ar, @\ Bi(2));

(i) Migonp,nh(@) = 3s for any x € kU Bsrp, (1) N Q,
=1

(i17) h(x) < c3s for almost all v € (B,(z) N Q) \ fj Bs,, (xk);
k=1
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1
(1v) Zﬁ e (T6) N Q) < B /BT(Z)QQ hdz;

(v) ][ hdx < cys for any vy € Bz(z), where the constant cy depends only on
B5pk(xk)mﬂ

7, n and kq. (In the case B,(z) N Q = Q this is valid for any xy.)

The constant c3 = 5" 3= is from (77).

Proof. See [2, Chapter 3, Theorem 2.2], [20, Lemma 2] for the proof in general doubling
metric measure spaces, i.e. in (quasi-) metric spaces that carry a doubling measure.

Let d(x) = d(x,Q2\ B,(z)). The set A, = {z € B,(z) N : Md/gh(x) > c3s} is open by

the lower semicontinuity of ]/\\I/d s2h. The definition of Md s2h and Vitali’s covering theorem
yield the estimate:

£M(A,) < 1/ e < LB )N ), (78)

S

which implies that A, # B,.(z) N, If A, is empty there is nothing to show. Otherwise we
apply a Whitney—type covering argument. For this purpose we set p(x) = % d(x,Q\ As).
Note p(z) > 0 for 2 € A, and so by Vitali’s covering theorem we can extract a countable
and pairwise disjoint subfamily B, (x;) N § C A, from the cover {B,)(z) N Q: x € A}
such that (by the choice of p(z)):

L a0\ A, < %dm, O\ By(2).

A, = U Bsyp () N2 and Pr = B
k

From this construction we see immediately that (i) and (ii) hold. infer Since Md/gh(l’) >

cis for any x € A, we see by Lebesgue’s differentiation theorem (which holds since E”’Q
is a doubling measure) that there holds h(z) = lim, o F B, (@)na N dT < Md/gh(x) < s

for almost all € (B,(2) N Q) \ A; = (Br(2) N Q) \ U, Bsp, (x): this shows (iii). From
(78) we have

1
Zm e ﬂQ)gE”(AS)g—/ hdz,
B, (2)

S

which proves (iv).

To prove (v) we observe that Bag,,, (z5) N €2 has a non-empty intersection with Q \ A,.
There are two possible cases which can occur:

Case 1. Byy,p, (25)NQ C B, (2)NE. We note that this case always occurs if B, (2)N§ = €.
Then there exists yx € (B,(2) N Q) \ As with d(xk, yx) < 107p,. This implies

B5pk(Ik)ﬂQ ‘Cn(BE)pk (Z‘k) M Q) BlOTpk(zk) N

< (27)"

T Mayah(e) < (2r)" 5ok,
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Case II. Byyrp, (2) N (2 \ By(2)) # 0. Then, for points xj, with d(xy,2) < § we have
207p > d(, 2\ Br(2)) > § which immediately yields:
"(B Q
B5pk(1’k)ﬂQ Ln(B5Pk (xk> N Q) B (z2)NQ kQ
Combining both cases yields the result with ¢4 = c4(n, 7, kq). O

We will also require the following technical result concerning Lebesgue—Stieltjes integra-
tion.

Lemma A.2. Consider functions hy and hy : [1,00) — [0,00) which are monotone non-
increasing, with tlim hy(t) = tlim ha(t) = 0, and such that there holds

= [T ) < a0 (o) + (o)

for all o € [og,00), for constants a > 1, p; > 0 and o9 > 1. Then for any exponent
P2 € [p1, Z25p1) there holds

—/ sP? dhy(s)
g0

piog” " ( / > ) a(p2 — p1) < / > )
< — sPrdhi(s) | + — sP2dho(s) | .
apy — (a —1)ps 20 1(s) ap1 — (a — 1)pa o 2(5)

Proof. The result is given in [11, Chapter V, Lemma 1.2] for the case oy = 1, and the
result as stated here follows after a simple rescaling argument. See also [26, Lemma|, and
cf. [10, Lemma 1]. O

We are now in a position to proceed to the

Proof of Theorem 2.4. The result is immediate for ¢ = 0, so we henceforth assume
that g £ 0. We also assume without loss of generality that b > 1 and fix constants 7, §,
o > 1 such that § < & and 2 < 2 (for example, 7 = 10, § = 3 and o = 100). We define

1/p 1/p
r= (f |g|pdx) n (/ Iflpd:r) |

and define rescalings of g and f via:

GW)Z@? F(x):ﬂy G($)=M, and f(z):M,
T T T
where fN'(x) = U(Bdgl—w f(z). Note that in particular this means +,|G|Pdz < 1,

F o|FlPdz < 1 and f |F + G|dz < 1.
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In the case A # () we start by applying a Whitney-type decomposition argument to the
open set 2\ A. By Vitali’s covering theorem, the family {B%d(LA)(x) NQ:z e\ A}

contains a countable, pairwise disjoint subfamily {B,, (x) N 2} such that

O\ A= Bsopy (1) N 92, (79)

where pj, = 1 = d(wg, A). In particular, for any = € Bssp, (1) we have
5(0 —0)pr < d(z, A) < 5(0 + 9)py. (80)

For fixed v € Q\ A we define M = #{k : x € Bss,, (xx) N Q}. In order to bound M
from above we observe that for 2 € Bss,, (zx) we have |z — x| < 56p, < 2d(2, A) <

2|z — x| + d(x, A)) which implies |z — x| < =25 d(x, A). On the other hand we infer
from (80) that |z) — x;| > ::? for any x € B55pk(xk) N Bssp, (25), k # j. Therefore M

is bounded by the maximal number of points in B (e, A)( x) N Q with pairwise distance

> g((:;‘?). Hence there holds

M

£ 100001090 2 35 07(3 g, 1)
k=
M

kQ (O’ — (5)
> n ,
~ ap(200)" (0 4 0)" £ (Bfisd(x,m(x) ﬂQ) ;

which implies

M:#{k:xEBwpk(xk)ﬂQ}gcf,:%(205)" (U—Hs)n. (81)
k’Q o—20

Using the Ahlfors condition (8), (80) and since f,|G[Pdx < 1 we conclude for t, =

()" (20

ap, (5(0 +0) Pk /
"dz Pd < t 2
/Bmkwm'G' = Fa(50p) £ GPdr <t (52)

Now, let @ € Bssp, (wr). For p such that B,(x) N Q C Bssp () NQ C Q\ A (with
the property that sup,cp () ly — x| = ) we have § < 106p. This yields the following

inclusions (recalling § < £%):
ng(l') N C B8p+55pk (l’k) NQ C B165§pk (l’k) NQcC \ A,

and
Bp(.’ll') N C BQ5§pk (iL'k) NneQ.
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On B,/ (x) N we have that d(-, A) < 5(0 +0)pi (see (80)), while on B,(z) N §2 we have
d(-, A) > 5(c — 59)pg. Using these estimates together with (9) we obtain

/ GPPde < az<5(0+5)pk)np/ G dx
B, »(2)N02 N Lr(S2)p B, 5()NQ)
D 5 np p
Lr(Q)p B, (2)NQ B,(2)NQ
< B

I

~ p ~
(f |G|dx) +f |Flrda
B, (z)NQ B, (z)NQ

where B = {2 (2£2)" b. Since Bg,(z) NQ C Q\ A this implies

M s a0 |G () < B (Mo |GI@) + M | FP@)  (83)

for almost all € Bjg,, () N Q. We note that in the case A = () we can consider
instead of the family {Bs,, (zx)} and set t;, = 1 and B = b.

We now consider a fixed ¢ > t,, and define parameters 3 = cg/ Pand r = ;Tpl Bcg/ Pt. Note

in particular that 8 > 1 and r > ¢ > 1. Applying Lemma A.1 with z = zy, r = 5dpy,

h =|GJP, s = r? (note that Bosy na(en)| GlPdT < tg < T <7 < 17) we deduce, for each £,
PL

the existence of a family of pairwise disjoint balls {B,, (xx;)} with each x; € Bssy, ()
such that:

1

M%d(%Q\BM%m))]G|p(.tc) > c% r? = (pr)? for any z € LJJBEwpkj () N2, (85)

G(x)]P < 7P = (Br)? for almost all = € (Bagay (2x) 1)\ U Bop, (z15),  (36)
=1

=

oo 1 .
> LM(B,,, (1) NQ) < — / |G|Pdz, and (87)
j=1 P Bssp,, (T)NG2

f |é|pdx < c—;‘(ﬁr)p for any xy; € Bss, (), (88)
B5pkj (:Ekj)ﬂﬂ 03 2

where ¢4 is the constant from Lemma A.1, (v).

Now for points x3; with with the property that Bs,,  (zx;) N Bs,, (vx) # () we have, using
(84);

1 1 50
|2j — x| < Bprj + 5 < = d(z1j, Q\ Bsspy (Tx)) + 5pr < ;\Ik — x| + % + 5Pk ;

which immediately yields

T+90
1Pk§g5pk

|£L‘kj — {L‘k| S 5
7__
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since :+(15 < 5 This implies in particular that (88) is valid for any pair (k,j) of indices

such that (k, ]) € I :={(k,j) : Bsp,, (wr;) N Bsy, (w3) # 0}
For s > 0 we set B
A;={z € Q\ A: |G(z)| > s}.
Define B = U jyez Bspy; (2r7) N Q2. From (86) and (79) (which is also true with o = 1)

we infer the existence of a set X with £"(X) = 0 such that Ag, \ X C B. By (88), the
Ahlfors condition (8) (i.e. L™(Bs,,,(zr;) N Q) < c3 LB, (7x; N §2)) and since the balls
By, (wk;) are mutually disjoint for fixed & and overlap for different k at most c5 times by
(81), we deduce

/ |GPdr < / Glrde < S5 (Br) Y L7 (Bsp, (1) NQ)
Apr U(k: J)ET B5Pk] (z1;)NQ ‘3

3 (k.j)eT
S Z E pk] wk] ﬂQ)
(k,g)eT
CyC
< jﬁw et (U B (o) N9Q). (89)
3 (k.j)eT

Since r > ¢ we have the inclusion Ag, C Ag;. From (89) we therefore obtain:

/ Glrda _/ yé|p—1|é|dx+/ Glda
A@t ABt\A,Br ABT'

< G [ (Gl + S (| By n9). 00)

(k.j)ex

For any k and all z € U Bs,,., (z1;) N Q we apply (77) and (85) to infer:

jf

~ 1= = (Br)” o (20 1\’
Ma(a,00\Bssy (w0)) |17 () = C—3M§d<x,9\355,,k(m))|G|p<x> = BP ey ] (B)".
(91)
We now define F(z) = [Md(va)(|ﬁ|p)(x)} Y Starting from (83), we deduce the following

chain of inequalities:

~ ~ p ~
Mo\ Brsn ) |G () < B? | (M| G1(@))” + Moo )| FIP()

~ _ 1/p P
< Bp{ ow | (\G<y>|+ sup (/ |F<z>|pdz) )dy}
0<p<gd(z,A) J Bp(z)NQ 0<p<gd(z,4) \YJ Bp(z)NQ
~ _ 1/p P
<ol s [ (Gl sw ([ (Fope) il
0<p<id(z,A)J By(z)N 0<p< §d(e,A) Bs,(w)NQ

weBp(y)NQ

IN

- — ~ 1/p P
C3 Bp{ sup f (|G(y)| + (M%d(y,A)|F|p(y)> ) dy}
B, (z)NQ

0<p<td(z,A)

IN

EB” [ My a(IG1 + 1 F) ()] (92)
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Here the third inequality follows since QN B,(x) C QN Bsy,(y) C QN Bs,(w) fory € B,(x)

: L7 (Bsp(w)NQ
and w € B,(y) since %

By combining (91) and (92) we see that, for every x € B, there holds:

< 3"% < ¢3, and the last inequality follows from (77).

IO %
Mgz 2) (|G| + |F|) (z) > Fﬁt7

i.e. for every such € B we can find a ball B,)(x) N Q with radius r(x) < d(x, A), such
that:

~ ~ 2
f (IG| + |F]) de > ——pt. (93)

Vitali’s covering theorem thus yields the existence of a countable, disjoint family of balls
{Br;(y;) NQ} CH{Br)(x) NQ : x € B} with B C U ey Bsr; (y5) N Q2. For s > 0 we set

Cs={xeQ: ﬁ(m) > s}. Using (93), we then see:

2 ~ ~
B (B, ) < [ (Gl |Fl)da
p— By, (3,02

_ / yé|dx+/ G| de
By (y)NApt (Br; (y5)NS)\Age

+/ |ﬁ|dx+/ |F| dx
By (y;)NCp: (B, (y)N\Ce

< Qﬁtﬁn(Brj(yj)ﬂQ)+/ |C~¥|dx+/ |F| da .
(yj)NAg; Br; (y5)NCgt

By,

Rearranging, this yields:

|é|da;+/ |F|dx | . (94)
(yj)NAge Br; (y;)NCpt

Keeping in mind the properties of the family {B,,(y;)} and using (94), we see:

EW&A%NWD§£%§<A

)

£( U B (o) 102) = £(B) < e 3 £7(B, (1) 1)
(k,j)ET J=1

1S
= C3p2ﬂt Z(/B

Jj=1

G| da + / |F| dx
i (U)NAge By, (y;)NCpt

o ([, a1
< ¢ Gldx + Fldz | . 95
L <MJ' IR ) (95)
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Using (95) in (90) we see:

CaCs (ﬁr)pﬁn( U By, (x5) N Q)

(k,g)eZ

vt [ 1G4 P2 ([W)( Gld ﬁd)
-1 p—1 ~ ~
(1+p . 04(%) (;) (515)1’—1(/% |G|dx+/%|F|dx>

- E(m)pl(/Am |é\daz+/cm\]3]dx> (96)

for a constant ¢ depending only on n, p, b and kq (recall r = %Bcg/pt).

/ G dx < (m)p—l/ G| dx +
Agt

Apy C3

IN

IN

We now define functions h, H on [0, c0) via:

h(s) = / |§|dgc:/~ G da
As {IG|>s}

H(s) = /|]$]dx:/A Fldz.
Cs {IF'|>s}

The functions h and H are monotone nonincreasing, and there holds lim A(s) =

lim H(s) = 0. Setting 7' = (5t, we use (96) to see:

—/ s Ldh(s) = / yévadg;:/~ |G|Pda
T {IGI>T} {IGI>Bt}

< E(Bt)p‘1</A \C~J|dx+/0 |ﬁ|dx>
Bt Bt

— TPV [W(T) + H(T)], (97)

where the constant ¢ is from (96). In particular by considering t = t, (with ¢, from (82))
in (97) we are in a position to apply Lemma A.2 with hy = h, hao =H,py=p—1,a=7¢
and o9 = fty. Then for any g with pp =q¢—1€ [p— 1, 8Tal(p — 1)) we have from Lemma
A2 the inequality

— /5: sV dh(s) < C( - /B: st~ dh(s) — /6: 5771 dH(S)) : (98)

p2—p1

with ¢ = max{pi0y> ", a(p2 — p1)}/(ap1 — (a — 1)ps); in particular, ¢ depends only on n,
p, b and g. Rewriting (98), we have

/~ Gltda < c(/ |é|pd:c+/A |ﬁ\qda:) | (99)
{IG|>Bto} {IG|>pto} {IF|>pBto}

We note the obvious inequality

/ i G|%dz < (Bto)IP / i IG|Pd . (100)
{IG1<Bto} {IG1<Bto}
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Finally note that the continuity of the Hardy—Littlewood maximal-function operator Mg
(with Mah(z) = sup .o f Bp(m)mﬂ|h|dx) as a map from L*(Q2) to L*(§2) for s > 1 enables

us to conclude that there holds

/\Mgh!sdx < c/ Ih|*dz
Q Q

for a constant ¢ depending only on n, s and kq (for example ¢ = 2°c3 %< suffices, cf. [20,

p. 226]). In view of the definition of F we apply this with s = ¢/p, h = |F|P to conclude
(since F < F on Q)) that

/|ﬁ|qu:/ (|Md(x,,4)ﬁ|p)q/pdxg/(|MQpr)q/pdxgc/ |Fleda (101)
Q Q Q Q

for a constant ¢ depending only on n, p, b, ¢ and kq.

Combining (99), (100) and (101) and using the fact that G < G on Q we see

/|é|qu§c</ ]G|pdx+/|F\qu)
Q Q Q

for a constant ¢ depending only on n, p, b, ¢ and kq. Multiplying through by I'?/L£"(2)
we obtain the desired inequality. O]
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