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In this paper we study the relaxation of a class of functionals defined on distances induced by isotropic
Riemannian metrics on an open subset of RN . We prove that isotropic Riemannian metrics are dense in
Finsler ones and we show that the relaxed functionals admit a specific integral representation.
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1. Introduction

In this paper we study an integral functional of the form

F(da) :=

∫

Ω

F (x, a(x)) dx, (1)

defined on the family I of distances da induced by isotropic, continuous Riemannian
metrics through the formula

da(x, y) := inf
{

La(γ) : γ ∈ Lip([0, 1]; Ω), γ(0) = x, γ(1) = y
}

(2)

for every (x, y) ∈ Ω× Ω, where the length functional La is defined as follows

La(γ) :=

∫ 1

0

a(γ(t))| Úγ(t)| dt. (3)

Here a ranges over the family of positive continuous functions from Ω to the interval [α, β],
where α and β are fixed positive constants. We point out that the corrispondence between
such metrics and elements of I is injective, that is two continuous, isotropic Riemannian
metrics which induce the same distance through (2) actually coincide (cf. Remark 3.2).
In particular, that shows that the functional (1) is well defined.

Distances of this type have already been studied in [3, 6] and, in a more geometric frame-
work, in [10]. The set I can be seen as a subspace of the space of Finslerian distances D
(see Section 2), endowed with the metrizable topology given by the uniform convergence
on compact subset of Ω×Ω. It has been proved in [6] that the convergence of a sequence
(dn)n∈N to d in this topology is equivalent to the Γ-convergence of the associated length
functionals Ldn to Ld with respect to the uniform convergence of curves (see Section 2 for
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definitions). The main problem arising in our study is that I is not closed with respect
to this topology. Indeed, one can exhibit sequences of continuous metrics (an)n∈N which
develop an oscillatory behavior in such a way that the induced distances converge to an
element d which does not belong to I any longer (see [1]). Therefore, it is natural to
consider the relaxed functional of (1), namely

F(d) := inf{lim inf
n

F(dn) : dn
D−→ d, (dn)n∈N ⊂ I}, (4)

defined for every d belonging to the closure of I, where we have denoted by
D−→ the

convergence with respect to the topology of D.

In this paper we prove that the space I is dense in D and, under suitable assumptions on
the integrand F in (1), that the relaxed functional (4), which is therefore defined on the
whole D, has the following integral representation:

F(d) =

∫

Ω

F (x,Λd(x)) dx, (5)

where Λd(x) := sup|ξ|=1 ϕd(x, ξ) and ϕd is the Finslerian metric associated to d by deriva-

tion (cf. Definition 2.8). In particular, the functional F will coincide with F on I (cf.
Proposition 3.1).

We conclude this introduction with some considerations. Definition (4) clearly implies
that F is lower semicontinuous. Moreover, it can be shown that it is the greatest among
all lower semicontinuous ones which are bounded from above by F on I (see [4] for various
results on this topic). Therefore, in order to prove our relaxation result, we first have to
show that the functional (5) is lower semicontinuous. The proof of this issue is just a
technical adaptation of the arguments described in [5]. To prove its maximality, instead,
we will approximate each d ∈ D by means of a sequence of suitably chosen distances
dn ∈ I, namely such that

lim sup
n

∫

Ω

F (x,Λdn(x)) dx ≤
∫

Ω

F (x,Λd(x)) dx.

Then, by a standard argument (see Section 4), the maximality of (5) follows.

Indeed, finding such an approximating sequence is a delicate matter. In fact, one should
define the Riemannian metrics an in such a way to have Γ-convergence of the relative
length functionals Lan to Lϕd

(cf. (11) and Remark 3.3) and this problem is not trivial
even in the simplified situation of an isotropic Riemannian metric ϕd, i.e. such that
ϕd = b(x)|ξ| where b is a Borel function from Ω to [α, β]. It is clear, in fact, that this
convergence strongly relies upon the convergence of the approximating metrics on curves,
which is much finer than convergence almost everywhere in Ω. Moreover we do not have
many informations on the properties of the metric ϕd; we only know it is Borel measurable
and such that the associated length functional Lϕd

is lower semicontinuous with respect
to the uniform convergence of curves (see Section 2). In the general case of a non-isotropic
metric the situation is obviously more delicate.

The key idea of our proof is that it is sufficient to control the convergence of the ap-
proximating distances only on a fixed countable and dense subset of Ω×Ω (Lemma 3.4).
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Therefore, when we define the Riemannian metrics, we have only to control the value
of the associated distance dn on the first n points of this set. This will be done by ap-
proximating the Finsler metric ϕd along geodesics (cf. Theorem 4.7). With regard to
that, let us notice that Theorem 4.7 is not just a technical result in order to prove our
main theorems, but has an interesting consequence it is worth underline: every Finsler
distance d ∈ D can indeed be seen as generated by a suitable Borel measurable, isotropic
Riemannian metric a : Ω → [α, β] according to definition (2). In other words, by allowing
the isotropic metric a to vary in a somehow “uncontrolledÔ way, one can recover all the
possible anisotropies of ϕd.
The problem of the density of (smooth) isotropic, Riemannian metrics in Finsler ones
has already been studied. The question was raised in [6], and partially answered in [3] in
the case Ω := RN under the additional assumption that ϕd is lower semicontinuous. We
remark that our proof does not require any extra regularity property on the Finsler metric
and therefore completely answers the question (on the other hand, when Ω 6= RN some
hypotheses on Ω are assumed, see condition (Ω) below). Indeed, as pointed out in [3],
once the density result for continuous and isotropic Riemannian metrics is established,
the analogous result for smooth ones is easily recovered via a regularization argument (cf.
Remark 4.4).

The paper is organized as follows: in Section 2 we recall the main notations used in the
sequel and some results on Finsler metrics, Section 3 contains some preliminary lemmas
and in Section 4 we prove our main theorems.

2. Notation and preliminaries on Finsler metrics

We write here a list of symbols used throughout this paper.

Ω an open connected subset of RN

SN−1 the unitary sphere of RN

Br(x) the open ball in RN of radius r centred in x
I the closed interval [0, 1]
R+ non-negative real numbers
LN the N−dimensional Lebesgue measure
HN the N−dimensional Hausdorff measure
|u| the Euclidean norm of the vector u ∈ RN

χE the characteristic function of the set E
argmin(P) the set of minimizers of the problem (P)

In this paper N denotes an integer number. We will say that a set ω is well contained in
Ω and we will write ω ⊂⊂ Ω to mean that its closure ω is contained in Ω. With the word
curve or path we will always indicate a Lipschitz function from the interval I := [0, 1] to
the closed set Ω; the family of all such curves will be denoted by Lip(I,Ω). Any curve γ
is always supposed to be parametrized by constant speed, i.e. in such a way that | Úγ(t)|
is constant for L1-a.e. t ∈ I. We will say that a sequence of curves (γn)n∈N (uniformly)
converges to a curve γ to mean that supt∈I |γn(t)−γ(t)| tends to zero as n goes to infinity.
We will denote by Lipx,y the family of curves γ which join x to y, i.e. such that γ(0) = x
and γ(1) = y. We remark that, if a sequence of curves (γn)n∈N ⊂ Lipx,y is such that

supn

∫ 1

0
| Úγn(t)|dt < +∞, then, since they are all parametrized by constant speed, we have
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that their first derivative is bounded from above. Therefore, by applying Ascoli-Arzelà
theorem, we can find a curve γ ∈ Lipx,y such that a subsequence (γni

)i∈N converges to γ.
This argument will be implicitly used throughout the paper.

The function F : Ω × [α, β] → R+ appearing in the integrand of (1) is assumed to be
continuous and to fulfill the following conditions:

(i) the function F (x, ·) is convex and nondecreasing for every x ∈ Ω;
(ii)

∫

Ω
F (x, β) dx < +∞.

(6)

Definition 2.1. A Borel function ϕ : Ω × RN → [0,+∞) is said to be a Finsler metric
on Ω ⊂ RN if

(i) ϕ(x, ·) is positively 1-homogeneous for every x ∈ Ω;
(ii) ϕ(x, ·) is convex on RN for LN -a.e. x ∈ Ω;
(iii) for every curve γ ∈ Lip(I,Ω)

ϕ(γ(t), Úγ(t)) = ϕ(γ(t),− Úγ(t)) for L1-a.e. t ∈ I.

Given a Finsler metric, we can define a distance dϕ on Ω through the formula

dϕ (x, y) := inf
{

Lϕ (γ) | γ ∈ Lipx,y

}

, (7)

where the Finslerian length functional Lϕ is defined by

Lϕ(γ) :=

∫ 1

0

ϕ(γ(t), Úγ(t)) dt.

A distance deriving from a Finsler metric through (7) is said to be of Finsler type.

Remark 2.2. Notice that Lϕ is well defined. Indeed, the map t 7→
(

γ(t), Úγ(t)
)

is

Lebesgue measurable on I and ϕ is Borel measurable on Ω × RN, hence their compo-
sition ϕ(γ(t), Úγ(t)) is Lebesgue measurable. Moreover, by assumptions (i) and (iii) in
Definition 2.1, Lϕ(γ) does not depend on the chosen parametrization for γ, that is, if
ρ : I → I is a C1-diffeomorphism, then Lϕ(γ◦ρ) = Lϕ(γ)

We will say that a distance function is of geodesic type if it satisfies the following identity:

d(x, y) = inf
{

Ld(γ) | γ ∈ Lipx,y

}

for every (x, y) ∈ Ω× Ω, (8)

where Ld (γ) denotes the classical d-length of γ, obtained as the supremum of the d-lengths
of inscribed polygonal curves:

Ld(γ) := sup
{
∑

i

d
(

γ(ti), γ(ti+1)
)

: 0 = t0 < t1 < .. < tr = 1, r ∈ N
}

. (9)

Denote by dΩ(x, y) the Euclidean geodesic distance in Ω, that is dΩ := da according to
(2), with a identically equal to 1. We remark that dΩ locally coincides with the Euclidean
distance. We fix two positive constants α, β with β > α and we set

M :=
{

ϕ Finsler metric on Ω : α |ξ| ≤ ϕ (x, ξ) ≤ β |ξ| for all (x, ξ) ∈ Ω× RN
}

.
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Then we define the family D of distances on Ω generated by the metrics M, namely
D := {dϕ | ϕ ∈ M}. Obviously the set I, made up by distances da defined by (2) with
a : Ω → [α, β] continuous, is trivially included in D identifying a(x) with the metric
a(x)|ξ|. It is also clear that α dΩ ≤ d ≤ β dΩ for every d ∈ D, so such distances are locally
equivalent to the Euclidean one. Moreover we have (cf. [5, Lemma 2]):

Proposition 2.3. Let d := dϕ for some ϕ ∈ M. Then Ld(γ) ≤ Lϕ(γ) for every curve γ.
In particular, d is a distance of geodesic type according to definition (8).

Remark 2.4. The inequality in the previous proposition may be strict. For example,
take Ω := (−1, 1)× (−1, 1), Γ := {0} × [−1, 1] and a(x) := χΩ(x) + χΓ(x) for all x ∈ Ω.
Then da(y, z) = |y− z| for all y, z ∈ Ω. If now we take γ(t) := (0,−1/2)(1− t)+ (0, 1/2)t,
it is easily seen that Lda(γ) = 1 < 2 = La(γ).

By using classical results of the theory of metric spaces (see, for instance, [2, Chapter 4]),
one can derive the following

Proposition 2.5. Let d ∈ D. Then the length functional Ld is lower semicontinuous on
Lip(I,Ω) with respect to the uniform convergence of paths, namely if (γn)n∈N converges to
γ then

Ld(γ) ≤ lim inf
n

Ld(γn).

In particular, for every couple of points x, y in Ω there exists a curve γ ∈ Lipx,y which is
a path of minimal d-length, i.e. such that Ld(γ) = d(x, y).

We endow D with the topology given by the uniform convergence on compact subset of

Ω×Ω. We will write dn
D−→ d to mean that the sequence (dn)n∈N ⊂ D converges to d ∈ D

with respect to this topology. Arguing as in the proof of Theorem 3.1 in [6], one can
establish the following result:

Theorem 2.6. Let Ω be an open subset of RN such that

∀r > 0 ∃Cr ≥ 1 such that dΩ(x, y) ≤ Cr|x− y| ∀ x, y ∈ Ω ∩Br(0). (Ω)

Let d and dn belong to D for all n ∈ N. Then dn
D−→ d if and only if Ldn Γ-converge

to Ld on Lip(I,Ω) with respect to the uniform convergence of paths. Moreover, D is a
metrizable compact space.

Throughout this paper we will always work with sets Ω which satisfy condition (Ω). This
holds, for example, whenever Ω has a locally Lipschitz boundary. In particular, then, we
will always assume that D is compact.

Remark 2.7. If Ω satisfies assumption (Ω), then D can be seen as a subspace of the
wider space of Finsler distances on RN . In fact, let us show that every distance in D
can be extended in suitable way to a distance defined on the whole RN . Let d ∈ D and
ϕ ∈ M such that d = dϕ according to definition (7). Let us define

ϕ(x, ξ) :=

{

ϕ(x, ξ) if x ∈ Ω and ξ ∈ RN

2βCn|ξ| if x ∈ Bn(0) \ (Bn−1(0) ∪ Ω) and ξ ∈ RN , n ∈ N
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where Cn are positive constants chosen according to condition (Ω). The Finsler metric ϕ
defines a distance d := dϕ on RN through (7). We claim that d is the required extension
of d. Indeed, first remark that, if γ is a curve which connects two points of ∂Ω in RN \Ω
(i.e. γ(0), γ(1) ∈ ∂Ω and γ((0, 1)) ⊂ RN \ Ω), then, by definition of ϕ and Lϕ, we have
Lϕ(γ) ≥ 2βdΩ(γ(0), γ(1)) > d(γ(0), γ(1)). In particular, by definition of d, there exists a
curve γ̃, with same endpoints as γ and lying in Ω, such that Lϕ(γ) > Lϕ(γ̃). Taking this
into account, it is not difficult to show that, for every couple of points x, y ∈ Ω and for
every curve γ connecting x to y in RN , there exists a curve γ̃, with same endpoints and
lying in Ω, such that Lϕ(γ) > Lϕ(γ̃). Since ϕ = ϕ on Ω × RN , this immediately gives
that d = d on Ω × Ω. Therefore, up to replacing the distance d with its extension d, we
can always assume, if needed, that d is defined on RN × RN .

Definition 2.8. We define the Finsler metric ϕd associated to a distance d ∈ D by
derivation as

ϕd (x, ξ) := lim sup
t→0+

d (x, x+ tξ)

t
(x, ξ) ∈ Ω× RN , (10)

where we have taken Remark 2.7 into account to give a meaning to the above expression
for those points x which belong to ∂Ω.

The length functional Ld admits the following integral representation:

Ld(γ) =

∫ 1

0

ϕd(γ(t), Úγ(t)) dt for all γ ∈ Lip(I,Ω), (11)

i.e. Ld = Lϕd
on Lip(I,Ω) (see [10, Theorem 2.5]). We summarize in the next proposition

the main properties of ϕd. For the proof, we refer to [8, 10].

Proposition 2.9. Let d ∈ D. Then the function ϕd : Ω×RN → R+ is a Borel-measurable
Finsler metric. In particular we have:

(i) ϕd(x, ·) is positively 1-homogeneous for every x ∈ Ω;
(ii) |ϕd(x, ξ)− ϕd(x, ν)| ≤ β|ξ − ν| for every x ∈ Ω and every ξ, ν ∈ RN ;
(iii) ϕd(x, ·) is a norm on RN for LN -a.e. x ∈ Ω.

Remark 2.10. Let d := dϕ for some ϕ ∈ M. In view of Remark 2.7, we may as well
assume d to be defined on RN ×RN , so that expression (10) makes always sense. Take a
curve γ ∈ Lip(I,Ω) and pick up a differentiability point t ∈ (0, 1) for γ. Then, by arguing
as in [10, Theorem 2.5], we get:

ϕd(γ(t), Úγ(t)) = lim sup
h→0+

d(γ(t), γ(t+ h))

h
.

If t is also a Lebesgue point for | Úγ(s)|, that yields:

ϕd(γ(t), Úγ(t)) ≤ lim sup
h→0+

1

h

∫ t+h

t

ϕ(γ(s), Úγ(s)) ds ≤ lim sup
h→0+

β

h

∫ t+h

t

| Úγ(s)| ds = β| Úγ(t)|.

In particular, we deduce that the following holds:

α ≤ ϕd

(

γ(t),
Úγ(t)

| Úγ(t)|

)

≤ β for L1-a.e. t ∈ I.
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Given a distance d ∈ D, we define for every x ∈ Ω

Λd(x) := sup
|ξ|=1

ϕd(x, ξ),

which represents, with analogy to the Riemannian case ϕd(x, ξ) = (B(x)ξ · ξ)
1
2 with B(x)

a symmetric and positive definite matrix, the largest “eigenvalueÔ of ϕd(x, ·) at the point
x. We notice that Λd(x) is a Borel measurable function. Indeed, if (ξn)n∈N is a dense
sequence in SN−1, by property (ii) of Proposition 2.9 we have that Λd(x) coincides with
the function supn ϕd(x, ξn), which is Borel measurable since it is the supremum of Borel
measurable functions.

3. Preliminary results

In this section we prepare the tools which will be needed in the proof of the relaxation
result.

Proposition 3.1. Let ϕ ∈ M and d := dϕ. Then

(i ) ϕd(x, ξ) ≤ ϕ(x, ξ) for LN -a.e. x ∈ Ω and for every ξ ∈ RN . In particular Λd(x) ≤
sup|ξ|=1 ϕ(x, ξ) for LN -a.e. x ∈ Ω;

(ii ) if ϕ(x, ξ) := a(x)|ξ| with a : Ω → [α, β] lower semicontinuous, then ϕd(x, ξ) ≥
a(x)|ξ| for every (x, ξ) ∈ Ω× RN . In particular a(x) = Λd(x) for LN -a.e. x ∈ Ω.

Remark 3.2. If a and b are two continuous isotropic metrics which give rise to the same
distance function d through (2), then a(x) = b(x) for every x in Ω. In fact, by claim
(ii) of Proposition 3.1, we have that the previous equality holds almost everywhere, and
therefore everywhere by the continuity of the metrics. In particular, this shows that the
functional (1) is well defined.

Proposition 3.1 is essentially known (cf. [9, Section 6]). For the reader’s convenience, we
provide here a proof.

Proof. (i) In view of Remark 2.7 it is enough to prove the claim in the case Ω := RN .
Let us fix a vector ξ ∈ RN and, for every x0 ∈ Ω, let us define the curve γx0(s) := x0+ sξ.
Let t be a Lebesgue point for the map s 7→ ϕ(γx0(s), ξ). For h > 0 we have

1

h

∫ t+h

t

ϕ(γx0(s), ξ) ds =
1

h

∫ 1

0

ϕ(γx0(t+ hτ), hξ) dτ ≥ d(γx0(t), γx0(t) + hξ)

h
,

so, by taking the limsup as h → 0+, we get ϕd(γx0(t), ξ) ≤ ϕ(γx0(t), ξ). Since L1-a.e.
t ∈ R is a Lebegue point for ϕ(γx0(·), ξ) and x0 was arbitrarily chosen in Ω, Fubini’s
Theorem implies that ϕd(x, ξ) ≤ ϕ(x, ξ) for LN -a.e. x ∈ Ω. Then we can take a dense
sequence (ξn)n∈N in RN and repeat the previous argument for each ξn. Recalling that the
functions ϕd(x, ·) and ϕ(x, ·) are continuous for almost every x ∈ Ω, we eventually get, by
the density of (ξn)n∈N, that ϕd(x, ξ) ≤ ϕ(x, ξ) for LN -a.e. x ∈ Ω and for every ξ ∈ RN .
In particular we get

Λd(x) ≤ sup
|ξ|=1

ϕ(x, ξ) LN -a.e. in Ω. (12)
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(ii) Let now ϕ(x, ξ) := a(x)|ξ| with a lower semicontinuous. Arguing as in Remark 2.7, one
can assume the function a to be defined on the whole RN and still lower semicontinuous.
By lower semicontinuity, we have that for every fixed x ∈ Ω and for every ε > 0 there
exists rε > 0 such that a(y) ≥ a(x) − ε for every y ∈ Brε(x). Let us fix ξ ∈ SN−1

and take 0 < t < t0. Choose a d-minimizing sequence (γn)n∈N ⊂ Lipx,x+tξ such that
La(γn) ≤ d(x, x + tξ) + αrε/2 for every n. If t0 is small enough, the curves γn lie within
Brε(x). Then we have for every n ∈ N

La(γn) =

∫ 1

0

a(γn)| Úγn| dτ ≥ (a(x)− ε)

∫ 1

0

| Úγn| dτ ≥ (a(x)− ε)t

and letting n go to infinity we obtain

d(x, x+ tξ)

t
≥ a(x)− ε. (13)

By taking the limsup in (13) as t → 0+ and since ε > 0, x ∈ Ω and ξ ∈ SN−1 were
arbitrary we obtain

ϕd(x, ξ) ≥ a(x) for every (x, ξ) ∈ Ω× SN−1 (14)

and the claim follows by the 1-homogeneity of ϕd(x, ·). In particular, by taking the
supremum of the left-hand side of (14) over all ξ ∈ SN−1 and by using (12) we get that
Λd(x) = a(x) for LN -a.e. x ∈ Ω.

Remark 3.3. If d := dϕ and ϕ(x, ξ) := a(x)|ξ| with a : Ω → [α, β] lower semicontinuous,
by the previous Lemma we have that for every curve γ the following holds:

ϕd(γ(t), Úγ(t)) ≥ a(γ(t))| Úγ(t)| for L1-a.e. t ∈ I.

This inequality, coupled with (11) and Proposition 2.3, implies that La(γ) = Łd(γ) for
every curve γ.

The key idea used in the proof of the density result is stated in the following lemma. The
proof is immediate in view of Theorem 2.6 and is omitted.

Lemma 3.4. Let (dn)n∈N be a sequence contained in D which converges pointwise to some

d ∈ D on a dense subset of Ω× Ω. Then dn
D−→ d.

The next result shows that the monotone convergence of metrics implies the convergence
of the induced distances.

Lemma 3.5. Let ϕ and ϕn belong to M for all n ∈ N. Then dϕn

D−→ dϕ in one of the
following cases:

(i ) ϕn(x, ξ) := an(x)|ξ| converge increasingly to ϕ(x, ξ) for every (x, ξ) ∈ Ω×RN , with
an lower semicontinuous in Ω;

(ii ) ϕn(x, ξ) converge decreasingly to ϕ(x, ξ) for every (x, ξ) ∈ Ω× RN .

Proof. To simplify the notations, we will write d and dn in place of dϕ and dϕn respec-
tively.
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(i) First we observe that, by the dominated convergence theorem, the functionals Lan

converge pointwise to Lϕ (i.e. Lan(γ) converges to Lϕ(γ) for every curve γ). Moreover, by
Remark 3.3, we have that Ldn(γ) = Lan(γ) for all curves γ. Since the length functionals
Ldn are lower semicontinuous by Proposition 2.5, we can apply [7, Remark 5.5] to deduce
that Ldn Γ-converge to Łd on Lip(I,Ω) with respect to the uniform convergence of paths.
The claim then follows by Theorem 2.6.
(ii) By Lemma 3.4 it is sufficient to prove that dn(x, y) converges to d(x, y) for every fixed
(x, y) ∈ Ω× Ω. Then, let (x, y) ∈ Ω× Ω. By monotonicity we get d(x, y) ≤ infn dn(x, y).
To show the reverse inequality, take a curve γ ∈ Lipx,y. By the monotone convergence
theorem and by the definition of dn(x, y) we have

Lϕ(γ) = inf
n
Lϕn(γ) ≥ inf

n
dn(x, y),

and the claim easily follows by taking the infimum over all curves in Lipx,y.

We end this section with the proof of two lemmas which will be useful in the sequel.

Lemma 3.6. Let {(xi, yi) | i ∈ N} be a countable collection of points in Ω × Ω. Then it
is possible to find a family of curves {γi | γi ∈ Lipxi,yi

, i ∈ N} such that

(i ) Ld(γi) = d(xi, yi) and γi is injective for every i ∈ N;
(ii ) γi(I)∩γj(I) is a (possibly void) disjoint finite union of closed arcs for every i, j ∈ N.

Proof. First we remark that for every i ∈ N the set

Ri := argmin{Ld(γ) | γ ∈ Lipxi,yi
}.

is non-void by Proposition 2.5. Moreover, any curve in Ri is injective by minimality,
hence it satisfies point (i) of the claim. In order to prove the Lemma, it will be enough
to show that the following holds for every n ∈ N:

Claim: Let {γi | γi ∈ Lipxi,yi
, i ≤ n − 1} be a collection of curves satisfying conditions

(i)-(ii) above. Then it is possible to find γn ∈ Lipxn,yn such that the curves {γi | i ≤ n}
still satisfy conditions (i)-(ii).

For n = 1 the claim is satisfied by choosing a γ1 which belongs to R1. Let then n > 1 and
choose a curve σ in Rn. For every j ≤ n − 1, let us set tj := min{t ∈ I |σ(t) ∈ γj(I) }
and Tj := max{t ∈ I |σ(t) ∈ γj(I) } (we agree that tj = Tj = +∞ if such minimum
does not exist), and J := {j ≤ n − 1 | tj < Tj < +∞}. If J is void, the claim is proved
by setting γn := σ. Otherwise, we can suppose, up to reordering the curves γj, that
t1 = min{tj | j ∈ J }. Then we define τ1 ∈ Lipxn,yn to be the curve obtained by moving
from σ(0) to σ(t1) along σ, from σ(t1) to σ(T1) along γ1 and from σ(T1) to σ(1) along
σ again. Remark that, by minimality, γ1 is a path which connects σ(t1) to σ(T1) in
the shortest way and so we have not increased the length, i.e. Ld(τ1) ≤ Ld(σ), hence
τ1 ∈ Rn. Moreover τ1([0, T1]) ∩ γi(I) is a disjoint finite union of closed arcs for every
1 ≤ i ≤ n− 1. Then we set σ := τ1 |[T1,1] and we repeat the above argument to obtain a

curve τ2 : [T1, 1] → Ω. By iterating this procedure, we eventually find a finite number of
curves {τh | 1 ≤ h ≤ M} for some M < n. Then we define

γn(t) :=







τ1(t) if t ∈ [0, T1]
τh(t) if t ∈ [Th−1, Th] and 1 < h < M
τM(t) if t ∈ [TM−1, 1].
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By what previously observed, we have that γn still belongs to Rn and is therefore injective
by minimality. Moreover, it is such that γn(I) ∩ γi(I) is a disjoint finite union of closed
arcs for every i ≤ n− 1 by construction. The claim is thus proved.

Lemma 3.7. Let γ be an injective Lipschitz curve, Γ := γ((0, 1)) ⊂ Ω and a : Ω → [α, β]
a Borel function. Then there exists a sequence of continuous functions σk : Γ → [α, β]
such that σk(x) converge to a(x) for H1-a.e. x ∈ Γ. Moreover, for every ε > 0 there
exists a Borel subset Bε ⊂ Γ such that H1(Γ \Bε) < ε and σk converge uniformly to a on
Bε.

Proof. The function a◦γ : (0, 1) → [α, β] is Borel measurable, therefore there exists a
sequence (fk)k∈N of continuous functions fk : (0, 1) → [α, β] such that fk(t) converges
to a◦γ(t) for a.e. t ∈ (0, 1). Moreover, by Severini-Egoroff’s theorem [11, Section 1.2,
Theorem 3], for every ε̃ > 0 there exist an infinitesimal sequence (δk)k∈N and a Borel set
Eε̃ such that H1((0, 1) \ Eε̃) < ε̃ and |fk(t) − a◦γ(t)| < δk for every t ∈ Eε̃. The claim
then follows by choosing ε̃ := ε/Lip(γ) and setting σk(x) := fk(γ

−1(x)), Bε̃ := γ(Eε̃).

4. Main results

Our main result is stated as follows.

Theorem 4.1. Let F be the functional defined on I by (1), where F : Ω × [α, β] → R+

is a continuous function satisfying conditions (6) and Ω is an open connected subset of
RN enjoying condition (Ω). Then its relaxed functional (4) has the following integral
representation:

F(d) =

∫

Ω

F (x,Λd(x)) dx (15)

for all d ∈ D. In particular, F(d) = F(d) for all d ∈ I.

The proof of the previous theorem is based on the following two results which we state
separately.

Theorem 4.2. If dn
D−→ d, then lim inf

n→+∞

∫

Ω

F (x,Λdn(x)) dx ≥
∫

Ω

F (x,Λd(x)) dx.

Theorem 4.3. Let Ω be an open connected subset of RN which satisfies condition (Ω).
Then the family I of distances induced by continuous and isotropic Riemannian metrics
on Ω is dense in D. Moreover, for every d ∈ D we can choose a sequence (dn)n∈N ⊂ I
such that dn

D−→ d and

lim sup
n→+∞

∫

Ω

F (x,Λdn(x)) dx ≤
∫

Ω

F (x,Λd(x)) dx. (16)

Remark 4.4. The class of distances induced by smooth isotropic Riemannian metrics is
dense in I. Therefore, by the theorem just stated, smooth isotropic Riemannian metrics
are dense in the class of Finsler metrics. In fact, let us take a distance d in I. Then
d = da for some continuous metric a : Ω → [α, β]. By Tietze’s Lemma, we may extend a
continuously to the whole RN in such a way that α ≤ a(x) ≤ β for all x ∈ RN . Then, by
taking a sequence of convolution kernels ρn, we define the sequence of smooth isotropic
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metrics an : Ω → [α, β] by regularization, i.e. an(x) := ρn ∗ a(x), and we call dn the
induced distances. Since the functions an converge to a uniformly on compact subset of
Ω×Ω, it can be easily shown that the length functionals Lan Γ-converge to La on Lip(I,Ω)
with respect to the uniform convergence of curves. Then, by Remark 3.3 and Theorem

2.6, we have that dn
D−→ d, as claimed.

Once Theorem 4.2 and Theorem 4.3 are proven, Theorem 4.1 will trivially follow. In
fact, Theorem 4.2 gives that the functional (15) is lower semicontinuous with respect to
the uniform convergence of distances, and Theorem 4.3 implies it is the greatest lower
semicontinuous functional defined on D which is bounded from above by F on I. Indeed,
let G be another competitor and let d ∈ D. Choose a sequence (dn)n∈N ⊂ I as in the
statement of Theorem 4.3. We have

G(d) ≤ lim inf
n→+∞

G(dn) ≤ lim inf
n→+∞

F(dn) ≤ lim sup
n→+∞

F(dn) ≤
∫

Ω

F (x,Λd(x)) dx,

hence the claim. The last statement in the claim of Theorem 4.1 is an immediate conse-
quence of Proposition 3.1.

Let us then start by proving Theorem 4.2.

Proof of Theorem 4.2. The proof will be just sketched, since it is essentially an
adaptation of the arguments described in [5, Section 3], where the case F (x, s) := s was
considered.

Let dn, d be as in the statement of the theorem. We recall that the function F : Ω ×
[α, β] → R+ is continuous and fulfills conditions (6). The first result we state is the
following:

• Claim: for every bounded Borel set ω ⊂⊂ Ω and every ξ ∈ SN−1, we have
∫

ω

F (x, ϕd(x, ξ)) dx ≤ lim inf
n→+∞

∫

ω

F (x, ϕdn(x, ξ)) dx . (17)

The previous statement is the analogous of [5, Proposition 9] and can be proved similarly.
Inequality (17) immediately gives the following:

sup
|ξ|=1

∫

ω

F (x, ϕd(x, ξ)) dx ≤ lim inf
n→+∞

∫

ω

F (x,Λdn(x)) dx, (18)

where we have also used the monotonicity assumption (6)-(i) made on F . In order to
conclude, it will be therefore enough to prove the following:

• Claim: Let ϕ ∈ M and assume there exists a sequence (µn)n∈N of positive Radon
measures on Ω such that the following property holds:

sup
|ξ|=1

∫

ω

F (x, ϕ(x, ξ)) dx ≤ lim inf
n→+∞

µn (ω) for every Borel set ω ⊂⊂ Ω. (19)

Then
∫

Ω

F
(

x, sup
|ξ|=1

ϕ(x, ξ)
)

dx ≤ lim inf
n→+∞

µn (Ω) . (20)
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Indeed, in view of (18), the claim of the theorem would follow by applying the previous
statement with ϕ := ϕd and µn(ω) :=

∫

ω
F (x,Λdn(x)) dx.

Let us prove (20). First, we reduce to consider the case of a bounded domain Ω. Indeed,
if this is not the case, we take a sequence (Ωl)l∈N of bounded and connected open sets
well contained in Ω such that Ωl ⊂ Ωl+1 and Ω =

⋃

l∈N Ωl, and we notice that it is enough
to prove that (20) holds for Ω := Ωl for each l ∈ N.

Let us then assume that Ω is bounded and set Λϕ(x) := sup|ξ|=1 ϕ(x, ξ) for all x ∈ Ω.
Following the proof of [5, Proposition 12], we consider three cases:

(1) let ϕ be continuous. Then (20) easily follows from the following lemma, which is
analogous to [5, Lemma 10] and may be proved similarly.

Lemma 4.5. Let Ω be a bounded open set and ϕ ∈ M be a continuous Finsler
metric. Then, for every ε > 0, there exists δ > 0 such that

∫

Dδ
i

F (x,Λϕ(x)) dx ≤ sup
|ξ|=1

∫

Dδ
i

[F (x, ϕ(x, ξ)) + ε] dx for all i ∈ ZN ,

where we have set Dδ
i := Ω ∩ δ

(

2i+ [−1, 1)N
)

.

In fact, fix ε > 0 and take δ > 0 given by Lemma 4.5. We have:

∫

Ω

F (x,Λϕ(x)) dx =
∑

i∈ZN

∫

Dδ
i

F (x,Λϕ(x))dx ≤
∑

i∈ZN

sup
|ξ|=1

∫

Dδ
i

[F (x, ϕ (x, ξ)) + ε] dx.

By assumption we get

∫

Ω

F (x,Λϕ(x)) dx ≤
∑

i∈ZN

[

lim inf
n→+∞

µn(D
δ
i ) +

∫

Dδ
i

ε dx

]

≤ lim inf
n→+∞

µn (Ω) + εLN(Ω)

and (20) follows since ε was arbitrary.

(2) Let ϕ be lower semicontinuous and ϕ(x, ·) convex for every x ∈ Ω. Thanks to
Lemma 2.2.3 in [4], we can find an increasing sequence of continuous Finsler metrics
(ϕk)k∈N ⊂ M such that ϕ(x, ξ) = supk∈N ϕk(x, ξ) for all (x, ξ) ∈ Ω×RN . Each metric
ϕk is continuous and still satisfies condition (19), so we can use the previous step to
infer

sup
k∈N

∫

Ω

F (x,Λϕk
(x)) dx ≤ lim inf

n→+∞
µn (Ω) .

The claim then follows as, by the monotone convergence theorem, we have:

sup
k∈N

∫

Ω

F (x,Λϕk
(x)) dx =

∫

Ω

sup
k∈N

F (x,Λϕk
(x)) dx =

∫

Ω

F (x,Λϕ(x)) dx.

(3) We now make no additional regularity hypothesis on ϕ: we only assume it belongs to
M. First, notice that it is not restrictive to assume that ϕ(x, ·) is convex for every
x ∈ Ω: it is actually sufficient to redefine the metric ϕ by setting ϕ(x, ξ) := β|ξ| on
a negligible Borel subset of Ω which contains all the points where the metric is not
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convex. We can then apply [5, Lemma 11]: for every ε > 0 there exists a compact
set Kε ⊂ Ω such that LN(Ω \Kε) < ε and ϕ|Kε×RN is continuous. We define

ϕε (x, ξ) :=

{

ϕ (x, ξ) if x ∈ Kε,

β |ξ| otherwise.

Notice that ϕε is lower semicontinuous, so we can apply the previous step with µn

replaced by µ̃n := µn + F (x, β)χΩ\Kε
(x) dLN to get

∫

Ω

F (x,Λϕ(x)) dx ≤
∫

Ω

F (x,Λϕε(x)) dx ≤ lim inf
n→+∞

µ̃n (Ω)

= lim inf
n→+∞

µn (Ω) +

∫

Ω\Kε

F (x, β) dx.

As F (x, β) is summable over Ω (condition (6)-(ii)), the integral appearing in the most
right-hand side of the above inequality goes to 0 as ε → 0+. The claim hence follows
as ε was arbitrarily chosen.

Remark 4.6. The above proof still works for slightly more general functionals. Indeed,
it is sufficient that there exists a sequence of continuous functions Fk : Ω × [α, β] → R+

which satisfy conditions (6) and such that F (x, ξ) = supk Fk(x, ξ) for LN -a.e. x ∈ Ω and
for every ξ ∈ RN . In fact, one can apply the above argument to each Fk to get

∫

Ω

Fk (x,Λd(x)) dx ≤ lim inf
n→∞

∫

Ω

F (x,Λdn(x)) dx,

and the claim immediately follows by taking the supremum over k of the left-hand side
term and by the monotone convergence theorem.

We now come to the proof of Theorem 4.3: for any fixed d ∈ D, we want to find a sequence
(dn)n∈N ⊂ I which converges to d and enjoys (16). As pointed out in Lemma 3.4, in the
approximating procedure one only needs to control convergence of distances on a dense
subset of Ω × Ω. To this aim, we set S := QN ∩ Ω. Obviously S × S is countable and
dense in Ω× Ω, so we write S × S := {(xi, yi) | i ∈ N}.
As a preliminary step, we first approximate d ∈ D with distances induced by a sequence
of Borel measurable and isotropic Riemannian metrics.

Theorem 4.7. Let d ∈ D. Then there exists a decreasing sequence of Borel measurable
isotropic metrics an : Ω → [α, β] such that

(i ) dan(xi, yi) = d(xi, yi) for each i ≤ n;

(ii ) an(x) = Λd(x) for LN -a.e. x ∈ Ω.

In particular dan
D−→ d. Moreover, if we set a(x) := infn∈N an(x), we have that da =

d on Ω × Ω, that is every Finsler distance is induced by a Borel measurable, isotropic
Riemannian metric.

Proof. For each (xi, yi) ∈ S × S let γi ∈ Lipxi,yi
be a path of minimal d-length, i.e.

Ld(γi) = d(xi, yi). Such family of curves {γi | i ∈ N} can be chosen in such a way to
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satisfy conditions (i) and (ii) of Lemma 3.6 (this assumption is not really needed here,
but will be important in the proof of Theorem 4.3). By condition (ii), each non-empty
set γi(I) ∩ γj(I) is a disjoint finite union of closed arcs. Let us fix n ∈ N and denote by
Tn the finite set given by the extreme points of such arcs for every 1 ≤ i ≤ j ≤ n. Set
Nn := ∪i≤nγi(I) and let Σn be a Borel H1-negligible subset of Nn such that

Nn \ Σn ⊂
n
⋃

i=1

{

γi(t)

∣

∣

∣

∣

t ∈ I, ϕd

(

γi(t),
Úγi(t)

| Úγi(t)|

)

∈ [α, β]

}

.

Observe that, in view of Remark 2.10, such a set Σn always exists. Then we define the
function an : Ω → [α, β] by

an(x) :=























β if x ∈ ∂Ω \Nn

Λd(x) if x ∈ Ω \Nn

α if x ∈ Tn ∪ Σn

ϕd

(

γi(t),
Úγi(t)

| Úγi(t)|

)

if x = γi(t) ∈ Nn \ (Tn ∪ Σn)

(21)

It can be easily checked that an is well defined and Borel measurable. Moreover it is clear
that an satisfies point (ii) of the claim. Let dan be the distance generated by the metric
defined by an for each n ∈ N. We want to prove point (i) of the claim. Let us fix an
i ≤ n. Then we have

dan(xi, yi) ≤
∫ 1

0

an(γi)| Úγi| dt =
∫ 1

0

ϕd(γi, Úγi) dt = d(xi, yi).

To prove the reverse inequality, choose a curve σ ∈ Lipxi,yi
and, for every 1 ≤ j < n, set

Ij+1 := {t ∈ I \∪h≤j Ih | σ(t) ∈ γj+1(I)}, I1 := {t ∈ I | σ(t) ∈ γ1(I)} and I0 := I \∪j≤nIj.
We remark that the vector Úσ(t) is tangent to γj(I) at σ(t) for L1-a.e. t ∈ Ij, and so
an(σ)| Úσ| = ϕd(σ, Úσ) L1-a.e. on Ij. Therefore we have

Lan(σ) =

∫ 1

0

an(σ)| Úσ| dt =
n

∑

j=1

∫

Ij

an(σ)| Úσ| dt+
∫

I0

an(σ)| Úσ| dt

≥
n

∑

j=1

∫

Ij

ϕd(σ, Úσ) dt+

∫

I0

ϕd(σ, Úσ) dt ≥ d(xi, yi),

where we have used the fact that an(σ)| Úσ| ≥ ϕd(σ, Úσ) on I0. By passing to the infimum
over all possible curves σ ∈ Lipxi,yi

we get the claim.
Notice that Nn ⊂ Nn+1, and we may as well suppose that Σn ⊂ Σn+1 (otherwise, replace
Σn+1 with Σn ∪ Σn+1), therefore (an)n∈N is a decreasing sequence of functions. If we set

a(x) := infn∈N an(x), by applying Lemma 3.5 we get that dan
D−→ da. In particular we

have
da(xi, yi) = lim

n→+∞
dan(xi, yi) = d(xi, yi)

for every i ∈ N. Therefore da = d on a dense subset of Ω×Ω and hence da coincides with
d by continuity. That concludes the proof of the claim.
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The metrics (an)n∈N above defined will be now used to construct the required approxi-
mating sequence of distances.

Proof of Theorem 4.3. The proof is organized in two steps.

Step 1. We first remark that the closure of I contains the family of distances generated
by lower semicontinuous isotropic Riemannian metrics. In fact, let b : Ω → [α, β] be
a lower semicontinuous metric. It is well known that b(x) = supn∈N ãn(x) for suitable
continuous functions ãn (and we may as well suppose that α ≤ ãn ≤ β by possibly
replacing the function ãn with ãn ∨ α). Setting an(x) := supi≤n ãi(x), we have that

dan
D−→ db by Lemma 3.5. Moreover, by Proposition 3.1 we have that Λdb(x) = b(x) and

Λdan (x) = an(x) almost everywhere on Ω and therefore, by the monotonicity assumption
(6)-(i) made on F , we obviously have

lim sup
n→+∞

∫

Ω

F (x,Λdan (x)) dx ≤
∫

Ω

F (x,Λb(x)) dx.

To prove the theorem, it is then sufficient to find a sequence of lower semicontinuous
metrics bn : Ω → [α, β] such that the generated distances dbn satisfy the claim of the
theorem. Indeed, by combining the idea just described with a diagonal argument, the
conclusion would follow at once.

Step 2. To get the desired approximation of the distance d ∈ D via lower semicontinuous
isotropic metrics, it is enough to prove that, for every fixed n ∈ N, there exists a sequence
of lower semicontinuous isotropic metrics bk : Ω → [α, β] such that

(i) lim
k→+∞

dbk(xi, yi) = d(xi, yi) for every i ≤ n;

(ii) lim sup
k→+∞

∫

Ω

F (x, bk(x)) dx ≤
∫

Ω

F (x, an(x)) dx

where an are the Borel isotropic metrics defined in the proof of Theorem 4.7.

In fact the desired sequence of lower semicontinuous metrics is then obtained via a diagonal
argument and taking into account that an(x) = Λd(x) almost everywhere on Ω by Theorem
4.7.

Let us then fix n ∈ N and let an be the Borel metric defined by (21). Keeping the
notations used in the proof of Theorem 4.7, we observe that the set Nn \ Tn is a finite,
disjoint union of open arcs. Therefore, by applying Lemma 3.7 to each arc, we can find
a sequence of continuous functions σk : Nn \ Tn → [α, β] which converge to an H1-a.e.
on Nn \ Tn. Let us set Ak := {x ∈ Ω | dist(x,Nn) < 1/k}. Let (Ωk)k∈N be a sequence
of bounded open sets well contained in Ω such that Ωk ⊂ Ωk+1 and Ω =

⋃

k∈N Ωk. By

Lusin’s theorem we may find a sequence of closed set Kk ⊂ Ωk \ Ak such that an |Kk
is

continuous and LN((Ωk \ Ak) \Kk) < 1/k. Then we define bk : Ω → [α, β] by

bk(x) :=















σk(x) if x ∈ Nn \ Tn

α if x ∈ Tn

an(x) if x ∈ Kk

β elsewhere.
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Notice that bk is lower semicontinuous. Moreover we have

lim sup
k→+∞

∫

Ω

F (x, bk(x)) dx = lim sup
k→+∞

(∫

Kk

F (x, an(x)) dx+

∫

Ω\Kk

F (x, β) dx

)

. (22)

Recalling that F (x, β) is summable over Ω (condition (6)-(ii)), we have that the second
integral at the right-hand side of (22) goes to zero. In fact

∫

Ω\Kk

F (x, β) dx =

∫

Ω\Ωk

F (x, β) dx+

∫

Ωk\Kk

F (x, β) dx, (23)

and the first and second term of the right-hand side of (23) go to zero by the dominated
convergence theorem and the absolute continuity of the integral respectively. Therefore

lim sup
k→+∞

∫

Ω

F (x, bk(x)) dx ≤
∫

Ω

F (x, an(x)) dx,

so point (ii) of the claim is satisfied.
Let us show now that (i) holds. For i ≤ n we have by definition

dbk(xi, yi) ≤ Lbk(γi) =

∫ 1

0

σk(γi)| Úγi| dt,

therefore by the dominated convergence theorem we get

lim sup
k→+∞

dbk(xi, yi) ≤ lim sup
k→+∞

∫ 1

0

σk(γi)| Úγi| dt =
∫ 1

0

an(γi)| Úγi| dt

=

∫ 1

0

ϕd(γi, Úγi) dt = d(xi, yi). (24)

Now, let us take for every k ∈ N a curve γ̃k ∈ Lipxi,yi
such that

Lbk(γ̃k) = dbk(xi, yi). (25)

Notice that such a curve exists in view of Proposition 2.5 and Remark 3.3. Once again, we
remark that, by Lemma 3.6, it is not restrictive to suppose that such curves are injective.
Since α

∫

I
| Ú̃γk| dt ≤ Lbk(γ̃k), by (25) and (24) we get that lim supk

∫

I
| Ú̃γk| dt < +∞. Let

us choose an ε > 0. By applying Lemma 3.7 to each open arc of Nn \ Tn, we can
find a Borel set Bε ⊂ Nn \ Tn and an infinitesimal sequence of positive numbers (δk)k∈N
such that H1(Nn \ Bε) < ε and |σk(x) − an(x)| < δk for every x ∈ Bε. Let us set
Ik := {t ∈ I|γ̃k(t) ∈ Nn \Bε}. Then bk(γ̃k) ≥ an(γ̃k)− δk L1-a.e. on I \ Ik. Let us write

Lbk(γ̃k) =

∫

Ik

bk(γ̃k)| Ú̃γk|dt+
∫

I\Ik
bk(γ̃k)| Ú̃γk|dt.

We remark that, as γ̃k(Ik) ⊂ Nn \Bε for every k ∈ N, by the Area-formula we have

∫

Ik

| Ú̃γk| dt = H1(γ̃k(Ik)) ≤ H1(Nn \Bε) < ε.
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Taking this remark into account we get

∫

Ik

bk(γ̃k)| Ú̃γk|dt =

∫

Ik

an(γ̃k)| Ú̃γk|dt+
∫

Ik

(bk(γ̃k)− an(γ̃k))| Ú̃γk|dt

≥
∫

Ik

an(γ̃k)| Ú̃γk|dt− (β − α)ε.

Then we have

Lbk(γ̃k) ≥
∫ 1

0

an(γ̃k)| Ú̃γk| dt− δk

∫

I\Ik
| Ú̃γk| dt− (β − α)ε

≥ dan(xi, yi)− δk

∫ 1

0

| Ú̃γk| dt− (β − α)ε

and therefore, as δk
∫ 1

0
| Ú̃γk| dt goes to zero when k → +∞, we obtain

lim inf
k→+∞

dbk(xi, yi) ≥ lim inf
k→+∞

Lbk(γ̃k) ≥ dan(xi, yi)− (β − α)ε.

Since ε was arbitrary, the above inequality coupled with (24) gives the claim.

Remark 4.8. It should be noticed that the proof of Theorem 4.3 holds under very gen-
eral assumptions on the function F , namely it is sufficient to take an F which is Borel
measurable and satisfies assumption (ii) of (6), and such that the function F (x, ·) is non-
decreasing for LN -a.e. x ∈ Ω. This consideration, together with Remark 4.6, enables us
to conclude that our relaxation result, namely Theorem 4.1, holds under the following
milder conditions on F : Ω× [α, β] → R+:

(i) there exists a sequence of continuous functions Fk : Ω × [α, β] → R+ satisfying
conditions (6) and such that F (x, ξ) = supk∈N Fk(x, ξ) for LN -a.e. x ∈ Ω, for every
ξ ∈ RN ;

(ii)
∫

Ω
F (x, β) dx < +∞.
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