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In this paper we study the asymptotics of the functional F(v) = [ f(x)d,(x)?dz, where d., is the distance
function to v, among all connected compact sets v of given length, when the prescribed length tends to
infinity. After properly scaling, we prove the existence of a I'-limit in the space of probability measures,
thus retrieving information on the asymptotics of minimal sequences.

1. Introduction

Assume ( is a bounded, connected open set with Lipschitz boundary in R¢, d > 2, and
let ¥(Q) denote the class of all compact, connected sets v C Q of finite one-dimensional
Hausdorff measure H!(~y) (we wil often refer to this quantity as the “length of v”). The
so called “irrigation problem”, i.e. the problem of minimizing fQ d,(x)dz, the integral
of the distance function to v, among all v € X(Q) of prescribed length H!(vy) = [ was
considered in [6] in connection with mass transportation problems (see [1]). In particular,
the problem of studying the asymptotics of the minimizers as [ — oo was raised in [6]. In
this paper, we study the asymptotics as [ — oo of the functionals

171 fo f(x) dy(2)P de, iy € £(Q) and H'(y) =1,
+00, otherwise.

£Fi(v) :{

Throughout, f € L'(£2) is a non negative given function, d. denotes the distance function

to the set v and p > 0 is a given number. The term [7°7 is a normalization which
prevents the functionals to degenerate (indeed, in [6] it was proved that, when p = 1,
min, Fj(y) = O(I7Y@V) as | — o).

A direct link to mass transportation problems is provided by the observation ([4]) that,
for any set v in R? and p > 1, there holds

[ ooy as = {w, el e s, v@) = [ ool

where M denotes the space of finite measures and W), is the Wasserstein distance between
measures of equal mass (see [1]). Our main result concerns the asymptotics as | — oo of
the functionals Fj, and can be stated in terms of I'-convergence: we refer the reader to
[5] for an introduction to this subject and for the terminology related to I'-convergence
(see also [7]). To this purpose, it is convenient to associate with v € () the probability
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measure H'(y)"H'Ly (i.e. normalized Hausdorff measure restricted to ) and regard
F, as a functional defined on P(£2), the space of probability measures supported in {2, as
follows:

p_ if 4 =1""H'L~ for some

— p I p Y

R = | T [ I@aEran TS0 o - 1, M)
+00

otherwise.

Theorem 1.1. The functionals F; defined in (1) T'-converge, with respect to the weak-x

topology on P(L2), to the functional Fy, defined on P(£2) as

Foo(p) = Oayp f(x)L dz, (2)
 p(x)+

where p € LY(Q) is the density (Radon-Nikodym derivative) of p with respect to Lebesque
measure, and 0q, is a positive constant which depends only on the dimension d and on
the exponent p (the fraction in the integral is understood to be zero at those points x where
f(z) and p(z) vanish simultaneously).

The constant 04, is defined for every d > 2 and every p > 0 as follows:

Od,p = inf{lim inf?—(l(%)ﬁ / d., (x)? d:c} , (3)
Jd

n—oo

where I¢ = [0,1]? is the unit cube in R? and the infimum is taken over all sequences of
sets {7, } such that ~, € X(I?) and lim,, H!(v,) = oo.

Formula (3) does not come as a surprise, if one expects a I'-limit of the kind (2): indeed,
the expression for 64, can be guessed by suitable localization and scaling arguments that
are customary in I'-convergence results (we refer to [5] for more details along this line).

We point out that we are not able to compute 6, explicitly except when d = 2 (Theorem
4.4), and hence in dimension d > 2 the I'-limit (2) is explicit up to a multiplicative
constant. This happens also in [4] for a related problem (the so called “location problem”),
where connected sets are replaced by finite sets of given cardinality and a different rescaling
is adopted. However, in Theorem 4.3 we provide a lower bound for 6.

We remark that, using the techniques of this paper, the I'-convergence result in [4] can
be proved without assuming that f is semicontinuous.

Note that the I-limit functional F., in (2) has a unique minimizer in (). Indeed,

ptd—1
4 d—1
min F(p) = min 6,4, f(x)p dr = 04y </ f<x>pid‘1 d;c> ,
peP(Q) 2 o p(z)art 0

obtained choosing p = f(@-1/(p+d=1)/ Jo fd=1/p+d=1) " Therefore, since P(€2) is compact
with respect to the weak-* topology, as a consequence of Theorem 1.1 (see §7 in [7]) we
have the following
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Corollary 1.2. There holds

ptd—1

d—1 d—1
li Fi(v) =20 pHd—T (]
i min 1) =00, ( [ 5 )

Moreover, if v, is a minimizer of F;, and [, — oo, then the probability measures
HY (v,) YH L, converge in the weak-+ topology to the probability measure u = pdx
with p = fl=D/(rd=1) ) [ f(d=1)/(p+d-1)

In the case where f = 1 this corollary formalizes the intuitive idea that, for a sequence
of minimizers ~, of larger and larger length, the “length of 7, per unit area” should tend
to a constant. In fact in two dimensions, it turns out that the comb-shaped sets C,
constructed in the proof of Theorem 4.4 are asymptotically optimal when (2 is a square,
and in the case of a generic domain €2 one can build an asymptotically optimal sequence
dividing €2 into small squares and reproducing the rescaled comb—shaped sets in every
square (as one can see from the proof of the I'-limsup inequality in Section 3). Finding
explicit asymptotically optimal sequences remains an open problem, however, in higher
dimension.

2. Preliminary results

Throughout, 1% = [0, 1]¢ is the unit cube in R? (d > 2), | E| denotes the Lebesgue measure
of E C R? Y(E) denotes the class of all compact, connected sets v C FE such that
H(y) < +o0, and |z]| denotes the integer part of z € R.

Remark 2.1. Given a set I' € (1), we say that I is tiling if I N 0I¢ coincides with the
2¢ vertices of I¢. Moreover, we call periodic %—extension of T inside I¢ the set

* .= U (m + /{;_IF) ,
zek—1zd

z+k—lrdcrd

made of k% copies of T, scaled to a factor 1/k and fit into I in the usual way. If T is
tiling, then I'* remains connected and

HY(TH) = kP HY(D). (4)

Moreover, by scaling one can check that

1 kY 725 P Lol (T)aT HYT)aT P
H(TH) /Iddrk_kH(F) S /Ud,le HY(T) /Iddr.

zeck—1zd
z4+k—lrdcrd

Lemma 2.2. Let I' € X(1%) be a tiling set, and let T* denote the periodic %-emtension of
I'. Then
HY(TH)aTdl, g in LY, (5)

where g 1s a constant such that
g<n [ . (0
Id

Moreover, the probability measures H*(T*)"YH*LLT* converge to the Lebesque measure,
in the weak-+ topology of P(I¢).
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Proof. Let [ = U,eze(z +T') denote the periodic extension of I', and let gx(z) = dp(kx).

It is well known that g7 = G in L>=(I¢) where

azﬁﬁsﬁﬁ. (7)

One can easily check that dpx(x) = k7 'gi(z) if x € I? and 1/k < dya(x), and hence
kPd, = g in Li2,(I?). Combining this with the uniform bound

loc
R (o) < gule) = dp(k) < dg ey Vo € I

one obtains that in fact k?dl, = § in L>(I?). Therefore, one obtains (5) and (6) using
(4), (7) and letting g = H*(I')713.
Finally, the last part of the claim is immediate. Il

Proposition 2.3. Given ¢ > 0, for every l large enough (depending on ¢) there exists a
set C' € X(I%) such that C is tiling, H(C') =1 and

Hl(c*)d’k/ @, < (142)0,,
Id

where 04, is defined by (3).

Proof. Given ¢ > 0, by the definition of ,,, (3) there exists a set 7 € X(I?) such that

HOE [ @ < e/, (5)
H (y) + 24V/d = 1+¢/2
( H(7) ) < 1+¢e/4 9)

Replacing v with the set (1 — 26)y + (d,...,d), where 6 € (0,1) is so small that (8), (9)

still hold, we may suppose that yN9I% = (). Letting I' = yU UzQil s;, where s; C I is the
shortest segment joining 7 to the i-th vertex of I, we have that I' € I? is tiling and (8),
(9) yield

Hl(r)dfl/ db < (Hl(v) + 2dx/3>‘“/ d < (14¢/2)04p. (10)
Id 7d
If I > 0 is large enough, letting k = [ (I/H*(I"))"/(“~1 | we have
1\"  1+e¢
<H a1 -] <——:.
I < HND)(k+ 1)4Y, (1+k) S (11)

Let I'* be the periodic %—extension of I inside I?: since I is tiling by construction, we
have from Remark 2.1 and (10)

HITH) = kD), () / &, < (14 2/2)0u. (12)
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To complete the proof, set C := I'* U A, where A C I? is any compact set such that
HYT*UA) =1and I'* UA is connected. Then (12), (11) yield

_p_ _p_ l a1 _p_
Hl(C)d—l /I‘d d%:ld—l /Id dllikuA < <H1<Fk>) Hl(rk)d_l /I‘d dzlik

p
d—1

< (m) 1t e/2)00, < (1 + %)p (14 2/2)0p < (1+ )04,

]

Definition 2.4. For every integer k > 1, we call grid of order k the set G, C I? of those
(z1,...,74) € I? such that kz; is an integer number for every coordinate i € {1,...,d}
except at most one. One can check that Gy, is made of d(k + 1) unitary segments, each
orthogonal to some face of I?. Moreover, G}, is connected,

C
HYGy) =d(k+1)Y,  and  dg,(2) < T Vre I (13)
where C' depends only on the dimension.
Lemma 2.5. Given h points yi, ...,y in the unit cube I¢, there exists a connected com-

pact set E C I? such that y; € E, 1 < i < h and moreover
H'(E) < ChlT1/
where C' depends only on the dimension d.

Proof. For k > 1, let G}, denote the grid of order k (see Definition 2.4). Letting F}, =
Gy, UU?:1 s;, where s; is the shortest segment with one endpoint in Gy, and the other equal
to y;, (13) yields H'(s;) < C/k and hence

h

h h
YE) = HYG W) < C=<dlk+ 1)1+ C-
H(F) H(k)"‘;H(S)_ k_(+) + A
Hence, it suffices to let ' = F}, with the optimal choice k = th/ dJ. O

The following result is the key step in the proof of the I'-liminf inequality.

Proposition 2.6. Let Q be any closed cube in R For every sequence {v,} C B(R?)
such that lim,, H' (v, N Q) = +oo, there holds

lim inf (H (7, N Q)) / @ > Q| 10, (14)
" Q

Proof. Take {v,} as in the statement to be proved and let [, := H! (7, N Q). By scaling
and translating, we may suppose that @ = I? is the unit cube and furthermore that
T \ @ # 0, because the subsequence of those v, C @ fulfills (14) by the definition of 64,
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(see (3)). Moreover, passing to a subsequence, we may suppose that the liminf in (14) is
a finite limit, and hence that

M :=supl; ' / db < +o0. (15)
Q

n

Pick x, € Q such that r, :== d,, (z,) = maxgd,,. Then clearly B(z,,r,) N7, = 0, and

hence
+d
Q QOB(xn’Tn) QQB(mnﬁ'n)

where C' depends only on d and p. Comparing with (15), we find that

T

=TS ppraan T (16)

max d
Q

where T depends on d, p and M.

Now take a generic v € ¥(R?) such that v\ Q # 0, let [ :== H!(yN Q) > 0 and consider
the following construction, which will later be repeated for each ~,. For small € > 0, let
~¢ denote the union of all connected components of v N @) whose length is at least ¢, and
let ). denote the cube of side 1 — £ concentric with ). We claim that

ri=supd,(z) <e = dy=dy in Qy. (17)
TEQ
Indeed, d, < d.- is obvious since v* C 7. To prove the opposite inequality, take any
T € Q4, and let y € v be such that |z —y| = d,(z). By r < ¢, we have y € Q and, if A
is the connected component of v N @ which contains y, we have AN JQ # () (recall that
7 is connected and v\ @ # (), and hence

H(A) > dog(y) > dog(z) — |x —y| > 26 —d,(v) > 2 -1 >e.

Therefore, A C ~° and, since y € A, we also have d, > d.,- in Q4 and (17) follows.
Moreover, 7 has at most /e connected components, hence by Lemma 2.5 we can find
E C @ such that

d—1
d

E U~* is connected and H'(E) < C (g) : (18)

where C' depends only on the dimension. For every k € N, let G, := Gj, \ Q4 where G, is
the grid of step & (Definition 2.4). One can check that that G5, is connected and moreover

ke>1 = HYGY) <Cek™' and sup dg: < C/k, (19)
Q\Q4€

where C' depends only on the dimension. Set I' = I'(e, k) := y* UE UG5 Us, where s C @
is a segment such that I' is connected (recall (18)). If we suppose that the right hand
sides of the implications (17), (19) are satisfied, we have

oo om0
4e 4e Q4e Q\Q46

(20)
z/df;—cssupd{iz/dp C’z—:supdps_/d’}—C'i,
Q Q\Que Q Q\Que Q kP
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where C' depends only on the dimension. Moreover, we find using (18) and the right hand
side of (19)

HYT) < HY'(F) + HYE) + HYGS) +H(s)

, AN o (21)
<H (y)+C (g) + Cek® " + diam(Q).

Now, if we perform the above construction with v = ~,,, I' = ', (e, k), with the choice

p 1
g, = T/ Y (where T is the constant appearing in (16)) and k, = 7 ', then (16)
implies that 7, < &,, hence d,, = d,- by (17), and (at least for n large enough since
l, — o) knen, > 1, hence also the inequalities in (19) are available. Therefore, the
estimates in (20) carry over to 7, and I',, and we obtain

_p_ l ﬁ p
lim 5! / db > (hmmf ) (hmme (T,) - / db, )
oy 0 'Hl( ) 0 I'n

_» L 1
- CThmnsupl PO > 04 (hmmf HIT >> ,

(22)

since I';, € @ and T', is connected (recall (3)). To complete the proof, it suffices to observe
that (21) yields

d—1

d

HYT,) < H (y,) +C (i—") + Cenk®™! 4 diam(Q)

=1, + —Tfl l1 P + C’Tl G @ + diam(Q),

d

and hence the last liminf in (22) is bounded below by 1. O

3. Proof of the ['-convergence result

This section is devoted to the proof of Theorem 1.1. As usual, we define for every proba-
bility measure p € P(2)

[ (p) = inf{lim ianln(un)} , Ih(p) = inf{lim sup F, (,un)}

(the so called I-liminf e I'-limsup of the sequence of functionals F}), where both infima
are taken over all sequences of positive numbers [, — oo and all sequences of measures
{pn} such that p, — p in P(Q). We refer the reader to §1.6 in [5] for the definitions of
[-liminf and T-limsup: note that, since the weak-* topology on P(Q) is metrizable, we
can restrict to the sequential definitions of I'™ and I'* (see p. 26 in [5], and §8 in [7]).

The proof of Theorem 1.1 is divided into two steps.
Step 1:  TI'"(u) > Fuo(n) V€ P(Q).

To prove this, take p1 € P(€), a sequence j,, — 1 and a sequence of positive numbers /,, —
0o. We have to prove that liminf, £}, (u,) > Foo(t), hence we may assume (considering
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a subsequence) that F, (u,) < 400 for all n. Due to (1), this reduces to assuming that
pn = L7 VH L, for suitable sets v, € %(€2) such that H!(v,) = I,.
We first prove that
f

lim inf (Hl(%))d&/ fd5, > 0ap | —5 (23)
n Q Qpit

for every cube @) C €2, where p is the density of p with respect to Lebesgue measure. Ar-
guing by contradiction, suppose that for some cube @ (possibly passing to a subsequence)

3 lim (K (7)) / e <0a, [ - (24)
" Q Qpit
By scaling and translating, we may assume that Q = I is the unit cube. Take arbitrary

e >0, let k, = Lal}z/ (dfl)J for n sufficiently large and consider Gy, the grid of order k,

_p_
(see Definition 2.4). Letting w, = lx~"d’, 5, we have from the second equation in (13)

1 p
_p_ [F
supw, < l; " sup dgk <C
Q Q n En

where C' depends only on the dimension. Therefore, since k, ~ 5171/ @D a5 n — 0,
|wn||Le=(@) < C: uniformly in n. Thus (passing to a subsequence) we may suppose that

w, = w in L>®(Q) for some w € L>°(Q), and hence

nmm’il/fdgnznm/fwn:/fw. (25)
" Q " JQ Q

Seeking a contradiction, we estimate w from below, as follows. Let Q5 C @ be an
arbitrary closed cube of side d, and set I',, := 7, UGy, U s,, where s, is any segment with
one endpoint in 7, and the other in G,,, such that I',, is connected in R?. We have

_Db _Dp
/Q w = 1171?1 w, = li7rln it /Q gnUGkn > lin}linflﬁ‘l / dr,
5 ]

Qs Qs
> (lim infl—n)dp1 (lim ianl(F ne )dfl/ dyp ) (26)
- n o HYT, N Qs) n " ’ Qs "
> liminfl—n - 0 \QJIH%
= M w00y o ’

having used Proposition 2.6 in the last passage. To estimate from below the last liminf,
we observe that

1
Hi(s,) < diam(Q),  lim 280 k)

= L

= d|Qs|e" (27)
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(the second equation follows easily from the definition of the grid Gy, , see Definition 2.4,

and from ky, ~ el (d_l)). Therefore, using (27)

1 1 1 1
lim sup Tl 0@8) qp o P (n) + (G mZGm +HY Qs N )

1
w < d|Qsle™ + pu(Qs),

= d|Qs|e™ + limsup

since Qs is closed and [7'H'L_~, — u by assumption. Therefore, combining the last
estimates with (26) we find

1

= w> 04, | ——————
@l Jo, <d+%

a1
) VQ(; - Q .
Finally, taking Qs centered at x € ) and letting ()5 shrink around z, we obtain that

1 a1
) for a.e. z € Q.
(x)

O

Plugging this estimate into (25) yields

gy /
lim ¢! / fd®? >0 / 5
n o d.p Q (ded=1 + p)a-t

and, letting ¢ — 0, we find a contradiction comparing with (24). Thus, (23) is satisfied
for every cube Q C Q. Now consider any finite family of disjoint cubes {Q;}, @; C €.
We have using (23)

lim inf 12 / fa > Tminf >0 / fa =S timinfid " [ far,

Oip Y Lp = 0ayp / i

5 7@ pa-t U,;Q; po-t

v

and our claim follows since the family of cubes is arbitrary.

Step 2: T (u) < Fio(p) Y € P(Q).

Recalling (1) and (2), we have to prove that, given a probability measure x € P(Q) and
positive numbers [,, — oo, for every € > 0 one can find a sequence {v,} C X(Q2) such that

_p
H (V) = I, limsup 1 / dt < (14 ¢)ba, LL,
n (9] (9] pdfl
where p is the absolutely continuous part of .

We first prove this claim under the extra assumption that p is absolutely continuous,
positive and piecewise constant, namely, we assume that

dp = pdw, p:ijXEj, EOZQ\UEj7 (28)
j=1

Jj=0
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where the p,’s are positive numbers and the E;’s (j > 0) are disjoint open cubes of side
§ > 0, having vertices on the lattice 6Z¢, such that E; C Q. By scaling, we may further
assume that 0 = 1.

Take ¢ > 0. If A > 0 is large enough, then Proposition 2.3 (invoked with [ = Ap;,
j = 0,...,m) yields m + 1 connected compact sets Cy,...,C,,, such that each C; is
contained in the unit cube I, C; is tiling and

Hl(Cj) = )\pj, Hl(Cj)ﬁ /Id d($, Cj)p dx S (1 + €)ed,p (29)

forall j=0,....,m

For every integer k > 0, set

U U (@+ro). (30)

zek—1zd
x+k lrdconE;

Since € is connected and bounded, the union of all closed cubes having side k~! and
vertices on k~'Z% is connected for k large enough; therefore, as Cj is tiling for every j we
obtain that I'* is connected for large k.

Denoting by Uy the union of all closed cubes of side k~!, with vertices on k~'Z% and
contained in € N Ey, we have from (30), (29), (28)

A A
HY(TF) = |Ug | p0+2kd 25 -1y (UkUUE><k:d . (31)
=1
Since 0 is Lipschitz hence Lebesgue-negligible, one can easily check that

HILTF | ) _

Now let Fk r*n E], 0 < j < m. Observing that I‘k is, when 1 < j < m, the periodic

E—extensmn of Cj; inside the cube E;, from Lemma 2. 2 and the inequality in (29) we find

Hl(r;?)%df;?igj in L®(E;) and g, < (1+€)fgp, 1<j<m.  (33)

Similarly, reasoning as in the proof of Lemma 2.2 and scaling, one can check that if h € N
is fixed, since Uj, is a finite union of cubes of side 1/h there holds

HCE N U rdy, = g0 in L¥(Uy)  and  go < (1+ ), (34)

Recalling (30) and the fact that 02 is Lipschitzian, it is easy to check that

M
supdpr < — (35)
Q k
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for some constant M independent of k. Hence, for natural numbers k& > h > 0, by splitting
and using (35) we find

b L MP HAUTR) O\
1 k a1 4 < 1 k d—1 _—
R /Qdf’“f—H =% /Eo\uh” (Hl(rkmUm)

Hl(rﬁ)d’il/

E;

<awiavg [ a3 (0 ns
Up, 0 = H(FJ) J

By (31) we have H!(I'*) < M\k?~! and hence we find using (32), (33), (34),

limsule(Fk)dpl/dl’Zkngdlep/ f
Q

k Eo\Un

()" . > (i) [, ot

Since h is arbitrary and Uj, T Ey as h — 0o, we obtain since ¢g; < (14 ¢)8,,

lim sup H* (I*)a*1 / dinf < (14 ¢€)0ayp LL (36)
k 0 0 pdfl

Finally, we construct {v,} of length I, starting from I'*, as follows. Denoting by k, the
integer part of (I,/A)Y@=V for n large enough, since u(U;) T u(Ep) as k — oo, from
(31) one obtains that H!(I'*») <[, and H(T*") ~ [, as n — oo. Therefore, we can set
Y := Tk U S, where S, is any connected compact set such that H(S,) = [, — I'* and
S, NI'*2) is non-empty but H'-negligible, so that 7, is connected and H'(v,) = 1,,. Since
then H'(S,) = o(l,) and H*(T'*») ~ I,, as n — oo, using (32) one can check that

HII—’YTL * . ~
— in P(€).
Hify P

Moreover, we have using H!(I'*") ~ H(7,,), 7, 2 I'*» and (36)

lim sup H' ()71 / & f = limsup M (D)7 / & f
n Q n Q

< limsule(Fk")ﬁ / dly, [ < (14 €)0ay —fp )

n Q Q pﬁ

Since ¢ is arbitrary, this shows that I'"(u) < Fio (1) when p is of the kind (28). To prove
the statement for general v € P(Q2), one can argue by density, as usual (see Remark 1.29
in [5]). Indeed, given v € P(£2), there exist v, € P(S2), each of the kind (28), such that

v > v inP(Q)and  Fo() — Fx(v).
Since I't is a fortiori lower semicontinuous (see [7], Prop. 6.8), we find
I (v) <liminfI'*(v) < liminf Fyo () = Fao (V)

and also the general case follows.
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4. Some estimates on 04,

The following lemma, which we haven’t found in the literature, is a consequence of the
proof of Theorem 4.4.8 in [3]: it suffices to approximate the first k& Lipschitz curves therein
constructed by piecewise-affine functions, with k large enough. See also [§].

Lemma 4.1. Given a connected compact set v C R? with H'(y) < 400, there exists a
sequence of connected sets vy; such that each v; is the union of a finite number of segments,
H(v;) < HY(y) and v; — v in the Hausdorff distance.

Lemma 4.2. Let vy be a compact connected subset of R with H'(y) < oo. Then
{z e R : dy(2) < t}| < HY(C)wa1t"™ + wat?, (37)
where wy, denotes the volume of the unit ball in R*.

Proof. For every E C RY, set Ay(E) = {x € R : dg(z) < t}. We first suppose that
v = U, si where each s; is a segment. Let 1/ = [J/_, s;. Since v is connected, we may
suppose that s;,1 N~ # () for j < m. For a single segment s,

|Ay(s)| = H' (8)wa_1t97" + wyt?, (38)
and hence the claim of the lemma is true if m = 1. Now suppose that

[Ai(y7)] < H (9wt + wat (39)
for some 7 < m, and let us prove the same estimate with j + 1 in place of j. We have

Ay = |At(7J: Usjr)| = [A(r") U Ailsjn)l =
= A0 F[A(si)| = [A07) N Alsja)l <
< (H'(Y) + H (s51)) wart™™ 4 2wat? — [Ai(77) N Ai(sj11)]

having used (39) and (38). Now it suffices to observe that, since 4/ N s;41 # 0, A;(77) N
Ai(sj4+1) contains a ball of radius t. Therefore the claim follows by induction on m.

The general case follows from Lemma 4.1, approximating v by union of segments in the
Hausdorff distance (which implies the uniform convergence of the corresponding distance
functions), and observing that the functional | A;(7y)]| is lower semicontinuous in this topol-
ogy (see [2], Prop. 2.1). O

Theorem 4.3. For every p > 0 it holds

0, > (d—1)
» = P

(p+d—1wi

Proof. Consider C' € X(I%), let | = H'(C) and let A; denote the set of those points
r € R% such that do(z) < t. By Lemma 4.2,

Wd—1 Wd-1

[Ay N T < lwg 1t (1+ il ) < lwg_1t®™! <1+ \/a“’d), t € (0, Vd)
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and hence, raising to the power p/(d — 1),

P

) P K\ 1
|Atﬂld|d—1§(lwd_1)d—1t”<1+7> . te(0,Vd) (40)

where K depends only on p,d. Now using |Vdg| = 1 and the coarea formula, we have

t t
|Atﬂld|:/ P, ds, / d’(’):/ sPPyds, t>0
0 Atﬁld 0

where P, is the perimeter of A; in I, and hence

d d
—|A, NI =P, — d’, =t*P,, t> 0.
ﬁ|”1‘ b dt Jaopa € b

Therefore, multiplying (40) by P, we obtain that

d pra1 _p+d—1 ; K\%1 d
AT <0 T, ET (11 = = v
i a C ) ( +z) ﬁ[?w ¢

for every t € (0,4/d). Now, since clearly sup;s de < diam I? = v/d, integrating the last
inequality over (0,v/d) we obtain

p+d—1 - K\ @1
1= |[d| S ﬁ(l(ﬂd_1>d71 (1 + T 1 d%

Since C' € X(19) is arbitrary and K does not depend on C, for every sequence C,, € K(Q)
such that [, = H'(C,) — oo there holds

d—1 2
—— < liminfl; " / d¢.
(p+d—1Dwi; " Q
and the claim follows recalling the definition of 6. O

Theorem 4.4. In two dimensions,

1
2(p+1)

92,1) -

Proof. Let S, be the subset of the closed unit square in R? made of n + 1 equi-spaced
vertical segments of unit length, and let C,, = S,, U B, where B is the base of the square.
Clearly, C,, is connected and H'(C,,) = n + 2. Moreover,

1
2n 1
d? </dp :2n/ tPdt = ———.
/Id O = Jpa 5n 0 (p+1)(2n)P

Therefore,

. . 1 1 + 2)p 1
1 p P < f (n = :
liminf H" (C,,) /Id de, < limin (p+1)2np  2(p+1)

This proves that 6, < 1/2P(p+1), whereas the opposite inequality follows from Theorem
4.3 with d = 2. ]
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