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Let us assume that a sequence {f,}52; of proper lower semicontinuous convex functions is bounded on
some open subset of a weakly compactly generated Banach space. It is shown that if {f,}52; is a Mosco
converging sequence, then for every subgradient z* of f at x there are subgradients z* € Jf,(z,) such
that {z}}52, is weakly* converging to x*.
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1. Introduction

One of the fundamental results of Convex Analysis is the Attouch Theorem. This theorem
expresses the equivalence of Mosco convergence of a sequence of proper lower semicon-
tinuous convex functions to the Painleve-Kuratowski graph convergence of its subdif-
ferentials, see [1] for the reflexive Banach set up and [2, 3, 4] for extensions to nonre-
flexive cases. However, it is known fact that for any nonreflexive Banach space there
is a sequence {f,}°°, of proper lower semicontinuous convex functions such that f =
Mosco — lim,,__,, f, and (z,2*) € Graph(9f) but (z,2*) ¢ PK —lim,,_., Graph(0f,),
see Prop. 4.1 of [2].

In this paper we use the Mosco convergence of sequence of proper lower semicontinuous
convex functions. In order to characterize this convergence we use conditions given in [2].
Namely, we say that f = Mosco—lim,,__., f, if the two following conditions are satisfied:

S1 whenever {x,,}> ; is a sequence weakly convergent to z, then f(z) < liminf, . fn(z);
S2 for each x € E there exists a sequence {z,}>°, converging in norm to x for which

fz) =lim, o fo(z,).

It is not difficult to notice that if {f,}22, is a nondecreasing sequence of lower semicon-
tinuous convex functions and f is the pointwise limit of {f,}>2; then S1 and S2 are
satisfied.

Below we provide another example showing that even if f is the norm in /; space and f,

are lipschitz continuous with the constant equal to 1 yet we do not have graph convergence
of Graph(0f,) to Graph(9f).

Example 1.1. Let us define f(x) := > "2, |2, fu(x) :== >0, |2'| + >0, «* for every
*The author would like to thank the unknown referee for several remarks improving the presentation.
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r el ={u=(u"?.) | u € Rforeveryi = 1,2,... and ) ;o |[u'] < oo} and
n=12,. ..l :={v=(v",v%...)|v' € Rforevery i = 1,2,... and sup,_,, _[|v'| < co}.
Let us observe that the sequence {f,,}°°, is nondecreasing sequence of continuous convex
functions and f is the pointwise limit of it, so f = Mosco — lim,, ., f,. It is obvious
that

0€9f(0):={h€lx] Zh%Z < Z |2*| for every x € 11}
i=1 i=1

For every

(u,v) € Graph(df,) == {(a,b) € l; X l | Zbimi < fula+ ) — fu(a) for every x € I3}

i=1

we have ||v]| > 1. In fact, since for every z € [

Zvixi < folu+z) = folu),
i=1
so taking

T =
~1, ifi=n+1

we get

n 0o n 00
_vn+1§2’ui}+un+l_1+ Z ui_Z’uil_un—H_ Z ui:—l,
i=1 =1

t=n-+2 i=n-+2

S0 sup,_; o |[v'| > 1. Hence there is no sequence {(z,,z})}2, such that (z,,}) €
Graph(0f,) and (x,,x) — (0,0), where the convergence is in the norm topology, so
(0,0) ¢ PK — lim,,—o, Graph(0f,).

Herein, we show that if ' is a weakly compactly generated Banach space and f = Mosco—
lim, . fn, then for every (z,2*) € Graph(9f) there is a sequence {(z,,z})}%, such

that ($n7$;kz) € Graph(afn)a Ty — x7fn(l'n) - f(fL') and l’;kl Uﬂ;‘ x*, where wik)* "
stands for the weak® convergence. Unfortunately, to get this result we need an additional
assumption on the sequence {f,}>° ;, namely, the sequence must be uniformly bounded

on some open, nonempty subset of .

There is also an example showing that in [, space this convergence of subdifferentials can
not be ensured (see Section 3).

2. Preliminaries

In the sequel E will be a real Banach space which is weakly compactly generated. We
recall that a Banach space is WCG (weakly compactly generated) if there exists a weakly
compact subset W of E that spans a dense linear space in E (one can always assume that
W is convex), we refer to [5, 6] for detailed information on those spaces and to [8] for
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background on the weak topology. By E* we denote the dual space to F, i.e. the space
of the continuous linear functionals on E, see [8].

As usual for any convex function f : F — R U {+o0o} finite at  and ¢ > 0, by 0. f(x)
we denote its e-subdifferential i.e.

O f(x) :={z" € E* | (*,h) < e+ f(xr+ h) — f(x) for every h € E'}

and by Graph(0.f) its graph, (z,2*) € Graph(0.f) <= z* € O.f(x). When € = 0 -
subdifferential is called subdifferential and denoted by Jf(z). Several properties of these
notions can be found in [1, 6, 9]. Below we recall one of them, the Brgndsted-Rockafellar
Theorem, see for example Corollary 29.2 of [9].

Theorem 2.1. Let f: E — R U {400} be a convex proper lower semicontinuous func-
tion, o, > 0, y € E with f(y) < oo and f(y) < infg f + afB. Then there exists
(x,2*) € Graph(0f) such that ||z —y|| < o, f(z) < f(y) and ||2*] < 5.

We end this section recalling two properties of weakly compact sets (we refer to [6, 8, 9]
for the definition and applications of this notion). The first is a consequence of Eberlein-
Smulian Theorem, see Theorem 5.3.1 of [7]. It says that if {g, }22, is a sequence of elements
of weakly compact subset of E, then it contains a subsequence weakly convergent to an
element of E. The second is a consequence of the Hahn-Banach Theorem, see Theorem
3.4 b of [8], we refer also to [9] for others forms of it. Namely, if A, B C E x R are convex,
and weakly compact and closed, respectively, then there are y* € E* and p € R, 6 > 0
such that |ly*|| + || > 0 and

V(a,a) € A, (b,8) € B, (y*,a) 4+ pa+ 06 < (y*,b) + us. (1)

3. Results

Below we provide an outer characterization of the subdifferential of a Mosco-converging
sequence. As it was mentioned in the introduction we are able to do it under an additional
assumption (see assumption (ii) of the theorem below).

Theorem 3.1. Let E be a WCG Banach space, (v,x*) € E X E* be fized and f : E —

R U {+o0} be a lower semicontinuous convex function such that f(z) € R, * € 0f(x).

Assume that f, : E — RU{4o00} are lower semicontinuous convex functions such that:

(i) f=Mosco—1lim, . fn;

(i) there is an open nonempty subset U of E and a constant ¢ € R such that for every
ue U and n € N we have f,(u) <c.

Then there are sequences {x,}22, C E and {x}}:°, C E* such that:

(40i) lm, oo @p =, lim, o fu(zn) = f(2);
(i) VYne N, z € df,(x,);

(0) 2"

Proof. Let W be a convex weakly compact subset of E such that E = cl spanWW, where
“cI" stands for the topological closure in the norm topology. Put

Q := conv{iWV U -W},
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where “conv" is the convex hull (see [8], Exercise 2). It is known fact that @ is weakly
compact and E = cl|J 7, n@Q. For a time being let us assume that f(0) = 0 and 0 € 9f(0),
thus f(x) > 0 for every x € E. By assumption S2 there is a sequence {u, }5°, C E such
that u, — 0 and f,(u,) — 0. We shall show that

1
Vk € N,3n(k) € N :¥n >n(k),VYq € Q fn(kq%—un)%—g > 0. (2)

We prove it by a contradiction. Let us suppose, that we can choose a subsequence {g,, }3°,
in () such that for every 1 € N

1

By the Eberlein-Smulian Theorem there is a subsequence {qn;, 121 of {qn,}$2,, which is
weakly convergent to some ¢ € (), thus assumption S1 implies

1 1
< f(kq) + e < liminf f,,, (kgn,, + tn, ) + e <0,

e

a contradiction. Thus (2) holds true. We may assume that n(k) < n(k + 1), ||u,| <
and | f,(u,)| < 1 for every k € N and n(k) < n < n(k+1). Hence, by (2) for every k €
and n(k) <n <n(k+1) we get

1
k
N

{epifu = (s Falua)} (1 {RQ x {11} =D,

By (1) there exists (v, un) € E* x R such that

V(b 5) € epifur (0,0) € KQx (=2}, (b — ) + (5= fuln) > (4 @)+ pacr. (3

Of course (3) implies that u,, > 0 for every k € N and n(k) <n < n(k+1).

There exist a € F and r > 0 such that B(a,3r) :={z € E | ||z —al < 3r} C U. Since
|un|| — 0, for some ng we get

VYn >ny, B(a,2r)+u, CU. (4)

Because E = cl|J,—, k@, for some ky > 4 and every k > ko we are able to find ¢, € kQ
such that ||gx — a|| < r. Taking ky > ko such that n(k;) > no we have

Vk > ki, n(k) <n<n(k+1), B(0,r) CU—u,—kQ. (5)
By (3) if u, = 0, then (y,b —u, —a) > 0 for every b € U, a € kQ, so by (5) y: =0, a
contradiction. Thus p,, > 0 for every k > k; and for every n such that n(k) < n < n(k+1).

By (3) with b € domf, :=={y € E | fu(y) < oo}, B = fu(b), a =0 and a = —% we get
(keep in mind that k > k; and n(k) < n < n(k+1))

Vb€ domfu, >+ fuld) ~ Falin) > (=105 b— ) (6)
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and similarly for b = u,, 8 = f.(u,), a € kQ and a = —% we get

Va € kQ, % > (pin Y ) - (7)

Assumption (ii) and (4), (6) imply
2
V€ B@2), () < 2 ) Sl b u) Se L (9

It follows from (7) (keep in mind kQ C (k+ 1)Q and @ = —Q) that
Va € U kQ, 0= lim (u,'yia). 9)

Let us take any s > 1, h € E. There is k such that for every k > k there are q,i, q,ﬁ €qQ
such that
Hs(—h — k:q,i)” < r and ||EL — k:q,%H <r,

SO
—sh = s(—h — kq}) + skq, + (kqi — @) + a — kqi € B(a,2r) + skq;, — kq;.

Hence by (8) and (9) we get

lim sup <—u;1yz, —sh> <c+1,

thus
Vh e E, 0> limsup <un yn,h> ,
which gives
Vhe E, 0= lim <un yn,h> (10)

It follows from (6) that

VEk > ki, n(k) <n <n(k+1),

(\/%) + InE{ L0 (D) + (i )} 2 Ftn) + (Y )

Since
O (fu) + (i ¥ +)) = O(fa()) + i w0
the Brondsted-Rockafellar Theorem ensures that for every k£ > ky and n(k) <n < n(k+1)
we are able to find (z,,z}) € Graph(df,) such that
\/5

Thus x, — 0 and by (10) z By the Mosco convergence 0 = f(0) <
liminf, . fn(z,). We have also 0 = lim, oo (i Y2, T — Uy), SO

-1 *
Yn

|en — un| < \/7 fulzy) un Lyr oz, —un> < fn(u,) and

weak™
r— 0.

limsup fi () = lmsup (fu(n) + iy 90— ua)) < lim fo(u,) =0,

n—-s00 n—s00 n oo
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which implies 0 = lim,, . fn(2n).

In order to finish the proof let us observe that if z* € 0f(x) then the first part of the
proof can be applied to the functions g(h) := f(z + h) — f(z) — (z*,h) and g,(h) =
folx+h) = f(x) — (xz*, h). We have dg(0) = f(x) — z* and g, (h,) = Of(x + h,) —

Of course h,, — 0 and g,,(h,,) — 0 imply f,(x + h,) — f(z). Whenever ¢ € 0g,(h,)
and (g, h) — 0 then (z* + g%, h) — (x*, h) with 2*+ ¢ € 0f,(z+ h,). This completes
the proof.

The next example shows that the theorem is not valid in /.

Example 3.2. Let us fix any # € [, such that 0 < z! < 7 < ..., ||7]| = 1 and
z* € 9||z||. Let us define f(z) := ||z| and f,(z) := max;<;<, |2!| for every z € I, and
n € N. It is not difficult to see that fi(z) < fo(z) < ... and lim, . fu(x) = ||z| for
every x € o, thus (S1) and (S2) are satisfied. Take any sequence {z,,}°°; C [, such that
x, — T and f,(x,) — f(Z). Let us assume that for some sequence {z*}> ; such that

xk € Ofn(xy) for every n € N we have o "% Let e;(x) := |2| for every i = 1,2, ...
andx—(m z?,...) € lw. Let us put[( ) —{ze{l,...,rz}]fn(:v):\xi]} for every
T € ly. It is an easy exercise to show that

{z* € ll, |Vu€ly, (z5u)=u'}, if z* > 0;
Oei(x) = {z* €l’, |Vu€ly, (z*u)=—u'}, ifz'<O0;
{z* €l |Vu € ly, (z%u)<|u'|}, ifaz'=0

and

Vo € loo, Ofn(z) C conv{ U de;(x)} (11)

1€l ()

(keep in mind that the sets de;(x) are weak* compact and convex, see the Banach-Alaoglu
Theorem of [8]). For every n = 1,2,... let us define d(n) := min [,(z,) and g(n) :=
max [,,(x,). Since z,, — T, so d(n) — oo (we recall that 0 < z' < 7% < ... ). We
are able to find a subsequence {n;}?°,; such that g(ny) < d(ng+1) and by (11) multipliers

Ar* > 0 such that Zg(n’“) At =1 for every k =1,2,... and (a}, ,u) = Zg(n’“ PV

i=d(ny)
for every u = (ul,u?,...) E loo. Let us define
1, if ding) <i<g(ng),k=1,3,5,...;
Rt =< =1, ifd(ng) <i<g(ng),k=24,6,...;
0, otherwise
and h := (h',h?,...). We have
limsup< nk,h> =1
k—00

and

llicriglof@tflk, hy=—

This contradicts to the weak* covergence of {z*}> ;| to z*.
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