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Let us assume that a sequence {fn}∞n=1 of proper lower semicontinuous convex functions is bounded on
some open subset of a weakly compactly generated Banach space. It is shown that if {fn}∞n=1 is a Mosco
converging sequence, then for every subgradient x∗ of f at x there are subgradients x∗

n ∈ ∂fn(xn) such
that {x∗

n}∞n=1 is weakly∗ converging to x∗.
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1. Introduction

One of the fundamental results of Convex Analysis is the Attouch Theorem. This theorem
expresses the equivalence of Mosco convergence of a sequence of proper lower semicon-
tinuous convex functions to the Painleve-Kuratowski graph convergence of its subdif-
ferentials, see [1] for the reflexive Banach set up and [2, 3, 4] for extensions to nonre-
flexive cases. However, it is known fact that for any nonreflexive Banach space there
is a sequence {fn}∞n=1 of proper lower semicontinuous convex functions such that f =
Mosco− limn−→∞ fn and (x, x∗) ∈ Graph(∂f) but (x, x∗) /∈ PK − limn−→∞Graph(∂fn),
see Prop. 4.1 of [2].

In this paper we use the Mosco convergence of sequence of proper lower semicontinuous
convex functions. In order to characterize this convergence we use conditions given in [2].
Namely, we say that f = Mosco− limn−→∞ fn if the two following conditions are satisfied:

S1 whenever {xn}∞n=1 is a sequence weakly convergent to x, then f(x)≤ lim infn−→∞ fn(xn);

S2 for each x ∈ E there exists a sequence {xn}∞n=1 converging in norm to x for which
f(x) = limn−→∞ fn(xn).

It is not difficult to notice that if {fn}∞n=1 is a nondecreasing sequence of lower semicon-
tinuous convex functions and f is the pointwise limit of {fn}∞n=1 then S1 and S2 are
satisfied.

Below we provide another example showing that even if f is the norm in l1 space and fn
are lipschitz continuous with the constant equal to 1 yet we do not have graph convergence
of Graph(∂fn) to Graph(∂f).

Example 1.1. Let us define f(x) :=
∑∞

i=1 |xi|, fn(x) :=
∑n

i=1 |xi|+
∑∞

i=n+1 x
i for every
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x ∈ l1 := {u = (u1, u2, ...) | ui ∈ R for every i = 1, 2, . . . and
∑∞

i=1 |ui| < ∞} and
n=1,2,. . . , l∞ := {v = (v1, v2, ...) | vi ∈ R for every i = 1, 2, . . . and supi=1,2,... |vi| < ∞}.
Let us observe that the sequence {fn}∞n=1 is nondecreasing sequence of continuous convex
functions and f is the pointwise limit of it, so f = Mosco − limn−→∞ fn. It is obvious
that

0 ∈ ∂f(0) := {h ∈ l∞ |
∞
∑

i=1

hixi ≤
∞
∑

i=1

∣

∣xi
∣

∣ for every x ∈ l1}.

For every

(u, v) ∈ Graph(∂fn) := {(a, b) ∈ l1 × l∞ |
∞
∑

i=1

bixi ≤ fn(a+ x)− fn(a) for every x ∈ l1}

we have ‖v‖ ≥ 1. In fact, since for every x ∈ l1

∞
∑

i=1

vixi ≤ fn(u+ x)− fn(u),

so taking

x̄i :=

{

0, if i 6= n+ 1;

−1, if i = n+ 1

we get

−vn+1 ≤
n

∑

i=1

∣

∣ui
∣

∣+ un+1 − 1 +
∞
∑

i=n+2

ui −
n

∑

i=1

∣

∣ui
∣

∣− un+1 −
∞
∑

i=n+2

ui = −1,

so supi=1,2,... |vi| ≥ 1. Hence there is no sequence {(xn, x
∗
n)}∞n=1 such that (xn, x

∗
n) ∈

Graph(∂fn) and (xn, x
∗
n) −→ (0, 0), where the convergence is in the norm topology, so

(0, 0) 6∈ PK − limn−→∞Graph(∂fn).

Herein, we show that if E is a weakly compactly generated Banach space and f = Mosco−
limn−→∞ fn, then for every (x, x∗) ∈ Graph(∂f) there is a sequence {(xn, x

∗
n)}∞n=1 such

that (xn, x
∗
n) ∈ Graph(∂fn), xn −→ x, fn(xn) −→ f(x) and x∗

n
weak∗−→ x∗, where “

weak∗−→ "
stands for the weak∗ convergence. Unfortunately, to get this result we need an additional
assumption on the sequence {fn}∞n=1, namely, the sequence must be uniformly bounded
on some open, nonempty subset of E.

There is also an example showing that in l∞ space this convergence of subdifferentials can
not be ensured (see Section 3).

2. Preliminaries

In the sequel E will be a real Banach space which is weakly compactly generated. We
recall that a Banach space is WCG (weakly compactly generated) if there exists a weakly
compact subset W of E that spans a dense linear space in E (one can always assume that
W is convex), we refer to [5, 6] for detailed information on those spaces and to [8] for
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background on the weak topology. By E∗ we denote the dual space to E, i.e. the space
of the continuous linear functionals on E, see [8].

As usual for any convex function f : E −→ R ∪ {+∞} finite at x and ε ≥ 0, by ∂εf(x)
we denote its ε-subdifferential i.e.

∂εf(x) := {x∗ ∈ E∗ | 〈x∗, h〉 ≤ ε+ f(x+ h)− f(x) for every h ∈ E}

and by Graph(∂εf) its graph, (x, x∗) ∈ Graph(∂εf) ⇐⇒ x∗ ∈ ∂εf(x). When ε = 0 ε-
subdifferential is called subdifferential and denoted by ∂f(x). Several properties of these
notions can be found in [1, 6, 9]. Below we recall one of them, the Brøndsted-Rockafellar
Theorem, see for example Corollary 29.2 of [9].

Theorem 2.1. Let f : E −→ R ∪ {+∞} be a convex proper lower semicontinuous func-
tion, α, β > 0, y ∈ E with f(y) < ∞ and f(y) ≤ infE f + αβ. Then there exists
(x, z∗) ∈ Graph(∂f) such that ‖x− y‖ ≤ α, f(x) ≤ f(y) and ‖z∗‖ ≤ β.

We end this section recalling two properties of weakly compact sets (we refer to [6, 8, 9]
for the definition and applications of this notion). The first is a consequence of Eberlein-
S̆mulian Theorem, see Theorem 5.3.1 of [7]. It says that if {qn}∞n=1 is a sequence of elements
of weakly compact subset of E, then it contains a subsequence weakly convergent to an
element of E. The second is a consequence of the Hahn-Banach Theorem, see Theorem
3.4 b of [8], we refer also to [9] for others forms of it. Namely, if A,B ⊂ E×R are convex,
and weakly compact and closed, respectively, then there are y∗ ∈ E∗ and µ ∈ R, δ > 0
such that ‖y∗‖+ |µ| > 0 and

∀(a, α) ∈ A, (b, β) ∈ B, 〈y∗, a〉+ µα+ δ ≤ 〈y∗, b〉+ µβ. (1)

3. Results

Below we provide an outer characterization of the subdifferential of a Mosco-converging
sequence. As it was mentioned in the introduction we are able to do it under an additional
assumption (see assumption (ii) of the theorem below).

Theorem 3.1. Let E be a WCG Banach space, (x, x∗) ∈ E × E∗ be fixed and f : E −→
R ∪ {+∞} be a lower semicontinuous convex function such that f(x) ∈ R, x∗ ∈ ∂f(x).
Assume that fn : E −→ R∪ {+∞} are lower semicontinuous convex functions such that:

(i) f = Mosco− limn−→∞ fn;

(ii) there is an open nonempty subset U of E and a constant c ∈ R such that for every
u ∈ U and n ∈ N we have fn(u) ≤ c.

Then there are sequences {xn}∞n=1 ⊂ E and {x∗
n}∞n=1 ⊂ E∗ such that:

(iii) limn−→∞ xn = x, limn−→∞ fn(xn) = f(x);

(iv) ∀n ∈ N, x∗
n ∈ ∂fn(xn);

(v) x∗
n

weak∗−→ x∗.

Proof. Let W be a convex weakly compact subset of E such that E = cl spanW , where
“cl" stands for the topological closure in the norm topology. Put

Q := conv{W ∪ −W},
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where “conv" is the convex hull (see [8], Exercise 2). It is known fact that Q is weakly
compact and E = cl

⋃∞
n=1 nQ. For a time being let us assume that f(0) = 0 and 0 ∈ ∂f(0),

thus f(x) ≥ 0 for every x ∈ E. By assumption S2 there is a sequence {un}∞n=1 ⊂ E such
that un −→ 0 and fn(un) −→ 0. We shall show that

∀k ∈ N,∃n(k) ∈ N : ∀n ≥ n(k),∀q ∈ Q fn(kq + un) +
1

k
≥ 0. (2)

We prove it by a contradiction. Let us suppose, that we can choose a subsequence {qni
}∞i=1

in Q such that for every i ∈ N

fni
(kqni

+ uni
) +

1

k
≤ 0.

By the Eberlein-S̆mulian Theorem there is a subsequence {qnis
}∞s=1 of {qni

}∞i=1, which is
weakly convergent to some q̄ ∈ Q, thus assumption S1 implies

1

k
≤ f(kq̄) +

1

k
≤ lim inf

s−→∞
fnis

(kqnis
+ unis

) +
1

k
≤ 0,

a contradiction. Thus (2) holds true. We may assume that n(k) < n(k + 1), ‖un‖ ≤ 1
k

and |fn(un)| < 1
k
for every k ∈ N and n(k) ≤ n < n(k+1). Hence, by (2) for every k ∈ N

and n(k) ≤ n < n(k + 1) we get

{epifn − (un, fn(un))} ∩ {kQ× {−2

k
}} = ∅.

By (1) there exists (y∗n, µn) ∈ E∗ ×R such that

∀(b, β) ∈ epifn, (a, α) ∈ kQ×{−2

k
}, 〈y∗n, b− un〉+µn(β−fn(un)) > 〈y∗n, a〉+µnα. (3)

Of course (3) implies that µn ≥ 0 for every k ∈ N and n(k) ≤ n < n(k + 1).

There exist ā ∈ E and r > 0 such that B(ā, 3r) := {z ∈ E | ‖z − ā‖ ≤ 3r} ⊆ U . Since
‖un‖ −→ 0, for some n0 we get

∀n ≥ n0, B(ā, 2r) + un ⊆ U. (4)

Because E = cl
⋃∞

k=1 kQ, for some k0 > 4 and every k ≥ k0 we are able to find q̃k ∈ kQ
such that ‖q̃k − ā‖ < r. Taking k1 > k0 such that n(k1) > n0 we have

∀k ≥ k1, n(k) ≤ n < n(k + 1), B(0, r) ⊆ U − un − kQ. (5)

By (3) if µn = 0, then 〈y∗n, b− un − a〉 > 0 for every b ∈ U , a ∈ kQ, so by (5) y∗n = 0, a
contradiction. Thus µn > 0 for every k > k1 and for every n such that n(k) ≤ n < n(k+1).
By (3) with b ∈ domfn := {y ∈ E | fn(y) < ∞}, β = fn(b), a = 0 and α = − 2

k
we get

(keep in mind that k > k1 and n(k) ≤ n < n(k + 1))

∀b ∈ domfn,
2

k
+ fn(b)− fn(un) ≥

〈

−µ−1
n y∗n, b− un

〉

(6)
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and similarly for b = un, β = fn(un), a ∈ kQ and α = − 2
k
we get

∀a ∈ kQ,
2

k
≥

〈

µ−1
n y∗n, a

〉

. (7)

Assumption (ii) and (4), (6) imply

∀u′ ∈ B(ā, 2r),
〈

−µ−1
n y∗n, u

′〉 ≤ 2

k
+ |fn(un)|+ fn(u

′ + un) ≤ c+ 1. (8)

It follows from (7) (keep in mind kQ ⊂ (k + 1)Q and Q = −Q) that

∀a ∈
∞
⋃

k=1

kQ, 0 = lim
n−→∞

〈

µ−1
n y∗n, a

〉

. (9)

Let us take any s ≥ 1, h ∈ E. There is k̃ such that for every k ≥ k̃ there are q1k, q
2
k ∈ Q

such that
∥

∥s(−h− kq1k)
∥

∥ ≤ r and
∥

∥ā− kq2k
∥

∥ ≤ r,

so
−sh = s(−h− kq1k) + skq1k + (kq2k − ā) + ā− kq2k ∈ B(ā, 2r) + skq1k − kq2k.

Hence by (8) and (9) we get

lim sup
n−→∞

〈

−µ−1
n y∗n,−sh

〉

≤ c+ 1,

thus
∀h ∈ E, 0 ≥ lim sup

n−→∞

〈

µ−1
n y∗n, h

〉

,

which gives
∀h ∈ E, 0 = lim

n−→∞

〈

µ−1
n y∗n, h

〉

. (10)

It follows from (6) that

∀k > k1, n(k) ≤ n < n(k + 1),
(
√

2

k

)2

+ inf
b∈E

{fn(b) +
〈

µ−1
n y∗n, b

〉

} ≥ fn(un) +
〈

µ−1
n y∗n, un

〉

.

Since
∂
(

fn(·) +
〈

µ−1
n y∗n, ·

〉)

= ∂(fn(·)) + µ−1
n y∗n,

the Brøndsted-Rockafellar Theorem ensures that for every k > k1 and n(k) ≤ n < n(k+1)
we are able to find (xn, x

∗
n) ∈ Graph(∂fn) such that

‖xn − un‖ ≤
√

2

k
, fn(xn) +

〈

µ−1
n y∗n, xn − un

〉

≤ fn(un) and
∥

∥x∗
n + µ−1

n y∗n
∥

∥ ≤
√

2

k
.

Thus xn −→ 0 and by (10) x∗
n

weak∗−→ 0. By the Mosco convergence 0 = f(0) ≤
lim infn−→∞ fn(xn). We have also 0 = limn−→∞ 〈µ−1

n y∗n, xn − un〉, so

lim sup
n−→∞

fn(xn) = lim sup
n−→∞

(

fn(xn) +
〈

µ−1
n y∗n, xn − un

〉)

≤ lim
n−→∞

fn(un) = 0,
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which implies 0 = limn−→∞ fn(xn).

In order to finish the proof let us observe that if x∗ ∈ ∂f(x) then the first part of the
proof can be applied to the functions g(h) := f(x + h) − f(x) − 〈x∗, h〉 and gn(h) :=
fn(x+ h)− f(x)− 〈x∗, h〉. We have ∂g(0) = ∂f(x)− x∗ and ∂gn(hn) = ∂f(x+ hn)− x∗.
Of course hn −→ 0 and gn(hn) −→ 0 imply fn(x+ hn) −→ f(x). Whenever g∗n ∈ ∂gn(hn)
and 〈g∗n, h〉 −→ 0 then 〈x∗ + g∗n, h〉 −→ 〈x∗, h〉 with x∗+g∗n ∈ ∂fn(x+hn). This completes
the proof.

The next example shows that the theorem is not valid in l∞.

Example 3.2. Let us fix any x̄ ∈ l∞ such that 0 < x̄1 < x̄2 < . . ., ‖x̄‖ = 1 and
x̄∗ ∈ ∂ ‖x̄‖. Let us define f(x) := ‖x‖ and fn(x) := max1≤i≤n |xi| for every x ∈ l∞ and
n ∈ N . It is not difficult to see that f1(x) ≤ f2(x) ≤ . . . and limn−→∞ fn(x) = ‖x‖ for
every x ∈ l∞, thus (S1) and (S2) are satisfied. Take any sequence {xn}∞n=1 ⊂ l∞ such that
xn −→ x̄ and fn(xn) −→ f(x̄). Let us assume that for some sequence {x∗

n}∞n=1 such that

x∗
n ∈ ∂fn(xn) for every n ∈ N we have x∗

n
weak∗−→ x̄∗. Let ei(x) := |xi| for every i = 1, 2, . . .

and x = (x1, x2, . . .) ∈ l∞. Let us put In(x) := {i ∈ {1, . . . , n} | fn(x) = |xi|} for every
x ∈ l∞. It is an easy exercise to show that

∂ei(x) =











{x∗ ∈ l∗∞ | ∀u ∈ l∞, 〈x∗, u〉 = ui}, if xi > 0;

{x∗ ∈ l∗∞ | ∀u ∈ l∞, 〈x∗, u〉 = −ui}, if xi < 0;

{x∗ ∈ l∗∞ | ∀u ∈ l∞, 〈x∗, u〉 ≤ |ui|}, if xi = 0

and

∀x ∈ l∞, ∂fn(x) ⊆ conv{
⋃

i∈In(x)

∂ei(x)} (11)

(keep in mind that the sets ∂ei(x) are weak
∗ compact and convex, see the Banach-Alaoglu

Theorem of [8]). For every n = 1, 2, . . . let us define d(n) := min In(xn) and g(n) :=
max In(xn). Since xn −→ x̄, so d(n) −→ ∞ (we recall that 0 < x̄1 < x̄2 < . . . ). We
are able to find a subsequence {nk}∞k=1 such that g(nk) < d(nk+1) and by (11) multipliers

λnk
i ≥ 0 such that

∑g(nk)
i=d(nk)

λnk
i = 1 for every k = 1, 2, . . . and

〈

x∗
nk
, u
〉

=
∑g(nk)

i=d(nk)
λnk
i ui

for every u = (u1, u2, . . .) ∈ l∞. Let us define

hi :=











1, if d(nk) ≤ i ≤ g(nk), k = 1, 3, 5, . . . ;

−1, if d(nk) ≤ i ≤ g(nk), k = 2, 4, 6, . . . ;

0, otherwise

and h := (h1, h2, . . .). We have

lim sup
k−→∞

〈

x∗
nk
, h

〉

= 1

and

lim inf
k−→∞

〈

x∗
nk
, h

〉

= −1.

This contradicts to the weak∗ covergence of {x∗
n}∞n=1 to x̄∗.
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