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Every lower semicontinuous convex function can be represented through its subdifferential by means of an
“integration” formula introduced in [10] by Rockafellar. We show that in Banach spaces with the Radon-
Nikodym property this formula can be significantly refined under a standard coercivity assumption. This
yields an interesting application to the convexification of lower semicontinuous functions.
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1. Introduction

Let X be a Banach space and g : X — RU {400} a proper lower semicontinuous convex
function. Rockafellar [10] has shown that ¢g can be represented through its subdifferential
dg as follows:

9(x) = g(xo) + sup {Zw:,xm —a) + (e m} , &

1=0

for every x € X, where xy is an arbitrary point in the domain of dg and where the
above supremum is taken over all integers n, all xy, ..., 2z, in X and all a2 € dg(zo), 2] €
9g(x1), ..., x5 € dg(x,) (for n = 0 we take the convention 3. = 0). In this paper
we show that, in Banach spaces with the Radon-Nikodym property (Definition 2.2), and
under a standard coercivity assumption on g, formula (1) can be considerably simplified.
Namely, it suffices to estimate the above supremum among the set of strongly exposed
points of g (Definition 3.3), instead of the much larger set of all points of the domain of
dg.

This simple geometrical fact has also the following consequence: the closed convex enve-
lope of a non-convex function f satisfying the same coercivity condition can be recovered
by the Fenchel subdifferential 0f of f through formula (1), and this despite the fact
that for non-convex functions, this subdifferential may be empty at many points. This
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last result generalizes the ones obtained in [1, Proposition 2.7], [2, Theorem 3.5] in finite
dimensions.

2. Preliminaries

Throughout the paper we denote by X a Banach space and by X™ its dual space. In the
sequel, we denote by 7 : X ~» X** the isometric embedding of X into its second dual
space X**. Given x € X, z* € X* and 2™ € X**, we denote by (x* x) (respectively,
(x*, ™)) the value of the functional x* at x (respectively, the value of ** at x*). Note
also that with this notation we have (z*,(z)) = (z*,z). For € X and p > 0 we denote
by B(x, p) the open ball centered at x with radius p.

If f: X - RU{+o00} is an extended real valued function, we denote by
epif = {(x,t) € X xR: f(z) <t}

its epigraph, and by
dom f:={z e X : f(z) e R}

its domain. When the domain of f is nonempty we say that f is proper. By the term
subdifferential, we always mean the Fenchel subdifferential 0 f defined for every x € dom f
as follows

Of(x) ={z" € X" : f(y) > f(z) + (2",y — x),Vy € X}.
If z € X\ dom f, we set df(x) = 0. The domain of the subdifferential of f is defined by

domdf ={z € X : 0f(x) # 0}.

For a proper lower semicontinuous function f, its closed convex envelope ¢of : X —
R U {400} can be defined through its epigraph via the formula

epi(cof) = co(epi f),

where ¢o(epi f) is the closed convex hull of epi f in the Banach space X x R endowed

with the norm (z,t) — (||z]2+ |t|?)"? for all (z,t) € X x R. If f*: X* — RU {400}
denotes the Legendre-Fenchel biconjugate of f, then it is well-known that cof = f** o1,
that is, for every z € X

(cof)(x) = f(i(x)) = sup {(a",2) = f*(2")},

rreX*

where f*: X* — RU {400} is the Legendre-Fenchel conjugate of f, that is the proper
lower semicontinuous convex function defined for all z* € X* by

[ (z") = sup {(z",x) — f(2)}.

rzeX
Note also that for any z € X and z* € X* we have:

v € 0f(a) <= i(x) € A(f)(a). (2)
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Let C' be a non-empty closed convex subset of X. We denote by o¢ : X* — R U {400}
the Legendre-Fenchel conjugate of the indicator function of C', that is, for all p € X*

oc(p) = sup (p,u).
ueC

Note that oc is a positively homogeneous convex function. Its relationship with the
Legendre-Fenchel conjugate of a proper lower semicontinuous convex function ¢ is as
follows:

tg*(t_lx*) = Oepig(™, —1),

forallt > 0 and all z* € X*. In particular, using the fact that dom oepi, and int(dom oep )
are convex cones, it is easily seen that

z* € int(dom ¢g*) <= (2, —1) € int(dom oepig). (3)

Finally, we denote by N¢(u) the set of normal directions of C' at a point u € C, that is,
Ne(w)={pe X*: (p,v—u) <0, YveC}.

Its relationship with the subdifferential of a proper lower semicontinuous convex function
g is as follows
tla* e dg(r) <= (2%, —t) € Nepig(z, g(7)), (4)

where t > 0, z € X and z* € X*.

2.1. Strongly exposed points and Radon-Nikodym property
Let us recall from [9, Definition 5.8] the following definition.

Definition 2.1. Let C' be a non-empty closed convex subset of X. A point u € C' is
said strongly exposed if there exists p € X* such that for each sequence {u,} C C the
following implication holds

lim (p,u,) =o0c(p) = lim u,=u.

n—-+oo n—-+o00

In such a case p € X* is said to be a “strongly exposing” functional for the point u in C.
We denote by Exp (C,u) the set of all functionals of X* satisfying this property.

Let us further denote by exp C' the set of strongly exposed points of C'. Clearly, u € exp C
if, and only if, Exp(C,u) # ). It follows directly that for every u € C' we have the inclusion

Exp(C,u) C Ne(u) Ndomog. (5)

We also denote by Exp C' the set of all strongly exposing functionals, that is,

Exp C = U Exp(C,u).

u€cexp C

We also recall (see [9, Theorem 5.21], for example) the following definition.
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Definition 2.2. A Banach space X is said to have the Radon-Nikodym property, if every
non-empty closed convex bounded subset C' of X can be represented as the closed convex
hull of its strongly exposed points, that is,

C =co(expC).

Examples of Radon-Nikodym spaces are reflexive Banach spaces and separable dual
spaces.

Let us mention that, in spaces with the Radon-Nikodym property, the set ExpC' of
strongly exposing functionals of a nonempty closed convex bounded set C' is dense in X*.
Moreover, the boundedness of C' implies that domoc = X*. In case of unbounded sets,
one has the following result.

Proposition 2.3. Suppose that X has the Radon-Nikodym property and C' is a nonempty
closed convex set. Then Exp C' is dense in int(domoc).

Proof. If int(domogc) = () the assertion holds trivially. Let us assume that U :=
int(dom o) # () and let us note that the w*-lower semicontinuous convex function o¢ is
continuous on the open set U, see [9, Proposition 3.3]. Using Collier’s characterization
of the Radon-Nikodym property ([7, Theorem 1}), we conclude that o¢ is Fréchet differ-
entiable in a dense subset D of U. For every py € D, Smulian’s duality guarantees that
there exists uy € exp C such that ug = VFoc(py) (see [9], for example). In particular,
po € Exp(C, ), hence pg € Exp C. The proof is complete. ]

2.2. Cyclically monotone operators

Given a set-valued operator 7' : X =% X*, we denote its domain by dom7T = {z € X :
T(x) # 0}, its image by

ImT = | | T()

and its graph by
GrT :={(z,z") e X x X*: 2" € T(2)}.
We also denote by 7! : X* = X the inverse operator, defined for every (z,z*) € X x X*
by the relation
r €T (2") < 2" € T(x).
Clearly domT~! =ImT.

The operator T is called cyclically monotone (respectively, monotone) if for all integers
n > 1 (respectively, for n = 2), all x,...,2, in X and all 2} € T'(x1),...,x} € T'(z,) we

have
n

Z($:7xi+1 —1z;) <0,

=1

where z,,11 := z7. It is called maximal cyclically monotone (respectively, maximal mono-
tone), if its graph cannot be strictly contained in the graph of any other cyclically mono-
tone (respectively, monotone) operator.

We recall from [10] (see also [9]) the following fundamental results:
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Proposition 2.4. The subdifferential Og of a proper lower semicontinuous convex func-
tion g is both a maximal monotone and a mazximal cyclically monotone operator.

Proposition 2.5. Let T be a cyclically monotone operator and let xy € domT. Consider
the function h: X — RU {400} defined by

hx) = sup{Z@z:xM—m + <x:,w—xn>}, (6)

=0

where the supremum is taken for all integers n, all xy,...,x, in dom T and all zj €
T(xo),z; € T(x1), ...,x5 € T(x,). Then h is a proper lower semicontinuous convex
function and

GrT c Groh.

We shall refer to (6) by the term “Rockafellar integration formula”. The following lemma
will be very useful in the sequel. Let us recall that the operator 7! is said to be locally
bounded on a non-empty open subset V' of X*, provided that for every x* € V there exist
p > 0 such that T7!(B(z*, p)) is bounded.

Lemma 2.6. Let V' be a non-empty open subset of X*. With the notation of Proposition
2.5, let us suppose that ImT is dense in V and T is locally bounded on V. Then we
have the inclusion

V' C int(dom h"),

where the function h is defined by relation (6) and h* is its conjugate function.

Proof. Fix any z} € T(xg). Let 2* € V. Since T~ is locally bounded on V, there exist
p > 0and M > 0 such that T-'(B(z*,p)) C B(0, M). Moreover we can suppose that
B(z*,p) C V since V is an open subset.

Let now z* € B(z*, p) NIm T. There exists z € X such that z* € T'(z). Then formula (6)
implies that for all x € X

h(z) > (x5, 2 — xo) + (2,2 — 2).
Using the definition of the conjugate function we obtain
h*(z*) < (x5, mo) + (2" —ap,2) < M.
where M = ||z§]].|zo]| + (||z* — z§|| + p) M. Hence we have proven that
h* < M,

on B(z*,p)NImT.

Since Im T is dense in V' and h* is lower semicontinuous, this last inequality remains true
on B(z*, p). Thus z* € int(dom h*). O
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2.3. w¥*-cusco and minimal w*-cusco mappings

Let T : X = X* be a set-valued operator. T is said to be w*-upper semicontinuous
at © € X, if for every w*-open set W containing T'(z) there exists p > 0 such that
T(B(z,p)) C W.

We recall from [4] (see also [5]) the following definition.

Definition 2.7. Let U be an open subset of X. T is said to be w*-cusco on U, if it is
w*-upper semicontinuous with nonempty w*-compact convex values at each point of U.
It is said to be minimal w*-cusco on U if its graph does not strictly contain the graph of
any other w*-cusco mapping on U.

In the sequel, we shall need the following result (see [5, Theorem 2.23]).

Proposition 2.8. Let U be an open set of X such that U C domT. If T is maximal
monotone then it is also minimal w*-cusco on U.

Further, given a set-valued operator S : X = X* we can consider w*-cusco mappings
T that are minimal under the property of containing the graph of S. We recall from |5,
Proposition 2.3] the following “uniqueness” result that will be in use in the sequel.

Proposition 2.9. Let U be an open set of X such that dom S is dense in U. If the graph

of S is contained in the graph of some w*-cusco mapping on U, then there exists a unique
*
w

-cusco mapping on U that contains the graph of S and that s minimal under this
property.
3. Refined representations of convex functions

Throughout this section g : X — R U {400} will denote a proper lower semicontinuous
convex function. We can now state the main result of the paper.

Theorem 3.1. Let g : X — RU{+o00} be a proper lower semicontinuous convex function
and let T : X = X* be a set-valued operator satisfying

GrT c Grog. (7)

(In particular T is cyclically monotone.) Let xy € domT. Denote by h the proper lower
semicontinuous convez function defined by relation (6). Then the following assertions
hold.

(A1) If int(domg) # 0 and dom T is dense in int(dom g), then

g—9g(xo) =h (8)

on dom g.
(A2) If int(dom g*) # 0 and Im T is dense in int(dom g*), then

9 —9(xo) = h.
Proof. Combining (1), (6) and (7) we easily obtain that

g —g(wo) > h. (9)
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(A1) Set U = int(dom g) # 0. In view of (9), we have U C domh. Since U is open, it
follows from [9, Proposition 2.5] that

U C int(dom dg) N int(dom Oh).

Hence, by Proposition 2.8, the maximal monotone operators dg and 0h are minimal
w*-cuscos on U. By (7) we have
GrT C Grog,

while by Proposition 2.5 we have
GrT C Groh.

Since dom T is dense in U, Proposition 2.9 yields that dg = 0h on U. Consequently (see
[10]), there exists € R such that g = h+ 7 on U. A standard argument shows that this
last equality can be extended on dom g. By definition of h and recalling that the operator
T is cyclically monotone we have h(xy) = 0, hence we conclude that g(zy) = r and thus
equality (8) holds as asserted.

(A2) Set V = int(dom g*) # 0. By [9, Theorem 2.28], the operator dg* is locally bounded
on V. By (2) we have the inclusion Gr (i o (9g)™') C Gr (9g*). Combining with (7) we
obtain

Gr(ioT 1) C Grag*, (10)

which yields that 77! is locally bounded on V. Applying Lemma 2.6 we obtain
V' C int(dom h™). (11)
Set now S =i 0T~ According to relation (10) we have
GrS Cc Grag*
Furthermore, by Proposition 2.5 we have Gr'T' C Gr 0h, which implies as before that
GrS c Groh®.

Since dom S = Im T is dense in V, and since both d¢* and Oh* are minimal w*-cuscos on
V', it follows by Proposition 2.9 that dg* = Oh* on V. By [10], there exists r € R such
that
on int(dom g*). Since the latter is nonempty, the above equality can be extended to X*,
provided that

int(dom ¢*) = int(domh"). (12)

Let us now prove this last equality. Taking conjugates in both sides of the inequality in
(9) we have g* + g(zg) < h*, hence, in particular, dom h* C dom ¢g* and so int(dom h*) C
int(dom ¢*). In view of (11) we conclude that equality (12) holds as desired. It follows
that

g =h"+r.

Taking conjugates and considering the restriction on X we obtain ¢ = h — r. Since
h(zg) = 0 we conclude that g(xg) = —r and thus g — g(xg) = h as asserted. O
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Remark 3.2. Note that equality (8) may not hold for all x € X. Indeed, let g : R —
RU{+o0} be the indicator function of the closed segment [—1, 1]. If we define the operator
T by

{0}, ifze(—1,1)
T(z) = { 0, ifz¢(-1,1).

and if we take o = 0, then h = 0. In this case g and h do not differ to a constant on R.

3.1. Application: Representation of convex epi-pointed functions

The following definition will be useful in the sequel.

Definition 3.3. A point z € dom g is called strongly exposed for the proper lower semi-
continuous convex function g if

(z,9(r)) € exp(epig).

We denote by exp g the set of strongly exposed points of g.

For every z € exp g we denote by Exp(g, z) the set of all * € X* satisfying

(z%,—1) € Exp(epig, (v, g(z)),

According to relations (4) and (5) we have

Exp(g,z) C dg(x). (13)

We also set
Expg= [J Exp(g.2).

Treexpg

It may happen that the set of strongly exposed points be empty, for instance when g is a
constant function. We shall avoid this situation since, as we shall show exp g is non-empty
in spaces with the Radon-Nikodym property, under the following coercivity assumption
that we recall from [3, p. 1669].

Definition 3.4. A proper lower semicontinuous function f : X — R U {+oo} is called
epi-pointed if
int(dom f*) # 0.

The above definition is in fact equivalent to the following coercivity condition:
there exist z* € X, p > 0and r € R such that f(z) > (z*,z) + p||z|| +r for all z € X.

This has been established in [3, Proposition 4.5] in finite dimensions. Only minor modi-
fications are needed for the general case.

Remark 3.5. A proper lower semicontinuous function f is epi-pointed if, and only if,
cof is epi-pointed.

Let us now state the following consequence of Proposition 2.3.
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Proposition 3.6. The set Exp g is dense in int(dom ¢g*) if the Banach space X has the
Radon-Nikodym property and the convex function g is epi-pointed.

Proof. Let z* € int(dom ¢*) and € > 0 such that B(z*,¢) C int(dom g*). Set
ri=min {1/2, e(2)|z*|| +2)7"'}.

By relation (3) we have (z*,—1) € int(domoey,). By Proposition 2.3, there exists
z* € B(xz*,r) and s € (1 —r, 1+ r), such that (2*, —s) € Exp(epig). Then obviously
(s7'z*,—1) € Exp(epig), that is s712* € Expg. A direct calculation now yields

Is™e" —a"| < fls7'" =2+ 2" =2t < s [ 1=s |7 +r < 2r(f2”| +7) +7 <¥,

that is s712* € Exp g N B(z*, ). This completes the proof. O

We are ready to state the following subdifferential representation result for epi-pointed
functions.

Theorem 3.7. Suppose that Banach space X has the Radon-Nikodym property and the
convex function g is epi-pointed. Let xy € dom dg. Then for every x € X we have

9(x) — glxo) = sup {im,xm — ) + (o m} , (14)

i=0
where the supremum is taken over all integersn, all x4, ..., x, in exp g, and all x§ € 0g(zo),
xy € 0g(x1),..., a5 € dg(xy).
Proof. Let us consider the set-valued operator T": X == X* defined for all z € X by

_ f 0g(x), ifxe{xp}Uexpyg
T(w) = { 0, if x ¢ {zo} Uexp g.

Since GrT' C Gr dg, the operator T is also cyclically monotone.

We claim that the right part of (14) coincides up to a constant with the Rockafellar
integration formula (6) for the operator T. Indeed, given an integer n > 1 and a finite
sequence xy, ..., T, in dom T denote by iy the smaller index in {0, ..., n} such that z; # x¢
for all # > 7y. Then z;, = (. Using the cyclic monotonicity of 7" we have

0

Z(xfaxiﬂ — ;) < 0.

=0

Omitting the terms that do not contribute to the supremum, the sequence z, ..., z, in
dom 7" can be replaced by the sequence z;,1, ..., z, in expg.

According to relation (5), we have

Expg C U Jdg(x) C ImT.

reexpyg

Hence by Proposition 3.6, Im 7" is dense in int(dom ¢g*), and the result follows from The-
orem 3.1. N
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Remark 3.8. Formula (14) fails for non-epi-pointed functions, even in finite dimensions.

Consider for instance the proper lower semicontinuous convex function g : R? — R defined
for (z,y) € R? by
1
9(w,y) = 5v°

In this case exp g = 0 and for 2o = (0,0) formula (14) yields g(z) = 0, which is not true.

Remark 3.9. Formula (14) also fails in Banach spaces without the Radon-Nikodym prop-
erty. Indeed let X = ¢o(N) and let g be the indicator function of the closed unit ball of X.
Then g is a proper lower semicontinuous convex function which is also epi-pointed, since
g* coincides with the norm of X* = ¢!(N). Let further zo = 0 and note that dg(zo) = {0}.
Since the closed unit ball of X has no extreme points, it follows easily that expg = 0.
Thus formula (14) yields g(x) = 0, which is again not true.

3.2. Application: convexification of epi-pointed functions

Throughout this section we denote by f : X — RU{+o0} a proper lower semicontinuous
epi-pointed function and we set

g=rcof.
We easily check that
r€domdf = (g(z) = f(z) and dg(x) = Of (z)). (15)
The following lemma gives an interesting particular case where the above situation occurs.

Lemma 3.10. Let x € expg. Then g(x) = f(x) and dg(x) = 0f (x).

Proof. We set C' := epig, A :=epif and u := (z,g(x)). Note that g(x) = f(z) if, and
only if, u € A. Let us suppose, towards a contradiction, that g(x) < f(z), that is u ¢ A.
Since A is closed, there exists p > 0 such that

AN B(u,p) =0. (16)
By assumption u € exp C, so there exists p € X* x R and € > 0 such that
CNHC B(u,p),

where H is the open half-space {v € X x R : (p,v) > (p,u) — }. Then, recalling that
A C C, relation (16) implies AN H = (), or equivalently, taking the closed convex hull of
the set A, that C N H = (). We obtain a contradiction since u € C'N H. Consequently,
g(x) = f(x). The equality of subdifferentials is now straightforward. [

As a consequence of the above lemma we obtain a representation formula for the closed
convex envelope ¢ of an epi-pointed function f based on the Fenchel subdifferential of f.

Corollary 3.11. Suppose that the Banach space X has the Radon-Nikodym property. Let
xo € domdf. Then for every x € X, we have

cof(z) = f(xo) + sup {i(“f’:y%ﬂ — ;) + (@, 0 — xn>} ) (17)

1=0

where the supremum is taken over all integers n, all x1,xs, ...,x, in domdf and all xf €

af.(mo)wflk € af('rl)a s 7'1':; € af($n)
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Proof. According to formula (1) and using relations (15), the right hand side of (17)
defines a proper lower semicontinuous convex function f satisfying f < g (note that

g(wo) = f(x0)). On the other hand, according to Theorem 3.7 and Lemma 3.10, we

obtain f > g. This finishes the proof. m

References

[1] M. Bachir, A. Daniilidis, J.-P. Penot: Lower subdifferentiability and integration, Set-Valued
Anal. 10 (2002) 89-108.

[2] J. Benoist, A. Daniilidis: Integration of Fenchel subdifferentials of epi-pointed functions,
STAM J. Optim. 12 (2002) 575-582.

[3] J. Benoist, J.-B. Hiriart-Urruty: What is the subdifferential of the closed convex hull of a
function?, SIAM J. Math. Anal. 27 (1996) 1661-1679.

[4] J.M. Borwein: Minimal cuscos and subgradients of Lipschitz functions, in: Fixed Point
Theory and its Applications, J.-B. Baillon, M. Théra (eds.), Pitman Res. Notes in Math.
Series 252, Longman, Essex (1991) 57-82.

[5] J. Borwein, Q. Zhu: Multifunctional and functional analytic techniques in nonsmooth anal-
ysis, in: Nonlinear Analysis, Differential Equations and Control, F.H. Clarke, R.J. Stern
(eds.), Series C: Mathematical and Physical Sciences 528, Kluwer Acad. Publ. (1999) 61—
157.

[6] J. Borwein, W. Moors: Essentially smooth Lipschitz functions, J. Funct. Anal. 49 (1997)
305-351.

[7] J. Collier: The dual of a space with the Radon-Nikodym property, Pacific J. Math. 64
(1976) 103-106.

[8] J.-B. Hiriart-Urruty, C. Lemarechal: Fundamentals of Convex Analysis, Grundlehren Text
Editions, Springer (2001).

[9] R. Phelps: Convex Functions, Monotone Operators and Differentiability, 2"¢ Edition,
Springer, Berlin (1991).

[10] R.T. Rockafellar: On the maximal monotonicity of subdifferential mappings, Pacific J.

Math. 33 (1970) 209-216.



