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1. Introduction

Let X be a Banach space and g : X → R ∪ {+∞} a proper lower semicontinuous convex
function. Rockafellar [10] has shown that g can be represented through its subdifferential
∂g as follows:

g(x) = g(x0) + sup

{

n−1
∑

i=0

〈x∗
i , xi+1 − xi〉 + 〈x∗

n, x− xn〉

}

, (1)

for every x ∈ X, where x0 is an arbitrary point in the domain of ∂g and where the
above supremum is taken over all integers n, all x1, ..., xn in X and all x∗

0 ∈ ∂g(x0), x
∗
1 ∈

∂g(x1), . . . , x
∗
n ∈ ∂g(xn) (for n = 0 we take the convention

∑−1
i=0 = 0). In this paper

we show that, in Banach spaces with the Radon-Nikodym property (Definition 2.2), and
under a standard coercivity assumption on g, formula (1) can be considerably simplified.
Namely, it suffices to estimate the above supremum among the set of strongly exposed
points of g (Definition 3.3), instead of the much larger set of all points of the domain of
∂g.

This simple geometrical fact has also the following consequence: the closed convex enve-
lope of a non-convex function f satisfying the same coercivity condition can be recovered
by the Fenchel subdifferential ∂f of f through formula (1), and this despite the fact
that for non-convex functions, this subdifferential may be empty at many points. This
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last result generalizes the ones obtained in [1, Proposition 2.7], [2, Theorem 3.5] in finite
dimensions.

2. Preliminaries

Throughout the paper we denote by X a Banach space and by X∗ its dual space. In the
sequel, we denote by Ýı : X À X∗∗ the isometric embedding of X into its second dual
space X∗∗. Given x ∈ X, x∗ ∈ X∗ and x∗∗ ∈ X∗∗, we denote by 〈x∗, x〉 (respectively,
〈x∗, x∗∗〉) the value of the functional x∗ at x (respectively, the value of x∗∗ at x∗). Note
also that with this notation we have 〈x∗,Ýı(x)〉 = 〈x∗, x〉. For x ∈ X and ρ > 0 we denote
by B(x, ρ) the open ball centered at x with radius ρ.

If f : X → R ∪ {+∞} is an extended real valued function, we denote by

epif = {(x, t) ∈ X × R : f(x) ≤ t}

its epigraph, and by

dom f := {x ∈ X : f(x) ∈ R}

its domain. When the domain of f is nonempty we say that f is proper. By the term
subdifferential, we always mean the Fenchel subdifferential ∂f defined for every x ∈ dom f
as follows

∂f(x) = {x∗ ∈ X∗ : f(y) ≥ f(x) + 〈x∗, y − x〉,∀y ∈ X}.

If x ∈ X \ dom f , we set ∂f(x) = ∅. The domain of the subdifferential of f is defined by

dom ∂f = {x ∈ X : ∂f(x) 6= ∅}.

For a proper lower semicontinuous function f , its closed convex envelope cof : X →
R ∪ {+∞} can be defined through its epigraph via the formula

epi(cof) = co(epi f),

where co(epi f) is the closed convex hull of epi f in the Banach space X × R endowed

with the norm (x, t) 7→ (‖x‖2+ | t |2)1/2 for all (x, t) ∈ X ×R. If f ∗∗ : X∗∗ −→ R∪ {+∞}
denotes the Legendre-Fenchel biconjugate of f , then it is well-known that cof = f ∗∗ ◦ Ýı,
that is, for every x ∈ X

(cof)(x) = f ∗∗(Ýı(x)) = sup
x∗∈X∗

{〈x∗, x〉 − f ∗(x∗)} ,

where f ∗ : X∗ → R ∪ {+∞} is the Legendre-Fenchel conjugate of f , that is the proper
lower semicontinuous convex function defined for all x∗ ∈ X∗ by

f ∗(x∗) = sup
x∈X

{〈x∗, x〉 − f(x)} .

Note also that for any x ∈ X and x∗ ∈ X∗ we have:

x∗ ∈ ∂f(x) ⇐⇒ Ýı(x) ∈ ∂(f ∗)(x∗). (2)
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Let C be a non-empty closed convex subset of X. We denote by σC : X∗ → R ∪ {+∞}
the Legendre-Fenchel conjugate of the indicator function of C, that is, for all p ∈ X∗

σC(p) = sup
u∈C

〈p, u〉.

Note that σC is a positively homogeneous convex function. Its relationship with the
Legendre-Fenchel conjugate of a proper lower semicontinuous convex function g is as
follows:

tg∗(t−1x∗) = σepi g(x
∗,−t),

for all t > 0 and all x∗ ∈ X∗. In particular, using the fact that domσepi g and int(domσepi g)
are convex cones, it is easily seen that

x∗ ∈ int(dom g∗) ⇐⇒ (x∗,−1) ∈ int(domσepi g). (3)

Finally, we denote by NC(u) the set of normal directions of C at a point u ∈ C, that is,

NC(u) = {p ∈ X∗ : 〈p, v − u〉 ≤ 0, ∀v ∈ C} .

Its relationship with the subdifferential of a proper lower semicontinuous convex function
g is as follows

t−1x∗ ∈ ∂g(x) ⇐⇒ (x∗,−t) ∈ Nepi g(x, g(x)), (4)

where t > 0, x ∈ X and x∗ ∈ X∗.

2.1. Strongly exposed points and Radon-Nikodym property

Let us recall from [9, Definition 5.8] the following definition.

Definition 2.1. Let C be a non-empty closed convex subset of X. A point u ∈ C is
said strongly exposed if there exists p ∈ X∗ such that for each sequence {un} ⊂ C the
following implication holds

lim
n→+∞

〈p, un〉 = σC(p) =⇒ lim
n→+∞

un = u.

In such a case p ∈ X∗ is said to be a “strongly exposingÔ functional for the point u in C.
We denote by Exp (C, u) the set of all functionals of X∗ satisfying this property.

Let us further denote by expC the set of strongly exposed points of C. Clearly, u ∈ expC
if, and only if, Exp(C, u) 6= ∅. It follows directly that for every u ∈ C we have the inclusion

Exp(C, u) ⊂ NC(u) ∩ domσC . (5)

We also denote by Exp C the set of all strongly exposing functionals, that is,

Exp C =
⋃

u∈expC

Exp(C, u).

We also recall (see [9, Theorem 5.21], for example) the following definition.
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Definition 2.2. A Banach space X is said to have the Radon-Nikodym property, if every
non-empty closed convex bounded subset C of X can be represented as the closed convex
hull of its strongly exposed points, that is,

C = co(expC).

Examples of Radon-Nikodym spaces are reflexive Banach spaces and separable dual
spaces.

Let us mention that, in spaces with the Radon-Nikodym property, the set ExpC of
strongly exposing functionals of a nonempty closed convex bounded set C is dense in X∗.
Moreover, the boundedness of C implies that domσC = X∗. In case of unbounded sets,
one has the following result.

Proposition 2.3. Suppose that X has the Radon-Nikodym property and C is a nonempty
closed convex set. Then ExpC is dense in int(domσC).

Proof. If int(domσC) = ∅ the assertion holds trivially. Let us assume that U :=
int(domσC) 6= ∅ and let us note that the w*-lower semicontinuous convex function σC is
continuous on the open set U , see [9, Proposition 3.3]. Using Collier’s characterization
of the Radon-Nikodym property ([7, Theorem 1]), we conclude that σC is Fréchet differ-
entiable in a dense subset D of U . For every p0 ∈ D, Smulian’s duality guarantees that
there exists u0 ∈ expC such that u0 = ∇FσC(p0) (see [9], for example). In particular,
p0 ∈ Exp(C, u0), hence p0 ∈ ExpC. The proof is complete.

2.2. Cyclically monotone operators

Given a set-valued operator T : X ⇒ X∗, we denote its domain by domT = {x ∈ X :
T (x) 6= ∅}, its image by

ImT =
⋃

x∈X

T (x)

and its graph by
GrT := {(x, x∗) ∈ X ×X∗ : x∗ ∈ T (x)}.

We also denote by T−1 : X∗ ⇒ X the inverse operator, defined for every (x, x∗) ∈ X×X∗

by the relation
x ∈ T−1(x∗) ⇐⇒ x∗ ∈ T (x).

Clearly domT−1 = ImT .

The operator T is called cyclically monotone (respectively, monotone) if for all integers
n ≥ 1 (respectively, for n = 2), all x1, . . . , xn in X and all x∗

1 ∈ T (x1), . . . , x
∗
n ∈ T (xn) we

have
n

∑

i=1

(x∗
i , xi+1 − xi) ≤ 0,

where xn+1 := x1. It is called maximal cyclically monotone (respectively, maximal mono-
tone), if its graph cannot be strictly contained in the graph of any other cyclically mono-
tone (respectively, monotone) operator.

We recall from [10] (see also [9]) the following fundamental results:
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Proposition 2.4. The subdifferential ∂g of a proper lower semicontinuous convex func-
tion g is both a maximal monotone and a maximal cyclically monotone operator.

Proposition 2.5. Let T be a cyclically monotone operator and let x0 ∈ domT . Consider
the function h : X → R ∪ {+∞} defined by

h(x) := sup

{

n−1
∑

i=0

〈x∗
i , xi+1 − xi〉 + 〈x∗

n, x− xn〉

}

, (6)

where the supremum is taken for all integers n, all x1, ..., xn in dom T and all x∗
0 ∈

T (x0), x
∗
1 ∈ T (x1), . . . , x

∗
n ∈ T (xn). Then h is a proper lower semicontinuous convex

function and

GrT ⊂ Gr ∂h.

We shall refer to (6) by the term “Rockafellar integration formulaÔ. The following lemma
will be very useful in the sequel. Let us recall that the operator T−1 is said to be locally
bounded on a non-empty open subset V of X∗, provided that for every x∗ ∈ V there exist
ρ > 0 such that T−1(B(x∗, ρ)) is bounded.

Lemma 2.6. Let V be a non-empty open subset of X∗. With the notation of Proposition
2.5, let us suppose that ImT is dense in V and T−1 is locally bounded on V . Then we
have the inclusion

V ⊂ int(domh∗),

where the function h is defined by relation (6) and h∗ is its conjugate function.

Proof. Fix any x∗
0 ∈ T (x0). Let x∗ ∈ V. Since T−1 is locally bounded on V , there exist

ρ > 0 and M > 0 such that T−1(B(x∗, ρ)) ⊂ B(0,M). Moreover we can suppose that
B(x∗, ρ) ⊂ V since V is an open subset.

Let now z∗ ∈ B(x∗, ρ)∩ ImT . There exists z ∈ X such that z∗ ∈ T (z). Then formula (6)
implies that for all x ∈ X

h(x) ≥ 〈x∗
0, z − x0〉 + 〈z∗, x− z〉.

Using the definition of the conjugate function we obtain

h∗(z∗) ≤ 〈x∗
0, x0〉 + 〈z∗ − x∗

0, z〉 ≤ M1.

where M1 := ‖x∗
0‖.‖x0‖+ (‖x∗ − x∗

0‖+ ρ)M . Hence we have proven that

h∗ ≤ M1

on B(x∗, ρ) ∩ ImT .

Since ImT is dense in V and h∗ is lower semicontinuous, this last inequality remains true
on B(x∗, ρ). Thus x∗ ∈ int(domh∗).
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2.3. w*-cusco and minimal w*-cusco mappings

Let T : X ⇒ X∗ be a set-valued operator. T is said to be w*-upper semicontinuous
at x ∈ X, if for every w*-open set W containing T (x) there exists ρ > 0 such that
T (B(x, ρ)) ⊂ W .

We recall from [4] (see also [5]) the following definition.

Definition 2.7. Let U be an open subset of X. T is said to be w*-cusco on U , if it is
w*-upper semicontinuous with nonempty w*-compact convex values at each point of U .
It is said to be minimal w*-cusco on U if its graph does not strictly contain the graph of
any other w*-cusco mapping on U .

In the sequel, we shall need the following result (see [5, Theorem 2.23]).

Proposition 2.8. Let U be an open set of X such that U ⊂ domT . If T is maximal
monotone then it is also minimal w*-cusco on U.

Further, given a set-valued operator S : X ⇒ X∗ we can consider w*-cusco mappings
T that are minimal under the property of containing the graph of S. We recall from [5,
Proposition 2.3] the following “uniquenessÔ result that will be in use in the sequel.

Proposition 2.9. Let U be an open set of X such that domS is dense in U. If the graph
of S is contained in the graph of some w*-cusco mapping on U , then there exists a unique
w*-cusco mapping on U that contains the graph of S and that is minimal under this
property.

3. Refined representations of convex functions

Throughout this section g : X → R ∪ {+∞} will denote a proper lower semicontinuous
convex function. We can now state the main result of the paper.

Theorem 3.1. Let g : X → R∪{+∞} be a proper lower semicontinuous convex function
and let T : X ⇒ X∗ be a set-valued operator satisfying

GrT ⊂ Gr ∂g. (7)

(In particular T is cyclically monotone.) Let x0 ∈ domT . Denote by h the proper lower
semicontinuous convex function defined by relation (6). Then the following assertions
hold.

(A1) If int(dom g) 6= ∅ and domT is dense in int(dom g), then

g − g(x0) = h (8)

on dom g.

(A2) If int(dom g∗) 6= ∅ and ImT is dense in int(dom g∗), then

g − g(x0) = h.

Proof. Combining (1), (6) and (7) we easily obtain that

g − g(x0) ≥ h. (9)
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(A1) Set U = int(dom g) 6= ∅. In view of (9), we have U ⊂ domh. Since U is open, it
follows from [9, Proposition 2.5] that

U ⊂ int(dom ∂g) ∩ int(dom ∂h).

Hence, by Proposition 2.8, the maximal monotone operators ∂g and ∂h are minimal
w*-cuscos on U . By (7) we have

GrT ⊂ Gr ∂g,

while by Proposition 2.5 we have

GrT ⊂ Gr ∂h.

Since domT is dense in U, Proposition 2.9 yields that ∂g = ∂h on U. Consequently (see
[10]), there exists r ∈ R such that g = h+ r on U . A standard argument shows that this
last equality can be extended on dom g. By definition of h and recalling that the operator
T is cyclically monotone we have h(x0) = 0, hence we conclude that g(x0) = r and thus
equality (8) holds as asserted.

(A2) Set V = int(dom g∗) 6= ∅. By [9, Theorem 2.28], the operator ∂g∗ is locally bounded
on V . By (2) we have the inclusion Gr (i ◦ (∂g)−1) ⊂ Gr (∂g∗) . Combining with (7) we
obtain

Gr (i ◦ T−1) ⊂ Gr ∂g∗, (10)

which yields that T−1 is locally bounded on V . Applying Lemma 2.6 we obtain

V ⊂ int(domh∗). (11)

Set now S = i ◦ T−1. According to relation (10) we have

GrS ⊂ Gr ∂g∗

Furthermore, by Proposition 2.5 we have GrT ⊂ Gr ∂h, which implies as before that

GrS ⊂ Gr ∂h∗.

Since domS = ImT is dense in V, and since both ∂g∗ and ∂h∗ are minimal w*-cuscos on
V , it follows by Proposition 2.9 that ∂g∗ = ∂h∗ on V. By [10], there exists r ∈ R such
that

g∗ = h∗ + r

on int(dom g∗). Since the latter is nonempty, the above equality can be extended to X∗,
provided that

int(dom g∗) = int(domh∗). (12)

Let us now prove this last equality. Taking conjugates in both sides of the inequality in
(9) we have g∗ + g(x0) ≤ h∗, hence, in particular, domh∗ ⊂ dom g∗ and so int(domh∗) ⊂
int(dom g∗). In view of (11) we conclude that equality (12) holds as desired. It follows
that

g∗ = h∗ + r.

Taking conjugates and considering the restriction on X we obtain g = h − r. Since
h(x0) = 0 we conclude that g(x0) = −r and thus g − g(x0) = h as asserted.
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Remark 3.2. Note that equality (8) may not hold for all x ∈ X. Indeed, let g : R →
R∪{+∞} be the indicator function of the closed segment [−1, 1]. If we define the operator
T by

T (x) =

{

{0}, if x ∈ (−1, 1)
∅, if x /∈ (−1, 1).

and if we take x0 = 0, then h = 0. In this case g and h do not differ to a constant on R.

3.1. Application: Representation of convex epi-pointed functions

The following definition will be useful in the sequel.

Definition 3.3. A point x ∈ dom g is called strongly exposed for the proper lower semi-
continuous convex function g if

(x, g(x)) ∈ exp(epi g).

We denote by exp g the set of strongly exposed points of g.

For every x ∈ exp g we denote by Exp(g, x) the set of all x∗ ∈ X∗ satisfying

(x∗,−1) ∈ Exp(epi g, (x, g(x)),

According to relations (4) and (5) we have

Exp(g, x) ⊂ ∂g(x). (13)

We also set

Exp g =
⋃

x∈ exp g

Exp(g, x).

It may happen that the set of strongly exposed points be empty, for instance when g is a
constant function. We shall avoid this situation since, as we shall show exp g is non-empty
in spaces with the Radon-Nikodym property, under the following coercivity assumption
that we recall from [3, p. 1669].

Definition 3.4. A proper lower semicontinuous function f : X → R ∪ {+∞} is called
epi-pointed if

int(dom f ∗) 6= ∅.

The above definition is in fact equivalent to the following coercivity condition:

there exist x∗ ∈ X∗, ρ > 0 and r ∈ R such that f(x) ≥ 〈x∗, x〉+ ρ‖x‖+ r for all x ∈ X.

This has been established in [3, Proposition 4.5] in finite dimensions. Only minor modi-
fications are needed for the general case.

Remark 3.5. A proper lower semicontinuous function f is epi-pointed if, and only if,
cof is epi-pointed.

Let us now state the following consequence of Proposition 2.3.
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Proposition 3.6. The set Exp g is dense in int(dom g∗) if the Banach space X has the
Radon-Nikodym property and the convex function g is epi-pointed.

Proof. Let x∗ ∈ int(dom g∗) and ε > 0 such that B(x∗, ε) ⊂ int(dom g∗). Set

r := min
{

1/2, ε(2‖x∗‖+ 2)−1
}

.

By relation (3) we have (x∗,−1) ∈ int(domσepi g). By Proposition 2.3, there exists
z∗ ∈ B(x∗, r) and s ∈ (1 − r, 1 + r), such that (z∗,−s) ∈ Exp(epi g). Then obviously
(s−1z∗,−1) ∈ Exp(epi g), that is s−1z∗ ∈ Exp g. A direct calculation now yields

‖s−1z∗ − x∗‖ ≤ ‖s−1z∗ − z∗‖+ ‖z∗ − x∗‖ < s−1 | 1− s | ‖z∗‖+ r ≤ 2r(‖x∗‖+ r) + r ≤ ε,

that is s−1z∗ ∈ Exp g ∩B(x∗, ε). This completes the proof.

We are ready to state the following subdifferential representation result for epi-pointed
functions.

Theorem 3.7. Suppose that Banach space X has the Radon-Nikodym property and the
convex function g is epi-pointed. Let x0 ∈ dom ∂g. Then for every x ∈ X we have

g(x)− g(x0) = sup

{

n−1
∑

i=0

〈x∗
i , xi+1 − xi〉 + 〈x∗

n, x− xn〉

}

, (14)

where the supremum is taken over all integers n, all x1, ..., xn in exp g, and all x∗
0 ∈ ∂g(x0),

x∗
1 ∈ ∂g(x1), . . . , x

∗
n ∈ ∂g(xn).

Proof. Let us consider the set-valued operator T : X ⇒ X∗ defined for all x ∈ X by

T (x) =

{

∂g(x), if x ∈ {x0} ∪ exp g
∅, if x /∈ {x0} ∪ exp g.

Since GrT ⊂ Gr ∂g, the operator T is also cyclically monotone.

We claim that the right part of (14) coincides up to a constant with the Rockafellar
integration formula (6) for the operator T . Indeed, given an integer n ≥ 1 and a finite
sequence x1, ..., xn in domT denote by i0 the smaller index in {0, . . . , n} such that xi 6= x0

for all i > i0. Then xi0 = x0. Using the cyclic monotonicity of T we have

i0
∑

i=0

〈x∗
i , xi+1 − xi〉 ≤ 0.

Omitting the terms that do not contribute to the supremum, the sequence x1, ..., xn in
domT can be replaced by the sequence xi0+1, ..., xn in exp g.

According to relation (5), we have

Exp g ⊂
⋃

x∈exp g

∂g(x) ⊂ ImT.

Hence by Proposition 3.6, Im T is dense in int(dom g∗), and the result follows from The-
orem 3.1.
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Remark 3.8. Formula (14) fails for non-epi-pointed functions, even in finite dimensions.
Consider for instance the proper lower semicontinuous convex function g : R2 → R defined
for (x, y) ∈ R2 by

g(x, y) =
1

2
y2.

In this case exp g = ∅ and for x0 = (0, 0) formula (14) yields g(x) = 0, which is not true.

Remark 3.9. Formula (14) also fails in Banach spaces without the Radon-Nikodym prop-
erty. Indeed let X = c0(N) and let g be the indicator function of the closed unit ball of X.
Then g is a proper lower semicontinuous convex function which is also epi-pointed, since
g∗ coincides with the norm of X∗ = `1(N). Let further x0 = 0 and note that ∂g(x0) = {0}.
Since the closed unit ball of X has no extreme points, it follows easily that exp g = ∅.
Thus formula (14) yields g(x) = 0, which is again not true.

3.2. Application: convexification of epi-pointed functions

Throughout this section we denote by f : X → R∪{+∞} a proper lower semicontinuous
epi-pointed function and we set

g = cof.

We easily check that

x ∈ dom ∂f =⇒ (g(x) = f(x) and ∂g(x) = ∂f(x)) . (15)

The following lemma gives an interesting particular case where the above situation occurs.

Lemma 3.10. Let x ∈ exp g. Then g(x) = f(x) and ∂g(x) = ∂f(x).

Proof. We set C := epi g, A := epi f and u := (x, g(x)). Note that g(x) = f(x) if, and
only if, u ∈ A. Let us suppose, towards a contradiction, that g(x) < f(x), that is u /∈ A.
Since A is closed, there exists ρ > 0 such that

A ∩B(u, ρ) = ∅. (16)

By assumption u ∈ expC, so there exists p ∈ X∗ × R and ε > 0 such that

C ∩H ⊂ B(u, ρ),

where H is the open half-space {v ∈ X × R : 〈p, v〉 > 〈p, u〉 − ε}. Then, recalling that
A ⊂ C, relation (16) implies A ∩H = ∅, or equivalently, taking the closed convex hull of
the set A, that C ∩ H = ∅. We obtain a contradiction since u ∈ C ∩ H. Consequently,
g(x) = f(x). The equality of subdifferentials is now straightforward.

As a consequence of the above lemma we obtain a representation formula for the closed
convex envelope g of an epi-pointed function f based on the Fenchel subdifferential of f .

Corollary 3.11. Suppose that the Banach space X has the Radon-Nikodym property. Let
x0 ∈ dom ∂f . Then for every x ∈ X, we have

cof(x) = f(x0) + sup

{

n−1
∑

i=0

〈x∗
i , xi+1 − xi〉 + 〈x∗

n, x− xn〉

}

, (17)

where the supremum is taken over all integers n, all x1, x2, ..., xn in dom ∂f and all x∗
0 ∈

∂f(x0), x
∗
1 ∈ ∂f(x1), . . . , x

∗
n ∈ ∂f(xn).
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Proof. According to formula (1) and using relations (15), the right hand side of (17)
defines a proper lower semicontinuous convex function Ýf satisfying Ýf ≤ g (note that
g(x0) = f(x0)). On the other hand, according to Theorem 3.7 and Lemma 3.10, we
obtain Ýf ≥ g. This finishes the proof.
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