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A lower semicontinuity result is obtained for the BV extension of an integral functional of the type

∫

Ω
f(x, u(x),∇u(x)) dx ,

where the energy density f is not coercive and satisfies mild regularity assumptions.

1. Introduction

Since the celebrated paper [20] of Serrin appeared in 1961, many authors have contributed
to the study of the L1-lower semicontinuity of a functional of the type

∫

Ω

f(x, u(x),∇u(x)) dx , u ∈ W 1,1(Ω), (1)

and of the corresponding extension (3) to BV (Ω), with the aim of understanding which
are the minimal assumptions on f that guarantee lower semicontinuity.

Here, the starting point is the result, proved in [20], stating that if the integrand f(x, u, ξ)
is a nonnegative, continuous function from Ω× IR× IRN , convex in ξ, and such that the
(classical) derivatives ∇xf,∇ξf,∇x∇ξf exist and are continuous functions, then the inte-
gral functional (1) is lower semicontinuous in W 1,1(Ω), with respect to the L1 convergence
in the open set Ω.

In 1983 De Giorgi, Buttazzo and Dal Maso (see [10]) showed that Serrin’s assumptions can
be substantially weakened when dealing with autonomous (i.e. f ≡ f(u, ξ)) functionals of
the type (1). In this case they were able to prove the L1-lower semicontinuity without even
assuming f to be continuous in u for all ξ ∈ IRN . Their result is proved by approximating
the integrand f with a sequence of affine functions and then using a suitable version of
the chain rule in the Sobolev space W 1,1(Ω) in order to get the lower semicontinuity of
the approximating functionals.
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On the other hand, things are more complicate if we allow f to depend explicitly on x,
since convexity in ξ and continuity with respect to all variables (x, u, ξ) are not enough to
ensure the lower semicontinuity of functional (1), as shown by a well known example of
Aronszajin (see [19]). An even more surprising counterexample to lower semicontinuity
has been recently given by Gori, Maggi and Marcellini in [18] (see also [17]). In their
example, which is one dimensional, the integrand f is equal to |a(x, u)ξ − 1| and the
function a is Hölder continuous in x, uniformly with respect to u.

These examples clearly show that in order to get lower semicontinuity we must retain, in
the spirit of Serrin’s theorem recalled above, some differentiability of f with respect to x.
This is done, for instance, by Gori, Maggi and Marcellini in [18]. They prove that if f is
continuous in (x, u, ξ), convex in ξ and weakly differentiable in x and if for any open set
Ω′ ⊂⊂ Ω and any bounded set B ⊂ IR× IRN there exists a constant L(Ω′, B) such that

∫

Ω′

∣

∣

∣∇xf(x, u, ξ)
∣

∣

∣ dx ≤ L(Ω′, B) for every (u, ξ) ∈ B , (2)

then the functional (1) is L1-lower semicontinuous. Also this result is proved by approxi-
mating the integrand f with a sequence of affine functions whose coefficients are explicitly
given in terms of f (see Lemma 2.1 below, proved in [9]).

The lower semicontinuity result by Gori, Maggi and Marcellini has been extended in a
later paper ([8]) by De Cicco and Leoni, who prove a fairly general version of the chain
rule for vectors fields with divergence in L1. Using this chain rule, they get the lower
semicontinuity of the functional (1) under the assumption that f is continuous in u and
convex in ξ and that the distributional gradient ∇ξf satisfies a suitable assumption.
Namely, they require that, for L1-a.e. u ∈ IR and LN -a.e. ξ ∈ IRN , ∇ξf(·, u, ξ) is locally
summable in Ω, its distributional divergence divx∇ξf(x, u, ξ) is locally summable in Ω
and divx∇ξf(x, u, ξ) belongs to L1

loc(Ω × IR × IRN). These assumptions seem very close
to being necessary conditions for lower semicontinuity (see, for instance, [14], [16], [3] in
the BV setting, and [8] for a discussion on this subject).

In this paper, we prove a lower semicontinuity result for the functional

F (u,Ω) =

∫

Ω

f(x, u,∇u)dx+

∫

Ω

f
∞
(x, ũ,

Dcu

|Dcu|
)d|Dcu|+

∫

Ju

dHN−1

∫ u+(x)

u−(x)

f
∞
(x, t, νu)dt,

(3)
where u ∈ BV (Ω), ũ is the approximate limit of u, f

∞
denotes the recession function of

f with respect to ξ and f(x, u, ξ) is a suitable Borel function, continuous in u, convex in
ξ and such that for any (u, ξ) ∈ IR× IRN the function f(·, u, ξ) coincides HN−1-a.e. in Ω
with the precise representative of f(·, u, ξ) (see the definition given in (5)). As usual, Dcu
denotes the Cantor part of the measure Du, Dcu/|Dcu| is the derivative of the measure
Dcu with respect to its total variation |Dcu| and Ju is the jump set of u (the definitions
of all these quantities are recalled in Section 2).

The functional F is the natural extension of the functional (1) to the space BV (Ω). In fact
(see, for instance, the paper [5] by Dal Maso), under standard continuity and coercivity
assumptions on f , F coincides with the relaxed functional of (1), that is the greatest
L1-lower semicontinuous functional on BV (Ω) coinciding with (1) on W 1,1(Ω).
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Therefore, the study of the lower semicontinuity of the functional F is essentially parallel
to the Sobolev case, though occasionally things may turn out to be more difficult to prove
in the BV setting. Among the many papers devoted to the BV case we just mention here
the ones which are closer to our approach, such as [6], [7], [4], [12], [13] and [15], where
the lower semicontinuity result of [18] is extended to the functional F under the extra
assumption that f is continuous.

Here we give a further improvement of the result of [15] by dropping the continuity of f
with respect to x. Namely we prove the following result.

Theorem 1.1. Let Ω be an open subset of IRN and f : Ω × IR × IRN → [0,+∞) a
locally bounded Carathéodory function, such that, for every (u, ξ) ∈ IR× IRN , the function
f(·, u, ξ) is weakly differentiable in Ω. Let us assume that there exists a set Z ⊂ Ω, with
LN(Z) = 0, such that

(i ) f(x, u, ·) is convex in IRN for every (x, u) ∈ (Ω \ Z)× IR;

(ii ) f(x, ·, ξ) is continuous in IR for every (x, ξ) ∈ (Ω \ Z)× IRN

and that for any open set Ω′ ⊂⊂ Ω and any bounded set B ⊂ IR × IRN the estimate
(2) holds. Then, the functional F defined in (3) is lower semicontinuous in BV (Ω) with
respect to the L1(Ω) convergence.

Beside the usual approximation from below of the integrand f by a sequence of affine
functions, the proof of the above theorem uses a localization argument which allows us
to prove separately the lower semicontinuity of the diffuse part and of the jump part of
the functional F . However, the main technical tool used in the proof is provided by the
integration by parts formula stated below. This formula does not seem to be contained in
any of the similar results known in the literature and we think that could be of independent
interest.

Proposition 1.2. Let b : IRN×IR → IR be a bounded Borel function with compact support
in IRN × IR, such that, for any t ∈ IR, b(·, t) is weakly differentiable in IRN . Assume that

(j ) there exists a set Z ⊂ IRN , with LN(Z) = 0, such that for every x ∈ Ω \ Z the
function b(x, ·) is continuous in IR;

(jj ) there exists a constant L such that for any t ∈ IR

∫

IRN

∣

∣

∣

∂b

∂x
(x, t)

∣

∣

∣ dx ≤ L .

Then, for every u ∈ BV (IRN) and for every φ ∈ C1
0(IR

N), we have

∫

IRN

∇φ(x)dx

∫ u(x)

0

b(x, t)dt = −
∫

IRN

φ(x)dx

∫ u(x)

0

∂b

∂x
(x, t) dt

−
∫

IRN

φ(x)b(x, u (x))∇u(x) dx−
∫

IRN

φ (x) b(x, ũ (x))dDcu

−
∫

Ju

φ(x)νu(x)dHN−1

∫ u+(x)

u−(x)

b(x, t)dt ,

where b is defined as in (5).
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2. Definitions and preliminary results

In this section we recall a few preliminary results needed in the sequel and some basic
definitions of the theory of BV functions. We follow the notation used in [2] and we refer
to this book for all the properties of BV functions used here.

The first lemma is an approximation result due to De Giorgi (see [9]).

Lemma 2.1. There exists a sequence δj in C∞
0 (IRN), with δj ≥ 0 and

∫

IRN

δj(ζ) dζ = 1,

with the property that, whenever f : Ω× IR× IRN → [0,+∞) is a Carathéodory function,
if we set, for any j ∈ IN and any x ∈ Ω, u ∈ IR, ξ ∈ IRN ,

a0,j(x, u) =

∫

IRN

f(x, u, ζ) ((N + 1)δj(ζ) + 〈∇δj(ζ), ζ〉) dζ ,

ai,j(x, u) = −
∫

IRN

f(x, u, ζ)
∂δj
∂ζi

(ζ) dζ, for i = 1, . . . , N , (4)

gj(x, t, ξ) = a0,j(x, u) +
N
∑

i=1

ai,j(x, u)ξi ,

then, for all (x, u) ∈ Ω× IR such that f(x, u, ·) is convex, we have

f(x, u, ξ) = sup
j∈IN

max{gj(x, u, ξ), 0} for all ξ ∈ IRN .

Notice that if f is a Carathéodory (resp. Borel) function, then also the ai,j are Carathéodo-
ry (resp. Borel) functions in Ω × IR and if f satisfies (2) then a similar estimate is also
satisfied by the functions ai,j (locally uniformly with respect to u).

Let k : Ω × IRM → IR be a locally bounded Carathéodory function. For any x ∈ Ω,
z ∈ IRM , we set

k(x, z) = lim sup
r→0

−
∫

Br(x)

k(y, z) dy . (5)

Notice that k is a Borel function and that k(x, ·) is a continuous function for any x ∈ Ω.

Let us recall that if h : IRN → IR is a convex function, its recession function h∞ : IRN → IR
is defined by setting

h∞(ξ) = lim
t→+∞

h(tξ)

t
for any ξ ∈ IRN . (6)

If h : V × IRN → IR is a any function, such that for any v in the set V , the function h(v, ·)
is convex, we denote by h∞(v, ξ) the recession function of h(v, ·). The following result is
an easy consequence of the definition (6) and of Lemma 2.1 (see also [2, Lemma 2.33]).

Lemma 2.2. Let f : Ω × IR × IRN → [0,∞) be a Carathéodory function, satisfying the
assumptions of Theorem 1.1. Then, for all (x, u, ξ) ∈ Ω× IR× IRN ,

f
∞
(x, u, ξ) = sup

j∈IN
max{〈αj(x, u), ξ〉, 0} ,
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where for any i = 1, . . . , N ,

αi,j(x, u) = −
∫

IRN

f(x, u, ζ)
∂δj
∂ζi

(ζ) dζ . (7)

An immediate consequence of this lemma is that the function (x, u, ξ) 7→ f
∞
(x, u, ξ) is a

Borel function. Thus, the functional F in (3) is well defined.

The following result is contained in [2, Lemma 2.35].

Lemma 2.3. Let µ be a positive Radon measure in an open set Ω ⊂ IRN and let ψj :
Ω → [0,∞], j ∈ IN, be Borel functions. Then

∫

Ω

sup
j

ψj dµ = sup

{

∑

j∈J

∫

Aj

ψj dµ

}

,

where the supremum ranges among all finite sets J ⊂ IN and all families {Aj}j∈IN of
pairwise disjoint open sets with compact closure in Ω.

Let u be a function in L1
loc(Ω). We say that u is approximately continuous at the point

x ∈ Ω if there exists ũ(x) ∈ IR such that

lim
r→0

−
∫

Br(x)

|u(y)− ũ(x)| dy = 0 ;

the value ũ(x) is called the approximate limit of u at x. In the sequel, whenever k :

Ω× IRM → IR is a locally bounded Carathéodory function, we shall denote by ˜k(x, u) the
approximate limit of k(·, u) at x, provided that this limit exists; in this case we have also
˜k(x, z) = k(x, z). The set Cu of all points where u is approximately continuous is a Borel
set. We say that a point x ∈ Ω \ Cu is an approximate jump point for u if there exist
u+(x), u−(x) ∈ IR and νu(x) ∈ SN−1 such that u−(x) < u+(x) and

lim
r→0

−
∫

B+
r (x;νu(x))

|u(y)− u+(x)| dy = 0, lim
r→0

−
∫

B−
r (x;νu(x))

|u(y)− u−(x)| dy = 0 ,

where B+
r (x; νu(x)) = {y ∈ Br(x) : 〈y − x, νu(x)〉 > 0} and B−

r (x; νu(x)) is defined
analogously. Also the set Ju ⊂ Ω \ Cu of all approximate jump points is a Borel set and
the function (u+(x), u−(x), νu(x)) : Ju → IR× IR× SN−1 is a Borel function.

Given a point x ∈ Cu, we say that u is approximately differentiable at x if there exists
∇u(x) ∈ IRN such that

lim
r→0

1

rN+1

∫

Br(x)

|u(y)− ũ(x)− 〈∇u(x), y − x〉| dy = 0 .

The vector ∇u(x) is called the approximate differential of u at x. The set of points in
Cu where the approximate differential of u exists is a Borel set denoted by Du. It can be
easily verified that ∇u : Du → IRN is a Borel map.
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A function u ∈ L1(Ω) is called of bounded variation if its distributional gradient Du is an
IRN -vector valued measure and the total variation |Du| of Du is finite in Ω. The space of
all functions of bounded variation in Ω is denoted by BV (Ω). If u ∈ BV (Ω), we denote
by Dau the absolutely continuous part of Du with respect to the Lebesgue measure LN .
The singular part Dsu can be split in two more parts, the jump part Dju and the Cantor
part Dcu, defined by

Dju = Dsu Ju, Dcu = Dsu−Dju .

Furthermore,

Dau = ∇uLN Du, Dcu = Du (Cu \ Du), Dju = (u+ − u−)νuHN−1 Ju ,

where HN−1 denotes the (N − 1)-dimensional Hausdorff measure in IRN (see [2, Proposi-
tion 3.92]). We shall also use the following form of the coarea formula for BV functions
(see [11, Theorem 4.5.9])

∫

Ω

g d|Du| =
∫ +∞

−∞
dt

∫

{u−≤t≤u+}
g dHN−1 , (8)

where g : Ω → [0,+∞] is a Borel function.

We conclude this section by proving the following lemma that will be useful in the sequel.

Lemma 2.4. Let f be a Carathéodory function satisfying the assumptions of Theorem
1.1. Let us denote by aj the functions obtained from f as in (5) and by αj those obtained
in the same way from f as in (7). Then, for any u ∈ IR, there exists a Borel set Zu ⊂ Ω,
with HN−1(Zu) = 0, such that for any j ∈ IN,

aj(x, u) = ãj(x, u) = αj(x, u) for all x ∈ Ω \ Zu .

Proof. Let us fix u ∈ IR. We claim that there exists a Borel set Zu ⊂ Ω, with
HN−1(Zu) = 0, such that, for any x ∈ Ω\Zu and any ξ ∈ IRN , x is a point of approximate
continuity for the function f(·, u, ξ), hence in particular

˜f(x, u, ξ) = f(x, u, ξ) for any x ∈ Ω \ Zu and any ξ ∈ IRN . (9)

To this aim, let us consider a sequence ξh, dense in IRN , and recall that since the functions
f(·, u, ξh) are weakly integrable in Ω, for any h there exists a Borel set Bu,h ⊂ Ω such
that HN−1(Bu,h) = 0 and x is a point of approximate continuity for f(·, u, ξh) for any
x ∈ Ω \ Bu,h. Let us set Zu = ∪hBu,h and fix x ∈ Ω \ Zu, ξ ∈ IRN . Let ξkh be a
subsequence of ξh converging to ξ. Since f(·, u, ·) is locally bounded and convex in ξ for
LN -a.e. x ∈ Ω , then for any open set Ω′ ⊂⊂ Ω and any compact set K in IRN , there
exists a constant L such that

|f(y, u, ξ)− f(y, u, ξ′)| ≤ L|ξ − ξ′| for LN -a.e. y ∈ Ω′ and any ξ, ξ′ ∈ K .

From this inequality, we get that

lim sup
r→0

−
∫

Br(x)

|f(y, u, ξ)− ˜f(x, u, ξkh)| dy

≤ lim sup
r→0

−
∫

Br(x)

|f(y, u, ξ)− f(y, u, ξkh)| dy + lim sup
r→0

−
∫

Br(x)

|f(y, u, ξkh)− ˜f(x, u, ξkh)| dy

≤ c|ξ − ξkh| ,
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hence we easily deduce that the sequence ˜f(x, u, ξkh) converges to the approximate limit
of f(·, u, ξ) at x and thus that x is a point of approximate continuity for f(·, u, ξ).
To conclude the proof, we now show that x is a point of approximate continuity also for
the functions aj(·, u), thus obtaining that ãj(x, u) = aj(x, u), and that indeed ãj(x, u) =
αj(x, u). In fact, using (9) and Fubini’s theorem, we get

−
∫

Br(x)

|aj(y, u)− αj(x, u)| dy ≤ −
∫

Br(x)

dy
∣

∣

∣

∫

IRN

[f(y, u, ζ)− f(x, u, ζ)]∇δj(ζ) dζ
∣

∣

∣

= −
∫

Br(x)

dy
∣

∣

∣

∫

IRN

[f(y, u, ζ)− ˜f(x, u, ζ)]∇δj(ζ) dζ
∣

∣

∣

≤
∫

IRN

|∇δj(ζ)| dζ −
∫

Br(x)

|f(y, u, ζ)− ˜f(x, u, ζ)| dy.

Then, the assertion follows from the Lebesgue dominated convergence theorem since, for
any ζ ∈ IRN ,

lim
r→0

−
∫

Br(x)

|f(y, u, ζ)− ˜f(x, u, ζ)| dy = 0 .

3. Proof of the Theorem 1.1

In this section we give the proof of both Proposition 1.2 and Theorem 1.1.

Proof of Proposition 1.2. Let %ε(x) = ε−N%(x/ε), ε > 0, a family of mollifiers, where
% is a nonnegative smooth function, with compact support in the unit ball B1, such that
∫

IRN

%(y)dy = 1. For any ε > 0, (x, t) ∈ IRN × IR, we set

bε(x, t) =

∫

IRN

%ε(x− z)b(z, t) dz, fε(x, t) =

∫ t

0

bε(x, τ) dτ .

We claim that fε ∈ C1
0(IR

N×IR). To this aim, let BR be an open ball such that the support
of b is contained in BR × (−R,R); then the support of fε is contained in BR+ε × (−R,R)
and thus to prove the claim it is enough to show that fε ∈ C1(BR+ε × IR). Let su fix
σ > 0. Since b is a Carathéodory function in BR+2ε × IR, by Scorza Dragoni’s theorem
there exists a compact set K such that LN(BR+2ε \ K) < σ and b|K×IR is continuous.
Moreover, let δ ∈ (0, σ) be such that

(z, t1), (z, t2) ∈ K × IR, |t1 − t2| < δ =⇒ |b(z, t1)− b(z, t2)| < σ .

Let us now fix (x1, t1), (x2, t2) ∈ BR+ε× IR such that |(x1, t1)− (x2, t2)| < δ. Then, setting
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M = sup |b|, we have

∣

∣

∣

∣

∂fε
∂t

(x1, t1)−
∂fε
∂t

(x2, t2)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Bε(x1)

%ε(x1 − z)b(z, t1) dz −
∫

Bε(x2)

%ε(x2 − z)b(z, t2) dz

∣

∣

∣

∣

≤
∫

Bε(x1)

|%ε(x1 − z)− %ε(x2 − z)||b(z, t1)| dz +
∫

Bε(x1)\Bε(x2)

%ε(x2 − z)|b(z, t1)| dz

+

∫

Bε(x2)\Bε(x1)

%ε(x2 − z)|b(z, t2)| dz +
∫

Bε(x1)∩Bε(x2)

%ε(x2 − z)|b(z, t1)− b(z, t2)| dz

≤Mcε|x1 − x2|+
∫

Bε(x1)∩Bε(x2)\K
%ε(x2 − z)|b(z, t1)− b(z, t2)| dz

+

∫

Bε(x1)∩Bε(x2)∩K
%ε(x2 − z)|b(z, t1)− b(z, t2)| dz

≤Mcε|x1 − x2|+ 2McεLN(Bε(x1) ∩Bε(x2) \K) + σ ≤ σ(3Mcε + 1)

where cε is a constant depending only on %, ε and N . Since, for any i = 1, . . . , N ,

∂fε
∂xi

(x, t) =

∫ t

0

dτ

∫

IRN

∂%ε
∂xi

(x− z)b(z, τ) dz ,

the proof of the continuity of ∂fε/∂xi is similar (actually simpler). Let us now set, for
any ε > 0,

vε(x) =

∫ u(x)

0

bε(x, t) dt.

By applying the chain rule to the composition of the function fε ∈ C1
0(IR

N × IR) with the
BV map x 7→ (x, u(x)) (see, for instance, [2, Theorem 3.96]), we get, for any φ ∈ C1

0(IR
N),

∫

IRN

∇φ(x)vε(x) dx = −
∫

IRN

φ(x)dx

∫ u(x)

0

∂bε
∂x

(x, t) dt−
∫

IRN

φ(x)bε(x, u(x))∇u(x) dx

−
∫

IRN

φ(x)bε(x, ũ(x)) dD
cu−

∫

Ju

φ(x)νu(x)dHN−1

∫ u+(x)

u−(x)

bε(x, t) dt .

Using again Scorza Dragoni’s theorem one can easily prove (see, for instance the proof of
formula (42) in [18]) that there exists a set Z1 ⊂ IRN , with LN(Z1) = 0, such that

lim
ε→0+

bε(x, t) = b(x, t) for any (x, t) ∈ (IRN \ Z1)× IR .

From this equality we immediately get that

lim
ε→0+

∫

IRN

φ(x)bε(x, u(x))∇u dx =

∫

IRN

φ(x)b(x, u(x))∇u dx

and that

lim
ε→0+

∫

IRN

∇φ(x)vε(x) dx =

∫

IRN

∇φ(x) dx

∫ u(x)

0

b(x, t) dt .
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Notice that, by assumption (jj), for any t ∈ IR the functions
∂bε
∂x

(·, t) converge in L1(IRN)

to
∂b

∂x
(·, t) and

∥

∥

∥

∂bε
∂x

(·, t)
∥

∥

∥

L1(IRN )
≤ L for any ε > 0 and t ∈ IR. Therefore, denoting by

I(x) the interval (0, u(x)), if u(x) > 0, and the interval (u(x), 0), otherwise, by Fubini’s
theorem and by the Lebesgue’s theorem of dominated convergence, we get

lim sup
ε→0+

∣

∣

∣

∣

∫

IRN

φ(x) dx

∫ u(x)

0

∂bε
∂x

(x, t) dt−
∫

IRN

φ(x) dx

∫ u(x)

0

∂b

∂x
(x, t) dt

∣

∣

∣

∣

≤ lim
ε→0+

∫

IR

dt

∫

IRN

χI(x)(t)

∣

∣

∣

∣

∂bε
∂x

(x, t)− ∂b

∂x
(x, t)

∣

∣

∣

∣

dx = 0 .

Let us now prove that

lim
ε→0

∫

IRN

φ(x)bε(x, ũ(x)) dD
cu =

∫

IRN

φ(x)b(x, ũ(x)) dDcu . (10)

To this aim, let us use the coarea formula (8), thus getting

∫

IRN

φ(x)bε(x, ũ(x) dD
cu =

∫

Cu\Du

φ(x)bε(x, ũ(x))
Dcu

|Du|
(x) d|Du| (11)

=

∫

IR

dt

∫

{u−≤t≤u+}
φ(x)bε(x, ũ(x))χCu\Du(x)

Dcu

|Du|
(x) dHN−1

=

∫

IR

dt

∫

{ũ=t}∩(Cu\Du)

φ(x)bε(x, t)
Dcu

|Du|
(x) dHN−1 .

Let us fix t ∈ IR. Since HN−1-a.e. x ∈ IRN is a point of approximate continuity for
b(·, t), bε(x, t) converges to ˜b(x, t) for HN−1-a.e. x, hence bε(x, t) converges to b(x, t) for
HN−1-a.e. x. Moreover, since u ∈ BV (IRN), by the coarea formula we have

∫ +∞

−∞
HN−1 ({ũ = t} ∩ (Cu \ Du)) dt = |Du|(Cu \ Du) < ∞ . (12)

Therefore, for L1-a.e. t ∈ IR, we have

lim
ε→0

∫

{ũ=t}∩(Cu\Du)

φ(x)bε(x, t)
Dcu

|Du|
(x) dHN−1 =

∫

{ũ=t}∩(Cu\Du)

φ(x)b(x, t)
Dcu

|Du|
(x) dHN−1 .

From this equation, passing to the limit in (11) and using (12) and the dominated con-
vergence theorem, we immediately get (10).

Finally, let us consider the Radon measure µ = |Du| × L1 and define for any i, j ∈ IN,

Gi,j =
{

(x, t) ∈ IRN × IR : lim sup
r→0

−
∫

Br(x)

|b(y, t)− qi|dy <
1

j

}

,

where qi is a dense sequence in IR. The set

G = ∩∞
j=1 ∪∞

i=1 Gi,j
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is a Borel set and (x, t) ∈ G if and only if x is a point of approximate continuity for
b(·, t). By assumption, the function b(·, t) is weakly differentiable, hence HN−1({x ∈ IRN :
(x, t) 6∈ G}) = 0. Therefore, the complement Gc of G satisfies the equality

µ(Gc) =

∫

IR

dt

∫

IRN

χGc(x, t)d|Du| = 0 . (13)

Let us estimate

∣

∣

∣

∫

Ju

φ(x)νu(x) dHN−1

∫ u+(x)

u−(x)

bε(x, t) dt−
∫

Ju

φ(x)νu(x) dHN−1

∫ u+(x)

u−(x)

b(x, t) dt
∣

∣

∣ (14)

≤ ‖φ‖∞
∫

Ju

d|Du| −
∫ u+(x)

u−(x)

|bε(x, t)− b(x, t)| dt .

By (13) we have that

lim
ε→0

−
∫ u+(x)

u−(x)

|bε(x, t)− b(x, t)| dt = 0 for |Du|-a.e. x ∈ Ju

and from this equality we immediately get that the right hand side in (14) goes to zero,
as ε → 0.

This concludes the proof.

Remark 3.1. From the above proof it is clear that the integration by parts formula stated
in Proposition 1.2 still holds if we replace b by any Borel function β : IRN × IR → IR such
that, for any t ∈ IR, b(x, t) = β(x, t) for HN−1-a.e. x ∈ IRN .

The proof of Theorem 1.1 is based on an argument introduced in [15].

Proof of Theorem 1.1.
Step 1. We treat separately the two terms depending on the diffuse part of Du, i.e.
Dau + Dcu, and the jump term Dju. Let (un) be a sequence in BV (Ω) converging in
L1(Ω) to u ∈ BV (Ω). Let us fix an open set Ω′ ⊂⊂ Ω and a function η ∈ C1

0(IR), with
0 ≤ η(t) ≤ 1. Let K1, K2 be two compact sets such that

K1 ⊂ Ω′ ∩ Cu, K2 ⊂ Ω′ \ Cu . (15)

Then, we may find two open sets Ω1,Ω2, contained in Ω′, such that

Ω1 ∩ Ω2 = ∅, K1 ⊂ Ω1, K2 ⊂ Ω2 . (16)

Finally, let us denote by gj the sequence of functions provided by Lemma 2.1. Since

lim inf
n→∞

F (un,Ω) ≥ lim inf
n→∞

F (un,Ω1) + lim inf
n→∞

F (un,Ω2) , (17)

we are going to estimate separately the two terms on the right hand side of this inequality.

Step 2. Let us fix a finite family {Aj}j∈J of disjoint open sets with the closure contained
in Ω1. Let (ϕr)r∈IN be a sequence in C1

0(Ω1), with 0 ≤ ϕr ≤ 1 for all r, and, for any j ∈ J ,
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let (ηj,s)s∈IN be a sequence in C1
0(Aj × IR), with 0 ≤ ηj,s ≤ 1 for all j, s. Since by Lemmas

2.1 and 2.2

f(x, u, ξ) ≥
∑

j∈J

gj(x, u, ξ)ηj,s(x, u)ϕr(x) for all (x, u, ξ) ∈ (Ω \ Z)× IR× IRN

f
∞
(x, u, ξ) ≥

∑

j∈J

〈αj(x, u), ξ〉ηj,s(x, u)ϕr(x) for all (x, u, ξ) ∈ Ω× IR× IRN ,

for any r, s ∈ IN, we have, by Proposition 1.2 and Remark 3.1,

F (un,Ω1) ≥
∑

j∈J

∫

Ω1

a0,j(x, un)ηj,s(x, un)ϕrdx+
∑

j∈J

{

∫

Ω1

〈aj(x, un)ηj,s(x, un),∇un〉ϕrdx

+

∫

Ω1

〈αj(x, ũn),
Dcun

|Dcun|
〉ηj,s(x, ũn)ϕrd|Dcun|

+

∫

Ju∩Ω1

ϕrdHN−1

∫ u+
n (x)

u−
n (x)

〈αj(x, t), νu(x)〉ηj,s(x, t)dt

}

=
∑

j∈J

∫

Ω1

a0,j(x, un)ηj,s(x, un)ϕrdx−
∑

j∈J

{

∫

Ω1

dx

∫ un(x)

0

〈aj(x, t),∇ϕr(x)〉ηj,s(x, t)dt

+

∫

Ω1

ϕrdx

∫ un(x)

0

divx
(

aj(x, t)ηj,s(x, t)
)

dt

}

.

Passing to the limit in this inequality and using Proposition 1.2 and Remark 3.1 again,
we easily get

lim inf
n→∞

F (un,Ω1)≥
∑

j∈J

∫

Ω1

[

a0,j(x, u)ηj,s(x, u) + 〈aj(x, u)ηj,s(x, u),∇u〉
]

ϕr dx (18)

+
∑

j∈J

∫

Ω1

〈αj(x, ũ(x))ηj,s(x, ũ(x)),
Dcu

|Dcu|
〉ϕr d|Dcu|

+
∑

j∈J

∫

Ω1∩Ju

[∫ u+(x)

u−(x)

〈αj(x, t)ηj,s(x, t), νu(x)〉dt
]

ϕr dHN−1 .

From Lusin’s theorem there exists a sequence ϕr ∈ C1
0(Ω1), with 0 ≤ ϕr(x) ≤ 1 such

that ϕr(x) → χCu∩Ω1(x) for |Du|-a.e. x ∈ Ω1. Therefore passing to the limit as r → ∞,
inequality (18) becomes

lim inf
n→∞

F (un,Ω1)≥
∑

j∈J

∫

Ω1

[

a0,j(x, u)ηj,s(x, u) + 〈aj(x, u)ηj,s(x, u),∇u〉
]

dx

+
∑

j∈J

∫

Ω1

〈αj(x, ũ(x))ηj,s(x, ũ(x)),
Dcu

|Dcu|
〉 d|Dcu| .

Next, taking for any j ∈ J , ηj,s(x, t) = γj,s(x)η(t), with γj,s(x) converging to χDj
(x) +

χCj
(x) for |Du|-a.e. x ∈ Aj, where

Dj = {x ∈ Aj ∩ Du : gj(x, u(x),∇u(x)) > 0}
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Cj =
{

x ∈ Aj ∩ (Cu \ Du) : 〈αj(x, ũ(x)),
Dcu

|Dcu|
〉 > 0

}

,

we get immediately that

lim inf
n→∞

F (un,Ω1)≥
∑

j∈J

∫

Aj

η(u)max{gj(x, u(x),∇u(x)), 0} dx

+
∑

j∈J

∫

Aj

η(ũ(x))max
{

〈αj(x, ũ(x)),
Dcu

|Dcu|
, 0〉

}

d|Dcu| .

Therefore, by applying Lemma 2.3 with µ = |Du| we obtain, by Lemmas 2.1 and 2.2,

lim inf
n→∞

F (un,Ω1) ≥
∫

Ω1

f(x, u,∇u)η(u) dx+

∫

Ω1

f
∞
(

x, u,
Dcu

|Dcu|

)

η(ũ) d|Dcu| .

Step 3. Let us fix a finite family {Uj}j∈J of disjoint open sets with compact closure in
Ω2 × IR. Let (ϕr)r∈IN be a sequence in C1

0(Ω2), with 0 ≤ ϕr ≤ 1 for all r, and let (ηj,s)s∈IN
be a sequence in C1

0(Uj), with 0 ≤ ηj,s ≤ 1 for all j, s. Arguing as in Step 2 and letting
ϕr(x) converge to χJu∩Ω2(x) for |Du|-a.e. x ∈ Ω2, we get by Fubini’s theorem

lim inf
n→∞

F (un,Ω2) ≥
∑

j∈J

∫

Ω2×IR

〈αj(x, t)ηj,s(x, t), νu(x)〉χ[u−(x),u+(x)](t) dλ ,

where λ denotes the product measure of the two σ-finite measures HN−1 Ju and L1. Let
Am be an increasing sequence of Borel sets such that ∪mAm = IRN × IR and λ(Am) < ∞
for any m. Let us fix m and, for any j ∈ J , let us apply Lusin’s theorem again to
get a sequence ηj,s(x, t) converging λ-a.e. to η(t)χSj∩Am(x, t), where Sj = {(x, t) ∈ Uj :
〈αj(x, t), νu(x)〉 > 0}. Thus, from the previous inequality we obtain

lim inf
n→∞

F (un,Ω2) ≥
∑

j∈J

∫

Uj∩Am

η(t)χ[u−(x),u+(x)](t)max{〈αj(x, t), νu(x)〉, 0} dλ

and letting m → ∞

lim inf
n→∞

F (un,Ω2) ≥
∑

j∈J

∫

Uj

η(t)χ[u−(x),u+(x)](t)max{〈αj(x, t), νu(x)〉, 0} dλ .

Therefore, by applying Lemma 2.3 with µ = λ = HN−1 Ju×L1 we obtain, by Lemma 2.2
and Fubini’s theorem,

lim inf
n→∞

F (un,Ω2) ≥
∫

Ω2

[

∫ u+(x)

u−(x)

η(t)f
∞
(x, t, νu(x))dt

]

dHN−1 .

Letting η(t) ↑ 1 for any t ∈ IR, from this inequality and from (19), we obtain, recalling
(15), (16) and (17),

lim inf
n→∞

F (un,Ω) ≥ F (u,K1) + F (u,K2) .

The result follows by letting first K1 ↑ Cu and then K2 ↑ Ω′ \ Cu and, finally, letting
Ω′ ↑ Ω.



V. De Cicco, N. Fusco, A. Verde / On L1-Lower Semicontinuity in BV 185

References

[1] L. Ambrosio: New lower semicontinuity results for integral functionals, Rend. Accad. Naz.
Sci. XL 1 (1987) 1–42.

[2] L. Ambrosio, N. Fusco, D. Pallara: Functions of Bounded Variation and Free Discontinuity
Problems, Oxford University Press (2000).
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