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We consider the problem of H-separability for two H-convex sets A,B ⊂ Rn. There are two types of
H-separability. The first one, called “strict H-separability", is the separation (in the usual sense) of the
sets A and B by an H-convex hyperplane. The second one (“weak H-separability") means to look for an
H-convex half-space P such that A is situated in P , whereas B has no point in common with the interior
of P . We give necessary and sufficient conditions for both these types of H-separability; the results are
connected with H-convexity of the Minkowski sum of H-convex sets, see [7]. Some examples illustrate
the obtained results.
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1. Introduction

The separation of convex sets and, in particular, of convex cones is an important tool
and field in classical and applied convexity. In almost every book on convexity one can
find extra paragraphs on this topic, cf. [10], §1.7, [17], Part II, [12], §3, [11], Section
4, [18], §2.4, [8], §8, and [15], §1.3. Important fields of application are Mathematical
Programming and Control Theory (see [16], §3.3 and [4]) as well as Convex Analysis (cf.
[14], §11, and [13], §9). It is our aim to extend known separation theorems to a natural
generalization of the usual convexity notion.

Let H be a non-onesided subset of the unit sphere Sn−1 ⊂ Rn, i.e., H is not contained in
a closed half-sphere of Sn−1. A closed half-space P ⊂ Rn is said to be H-convex if its unit
outward normal belongs to H. Furthermore, a subset Q of Rn is said to be an H-convex
set if it is representable as the intersection of a (finite or infinite) family of H-convex
half-spaces. The class of H-convex sets was introduced in [1]. For example, there are
many applications of H-convexity to problems of Combinatorial Geometry; see [2], [3],
[8], Chapter III, [5], [9], and the recent publications [6] and [7]. Results on H-convex sets
usually extend classical observations on sets which are convex in the common sense, since
the latter ones are described by the special case H = Sn−1. Here we present some new
results on H-convexity in view of separation theory.

First we introduce the definitions of H-separability and give some illustrating examples.
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As usual, we use the abbreviations int and bd for interior and boundary, respectively.

Definition 1.1. Let Q1, Q2 ⊂ Rn be two nonempty sets without common interior points,
i.e., (intQ1)∩ (intQ2) = ∅. Let, furthermore, H ⊂ Sn−1 be a non-onesided vector system.
We say that the setsQ1, Q2 are strictly H-separable if there exists anH-convex hyperplane
Γ such that Q1 ⊂ P1 and Q2 ⊂ P2, where P1, P2 are the two closed half-spaces defined by
the hyperplane Γ.

Definition 1.2. Let Q1, Q2 ⊂ Rn be two nonempty sets satisfying again (intQ1) ∩
(intQ2) = ∅. Let, furthermore, H ⊂ Sn−1 be a non-onesided vector system. We say
that the set Q1 is weakly H-separable from Q2 if there exists an H-convex half-space P
such that Q1 ⊂ P and Q2 ∩ (intP ) = ∅.

It is clear that if Q1 and Q2 are strictly H-separable, then Q1 is weakly H-separable
from Q2 and, at the same time, Q2 is weakly H-separable from Q1. Nevertheless, if Q1 is
weakly H-separable from Q2 and Q2 is weakly H-separable from Q1, we cannot conclude
that Q1 and Q2 are strictly H-separable (see Example 1.6 below).

Example 1.3. Let Q1, Q2 be two closed balls in Rn which are tangent to each other
at their common boundary point a, i.e., Q1 ∩ Q2 = {a}. Denote by Γ their tangential
hyperplane at the point a and by p1, p2 the unit normal vectors of Γ with p1 = −p2.
Denote by H the set Sn−1 \ {p1, p2}. Then both the sets Q1, Q2 are H-convex and they
are separable in usual sense, but they are not H-separable (neither in the strict sense nor
in the weak sense). This occurs since the set H is not closed. £

Example 1.4. Under the notation of the previous example we put H = Sn−1 \ {p1},
assuming that the ball Q1 is contained in the closed half-space P = {x : 〈p1, x− a〉 ≤ 0}.
The H-convex sets Q1, Q2 are not strictlyH-separable. At the same time, Q1 is weakly H-
separable from Q2 (since Q1 ⊂ P and Q2∩(intP ) = ∅), but Q2 is not weakly H-separable
from Q1. £

Example 1.5. In Example 1.4 the set H is not closed. We give an example with analo-
gous properties for a closed set H. Let Q1 ⊂ Rn be an n-dimensional simplex and let H
be the set of unit outward normals of its facets. The set H consists of n+ 1 vectors and
is closed. Moreover, Q1 is H-convex. We choose a relatively interior point a of a facet F
of the simplex Q1 and denote by b the vertex opposite to the facet F in Q1, and by p the
unit outward normal of the facet F ⊂ Q1. The half-space P = {x : 〈p, x− a〉 ≤ 0} is H-
convex. Furthermore, denote by t the translation by the vector a− b and put Q2 = t(Q1).
The sets Q1 and Q2 have no common interior points in Rn and are separable in the usual
sense. Furthermore, the H-convex sets Q1, Q2 are not strictly H-separable. At the same
time, the set Q1 is weakly H-separable from Q2 (since Q1 ⊂ P and Q2 ∩ intP = ∅), but
Q2 is not weakly H-separable from Q1. £

Example 1.6. Let Q1 ⊂ Rn be an n-dimensional simplex and let H be the set of unit
outward normals of its facets. The set H consists of n+1 vectors and is closed. Let a1, a2
be two vertices ofQ1. Denote by t the translation by the vector a2−a1 and putQ2 = t(Q1).
The sets Q1 and Q2 have no common interior points in Rn and are separable in the usual
sense. Furthermore, the H-convex sets Q1, Q2 are not strictly H-separable (since there
is no H-convex hyperplane). But every of the sets Q1, Q2 is weakly H-separable from
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the other one. Indeed, denote by S1 the facet of the simplex Q1 which is opposite to its
vertex a1, and by S2 the facet of the simplex Q2 which is opposite to its vertex t(a2). Let
pi be the unit outward normal of the facet Si of the simplex Qi, and Pi be the half-space
{x : 〈pi, x− a2〉 ≤ 0, i = 1, 2}. Then the H-convex half-space Pi contains the simplex Qi,
and intPi has no common points with the other simplex. £

The above examples show that the situations “Q1 and Q2 are strictly H-separable", “Q1

is weakly H-separable from Q2", and “Q2 is weakly H-separable from Q1" are in general
pairwise different for two sets Q1, Q2 with (intQ1)∩ (intQ2) = ∅. Moreover, the situation
“every of the two sets Q1, Q2 is weakly H-separable from the other one" does not mean
that Q1 and Q2 are strictly H-separable.

2. Sufficient conditions for H-separability

In [7] we describe all non-onesided vector systems H ⊂ Sn−1 such that the Minkowski sum
of any two H-convex sets in Rn also is H-convex. We recall the solution of that problem.

Definition 2.1. Let H ⊂ Sn−1 be a non-onesided vector system. We say that the system
H is M -complete if for every m vectors e1, ..., em ∈ H, each m − 1 of which are linearly
independent, the following condition holds: if a unit vector p ∈ Rn is representable as a
positive linear combination of the vectors e1, ..., el, where 1 < l < m−1, and, at the same
time, p is representable as a positive linear combination of the other vectors el+1, ..., em,
then p ∈ H.

In [7] we prove the following result:

Theorem 2.2. Assume that a non-onesided vector system H ⊂ Sn−1 is M-complete.
Then the Minkowski sum of every two H-convex sets is itself an H-convex set.

Using this result, we now obtain some sufficient conditions for H-separability.

Theorem 2.3. Let Q1, Q2 ⊂ Rn be two nonempty sets without common interior points,
i.e., (intQ1)∩ (intQ2) = ∅. Let, furthermore, H ⊂ Sn−1 be a non-onesided vector system
that is M-complete. If Q1 is H-convex and Q2 is (−H)-convex, then Q1 is weakly H-
separable from Q2.

Proof. Consider the set K = Q1 −Q2. By the condition of Theorem 2.3, the origin 0 is
not an interior point of the set K (otherwise (intQ1) ∩ (intQ2) is nonempty). Moreover,
the set (−Q2) is H-convex, and consequently the set K = Q1−Q2 is H-convex, too (since
H is M -complete). Since 0 /∈ intK, there is an H-convex half-space P with boundary
hyperplane through 0 such that P ⊃ K. Denote by p the unit outward normal of the
half-space P ; then p ∈ H.

Let N ⊂ Rn be a convex set and Π ⊂ Rn be a half-space with unit outward normal p.
We say that Π is a quasi-support half-space of N if Π ⊃ N and, moreover, no half-space
−λp + Π contains N if λ > 0 (we note that if N is compact, then Π is a usual support
half-space of the set N).

Since P ⊃ K = Q1−Q2, for any point x ∈ Q2 we have P ⊃ Q1−x, i.e., the half-space x+P
with the outward normal p contains Q1. Consequently there exists a half-space Π1 with
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the outward normal p that is a quasi-support half-space of Q1. Analogously we conclude
that there exists a half-space Π2 with the outward normal p that is a quasi-support half-
space of −Q2. We have Πi = −λip + P , i = 1, 2. Moreover, λ1 (respectively, λ2) is the
maximal real number for which −λ1p + P ⊃ Q1 (respectively, −λ2p + P ⊃ −Q2). The
half-space Π1+Π2 is the quasi-support half-space of Q1−Q2 with the outward normal p,
and consequently Π1+Π2 ⊂ P . This implies λ1+λ2 ≥ 0. Hence λ2 ≥ −λ1, and therefore
the half-space λ1p + P contains the set −Q2, i.e., the half-space −λ1p − P contains the
set Q2.

Finally, denote by Γ the boundary hyperplane of the half-space P ; the hyperplane Γ
contains the origin. By construction, the half-space Π1 contains the set Q1. We note
that the boundary of Π1 has the representation (bdΠ1) = −λ1p+ Γ. Moreover, the half-
space −λ1p−P with outward normal −p contains the set Q2 and has the same boundary
−λ1p + Γ (we remark that 0 ∈ Γ and therefore −Γ = Γ). Consequently, the open half-
space (intΠ1) = Rn \ (−λ1p − P ) has no common points with Q2. Thus Π1 ⊃ Q1 and
(intΠ1) ∩Q2 = ∅. Since the unit outward normal p of Π1 belongs to H we conclude that
the sets Q1 and Q2 are weakly H-separable.

Theorem 2.4. Let Q1, Q2 ⊂ Rn be two nonempty sets without common interior points,
i.e., (intQ1)∩ (intQ2) = ∅. Let, furthermore, H ⊂ Sn−1 be a non-onesided vector system
that is M-complete and symmetric with respect to the origin. If Q1 and Q2 are H-convex,
then they are strictly H-separable.

Proof. Since the set H is symmetric with respect to the origin, we conclude that the
H-convex set Q2 is also (−H)-convex. Moreover, since the vector system H ⊂ Sn−1 is
M -complete, we conclude by Theorem 2.3 above that the H-convex set Q1 is weakly
H-separable from the (−H)-convex set Q2. In other words, there exists an H-convex
half-space Π such that Q1 ⊂ Π and Q2 has no common points with the open half-space
Rn \Π. This means that Q2 is contained in the other closed half-space Π′ with the same
boundary Γ = (bdΠ) = (bdΠ′). Denote by p ∈ H the unit outward normal of the
half-space Π. Since the set H is symmetric with respect to the origin and p ∈ H, we
conclude that −p ∈ H, i.e., both closed half-spaces Π and Π′ are H-convex, and hence the
hyperplane Γ = Π ∩ Π′ is H-convex. Since the hyperplane Γ separates the sets Q1 and
Q2, we conclude that Q1 and Q2 are strictly H-separable.

3. Examples

Simple examples show that the sufficient conditions for H-separability given in Theorems
2.3 and 2.4 are not necessary.

Example 3.1. In Theorem 2.3 two sets Q1 and Q2 with (intQ1) ∩ (intQ2) = ∅ satisfy
the following conditions:

(A) the set H ⊂ Sn−1 is M -complete;
(B) the set Q1 is H-convex;
(C) the set Q2 is (−H)-convex.

Theorem 2.3 affirms that the disjunction of the conditions (A), (B), (C) is sufficient
for weak H-separability of Q1 from Q2. To show that this condition is not necessary,
we describe situations when Q1 is weakly H-separable from Q2, but at least one of the
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conditions (A), (B), (C) fails. Indeed, in Example 1.5 above the set Q1 is weakly H-
separable from Q2 and the conditions (A), (B) hold; nevertheless condition (C) fails.

£

Example 3.2. Let T ⊂ Rn be an n-dimensional simplex and {e0, e1, ..., en} be the system
of all unit outward normals of its facets. We add two vectors −e0 and −e1 and denote
by H ⊂ Sn−1 the obtained system that consists of n + 3 vectors. The system H is not
M -complete. Indeed, denote by c the centroid of the simplex T and by P1 the half-space
{x : 〈−e0, x − c〉 ≤ 0}. The set Q1 = T ∩ P is H-convex. Let P2 be the support half-
space of T with the outward normal −e1, and a1 be the corresponding support vertex,
i.e., (bdP2) ∩ T = {a1}. Denote by Q2 the set (c + a1) − T . Then c ∈ Q1 ∩ Q2 and
(intQ1) ∩ (intQ2) = ∅, i.e., the hyperplane bdP1 separates the bodies Q1 and Q2. The
set Q2 is (−H)-convex. Since the H-convex half-space P contains Q1 and, moreover,
Q2 ∩ (intP ) = ∅, we conclude that Q1 is weakly H-separable from Q2. The conditions
(B) and (C) indicated in the previous example hold, but (A) fails. £

Example 3.3. In Theorem 2.4 two sets Q1 and Q2 with (intQ1) ∩ (intQ2) = ∅ satisfy
the following conditions:

(A′) the set H ⊂ Sn−1 is M -complete;
(B′) the set H is symmetric with respect to the origin;
(C′) the sets Q1 and Q2 are H-convex.

Theorem 2.4 affirms that the disjunction of the conditions (A′), (B′), (C′) is sufficient
for strict H-separability of Q1 and Q2. To show that this condition is not necessary,
we describe situations when Q1 is weakly H-separable from Q2, but at least one of the
conditions (A′), (B′), (C′) fails. Indeed, in the notation of the previous example the
bodies Q1 and Q′

2 are separable by the hyperplane Γ = (bdP ). Since e0,−e0 ∈ H, the
hyperplane Γ is H-convex and hence the bodies Q1 and Q′

2 are H-separable. At the same
time condition (C′) holds, but both the conditions (A′) and (B′) fail. £

Example 3.4. Now we give an example which shows that without the assumption of
M -completeness of the set H ⊂ Sn−1 the sufficient conditions given in Theorems 2.3 and
2.4 fail. Consider in R3 the vector system

H =

{

1√
2
(e1 ± e3),

1√
2
(e2 ± e3)

}

(all combinations of signs), where {e1, e2, e3} is an orthonormal basis. Taking the points
a(0, 1, 0), b(0,−1, 0), c(1, 0,−1), d(−1, 0,−1), it is easily shown that the tetrahedra

Q1 = conv {a, b, c, d}, Q2 = e3 +Q1

are H-convex. Denoting by P the plane {x : 〈e3, x〉 = 0}, we note that P ∩Q1 is a segment
parallel to e2 and P ∩ Q2 is a segment parallel to e1, both these segments having their
midpoints at the origin. Thus the only plane that separates (in the usual sense) Q1 and
Q2 is P . But this plane is not H-convex, and hence the conclusion of Theorem 2.3 fails.
This occurs since the conditions (B) and (C) indicated in Example 3.1 hold, but condition
(A) fails, i.e., the system H is not M-complete. Moreover, the conclusion of Theorem 2.4
also fails; this occurs since the conditions (B′) and (C′) indicated in Example 3.3 hold,
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but condition (A′) fails, i.e., the system H is not M-complete. Indeed, the polytope
N = Q1 + (−Q2) is not H-convex (although both Q1 and −Q2 are H-convex), since N
contains the facet F = conv {a, b, e3+c, e3+d} which is a parallelogram with the outward
normal e3 not belonging to H. £

4. Necessary conditions for H-separability

In the above Theorems 2.3 and 2.4 some sufficient conditions for H-separability are given.
Moreover, the above Examples show that these sufficient conditions are not necessary.
Nevertheless, as we show below, if weakH-separability (respectively, strictH-separability)
holds for any sets Q1, Q2 ⊂ Rn under suitable conditions, then the sufficient conditions
given in Theorems 2.3 and 2.4 are also necessary.

Theorem 4.1. Let H ⊂ Sn−1 be a non-onesided vector system. Suppose that for any two
nonempty sets Q1, Q2 ⊂ Rn without common interior points such that Q1 is H-convex and
Q2 is (−H)-convex, the set Q1 is weakly H-separable from Q2. Then the vector system H
is M-complete.

Proof. Assume that H is not M -complete, i.e., there are m vectors e1, ..., em in H,
each m − 1 of them being linearly independent, such that a unit vector p /∈ H is rep-
resentable as a positive linear combination of the vectors e1, ..., el, 1 < l < m − 1, and,
at the same time, p is representable as a positive linear combination of the other vectors
el+1, ..., em. Denote by P1, ..., Pm ⊂ Rn the half-spaces with respective unit outward nor-
mals e1, ..., em and boundary hyperplanes through the origin. Denote by L1, ..., Lm their
boundary hyperplanes. The intersection Q1 = P1 ∩ ... ∩ Pl is a convex cone with apex
face K = L1 ∩ ... ∩ Ll, and we have dimK = n− l (since the vectors p1, ..., pl are linearly
independent). Analogously, the intersection Q′ = Pl+1 ∩ ... ∩ Pm is a convex cone with
apex face K ′ = Ll+1 ∩ ... ∩ Lm, and we have dimK ′ = n − (m − l). We remark that
the intersection K ∩ K ′ has dimension n − (m − 1), and hence the vector sum K + K ′

has dimension n− 1, i.e., K +K ′ is the hyperplane through the origin with normal vec-
tor p. Since both the cones Q1, Q

′ are H-convex, we have that the cone Q2 = −Q′ is
(−H)-convex. Moreover, Q1 and Q2 have no common interior point. By assumption, Q1

is weakly H-separable from Q2, i.e., there is a closed H-convex half-space P such that
P ⊃ Q1 and (intP ) ∩Q2 = ∅. But this is contradictory, since the only half-space P sat-
isfying P ⊃ Q1 and (intP )∩Q2 = ∅ is the half-space with boundary hyperplane through
the origin and outward normal p, but this half-space is not H-convex, since p /∈ H. Thus
the assumption that H is not M -complete yields a contradiction.

We remark that in the above proof the bodiesQ1, Q2 are unbounded. But it is also possible
to change the construction in such a manner that Q1, Q2 will be compact. Indeed, sinceH
is non-onesided, we may choose in H some vectors g1, ..., gk such that the vector system
e1, ..., em, g1, ..., gk is non-onesided. Hence, intersecting the sets Q1 and Q′ (considered
in the previous proof) with some hyperplanes having outward normals g1, ..., gk, we can
obtain from Q1 and Q′ compact convex bodies with the same properties. Thus in the
statement of Theorem 4.1 it is possible to require that weak separability holds only for
compact sets Q1 and Q2.

Theorem 4.2. Let H ⊂ Sn−1 be a non-onesided vector system symmetric with respect to
the origin. Suppose that any two nonempty H-convex sets Q1, Q2 ⊂ Rn without common
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interior points are strictly H-separable. Then the vector system H is M-complete.

Proof. Assume that H is not M -complete and consider the same bodies Q1 and Q′ as in
the previous proof. Then the only hyperplane that separates Q1 and Q′ is (bdP ). But
this hyperplane is not H-convex, contradicting the assumption.

As above, in the statement of Theorem 4.2 it is possible to require that strict separability
holds only for compact sets Q1 and Q2.
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