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Let E be an ideal of Lo over a σ-finite measure space (Ω,Σ, µ), and let (X, ‖ ·‖X) be a real Banach space.
Let E(X) be a subspace of the space Lo(X) of µ-equivalence classes of all strongly Σ-measurable functions
f : Ω −→ X and consisting of all those f ∈ Lo(X) for which the scalar function ‖f(·)‖X belongs to E.
Let E(X)∼n stand for the order continuous dual of E(X). In this paper we characterize both conditionally
σ(E(X), I)-compact and relatively σ(E(X), I)-sequentially compact subsets of E(X) whenever I is an
ideal of E(X)∼n . As an application, we obtain a characterization of almost reflexivity and reflexivity of
a Banach space X in terms of conditionally σ(E(X), I)-compact and relatively σ(E(X), I)-sequentially
compact subsets of E(X).
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1. Introduction and preliminaries

Given a topological vector space (L, ξ) by (L, ξ)∗ we will denote its topological dual.
We denote by σ(L,K) the weak topology on L with respect to a dual pair 〈L,K〉. Re-
call that a subset Z of L is said to be conditionally σ(L,K)-compact (resp. relatively
σ(L,K)-sequentially compact) whenever each sequence in Z contains a σ(L,K)-Cauchy
subsequence (resp. each sequence in Z contains a subsequence which is σ(L,K)-convergent
to some element of L ).

The problem of characterizing of conditionally and relatively weakly compact subsets of
Lebesgue-Bochner spaces Lp(X), where 1 ≤ p ≤ ∞ (in particular in L1(X)) and X is
supposed to satisfy some conditions has been considered by many authors (see [6], [5],
[26], [29], [17], [11], [28], [3], [14], [19], [30]). Recently, H. Benabdellah and C. Castaing [4]
and J. Diestel, W. M. Ruess, W. Schachermayer [15] have found criteria for conditional
weak compactness and relative weak compactness in L1(X) (over a finite measure space)
for a general Banach space X.

Assume that E is an ideal of Lo over a σ-finite measure space and let X be a Banach
space. In Section 2 and Section 3 we characterize both conditionally σ(E(X), I)-compact
and relatively σ(E(X), I)-sequentially compact subsets of E(X) whenever I is an ideal
of the order continuous dual E(X)∼n separating the points of E(X) (see Theorem 2.2 and
Theorem 3.3).
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Now we establish notation and terminology concerning function spaces (see [2], [20], [32]).
Let (Ω,Σ, µ) be a complete σ-finite measure space and let Σf = {A ∈ Σ : µ(A) < ∞}.
Let Lo denote the space of µ-equivalence classes of all Σ-measurable real valued functions
defined and finite a.e. on Ω. Let χA stand for the characteristic function of a set A, and
let N and R denote the sets of all natural and real numbers.

Let E be an ideal of Lo with suppE = Ω, and let E∼ and E∼
n stand for the order dual

and the order continuous dual of E respectively. Let E ′ denote the Köthe dual of E.
Throughout the paper we will assume that suppE ′ = Ω. Then E∼

n can be identified
with E ′ through the mapping: E ′ 3 υ 7−→ ϕυ ∈ E∼

n , where ϕv(u) =
∫

Ω
u(ω) υ(ω) dµ for

all u ∈ E.

For a sequence (An) in Σ we write An ↘
µ
∅ whenever An ↓ and µ(

⋂∞
n=1 An) = 0 (that is

An ↓ and µ(A ∩ An) −→ 0 for each A ∈ Σf ). It is known that a subsetZ of L1 is uniformly
integrable (i.e., supu∈Z

∫

An
|u(ω)| dµ−−→n 0 as An ↘

µ
∅) if and only if for each ε > 0 there

exist Ωo ∈ Σf and δ > 0 such that supu∈Z
∫

ΩrΩo
|u(ω)| dµ ≤ ε and supu∈Z

∫

A
|u(ω)| dµ ≤ ε

whenever µ(A) ≤ δ.

Let M be an ideal of E ′ with suppM = Ω. Assume that Z is a σ(E,M)-bounded subset
of E. Then Z is also |σ|(E,M)-bounded (see [2, Theorem 6.6]), so one can define a Riesz
seminorm pZ on M by

pZ(v) = sup
u∈Z

∫

Ω

|u(ω)v(ω)| dµ.

Now we recall the concept of M -equicontinuity of a set Z in E (see [10, Definition 2.1])
which allows us to tie together the various characterizations of conditionally and relatively
σ(E,M)-sequentially compact sets in E.

A subset Z of E is said to be M -equicontinuous whenever

sup{|ϕvn(u)| : u ∈ Z} −−→n 0

as ϕvn ↓ 0 in the ideal ΦM(= {ϕv : v ∈ M}) of E∼
n .

Let S(Z) stand for the solid hull of Z in E. Note that for each v ∈ M we have:

sup
{

|ϕv(u)| : u ∈ S(Z)
}

= sup
{

|ϕv|(|u|) : u ∈ Z
}

(+)

= sup

{∫

Ω

|u(ω)v(ω)| dµ : u ∈ Z

}

.

Observe that vn ↓ 0 in M if and only if ϕvn ↓ 0 in ΦM because the mapping M 3 v 7→
ϕv ∈ ΦM is a Riesz isomorphism.

Now we are able to state a characterization of conditionally and relatively σ(E,M)-
sequentially compact sets in E.

Proposition 1.1. Let E be an ideal of Lo and M an ideal of E ′ such that suppM = Ω.
Then for a subset Z of E the following statements are equivalent:

(i) Z is conditionally σ(E,M)-compact.

(ii) Z is σ(E,M)-bounded and the seminorm pZ on M is order continuous.
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(iii) Z is σ(E,M)-bounded and for each v ∈ M the subset {uv : u ∈ Z} of L1 is uniformly
integrable.

Moreover, if E is σ(E,M)-sequentially complete, then the statements (i)–(iii) are equiv-
alent to the following:

(iv) Z is relatively σ(E,M)-sequentially compact.

Proof. (i)⇒(ii) Assume that Z is conditionally σ(E,M)-compact. Then in view of
[10, Theorem 3.4] the set Z is ΦM -equicontinuous; hence, by [10, Proposition 2.2(b)] Z
is |σ|(E,M)-bounded. Moreover, by [10, Proposition 2.2(a)] its solid hull S(Z) is also
M -equicontinuous. Making use of (+) we obtain that the seminorm pZ on M is order
continuous.

(ii)⇒(i) Assume that Z is σ(E,M)-bounded and the seminorm pZ on M is order con-
tinuous. In view of (+) it follows that the set S(Z) is M -equicontinuous, so Z is also
M -equicontinuous. Hence, by [10, Theorem 3.4] Z is conditionally σ(E,M)-compact, as
desired.

(ii)⇔(iii) Let Z be σ(E,M)-bounded. It is well known that the seminorm pZ on M is or-
der continuous if and only if it is absolutely continuous, i.e., for each v ∈ M , pZ(χAnv)−−→n 0
for every sequence (An) in Σ with An ↘

µ
∅ (see [21, Theorem 2.1]). This means that for

each v ∈ M the set {uv : u ∈ Z} in L1 is uniformly integrable.

Remark. It is well known the space L1 is weakly sequentially complete and by the
"Dunford’s theorem" weakly compact sets in L1 are uniformly integrable.

Recall that E is said to be perfect whenever E ′′ = E. The following characterization of
the perfectness of E will be needed.

Proposition 1.2. Let E be an ideal of Lo. Then the following statements are equivalent:

(i) E is perfect.

(ii) |σ|(E,E′) has the Levy property.

(iii) |σ|(E,E′) has the σ-Levy property.

(iv) E is σ(E,E′)-sequentially complete.

Proof. (i)⇐⇒(ii) See [2, Theorem 9.4].

(ii)⇒(iii) It is obvious; (iii)=⇒(iv) See [2, Theorem 20.26].

(iv)=⇒(i) Assume that (iv) holds and (i) fails, i.e., E  E ′′ and let 0 ≤ u ∈ E ′′ r E.
Since suppE = Ω, there exists a sequence (Ωn) in Σf such that Ωn ↑ Ω with χ

Ωn ∈ E for
n ∈ N (see [32, Theorem 86.2]). For n ∈ N let us put

un(ω) =

{

u(ω) if ω ∈ Ωn and u(ω) ≤ n ,
0 elsewhere.

Then un ≤ n χ
Ωn for n ∈ N, so un ∈ E and un(ω) ↑ u(ω) for ω ∈ Ω. In fact, we have

directly un −→ u for σ(E ′′, E′). Indeed, for v ∈ E ′

∣

∣

∣

∫

Ω

(u(ω)− um(ω))v(ω) dµ
∣

∣

∣ ≤
∫

Ω

(u(ω)− um(ω)) |υ(ω)| dµ
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and by the Lebesque dominated convergence theorem, we have

∫

Ω

(u(ω)− um(ω)) |υ(ω)| dµ −→ 0 as m → ∞.

On the other hand, since (un) is a Cauchy sequence for σ(E,E′), in view of (iv) there is
z ∈ E such that un −→ z for σ(E,E′), so un −→ z for σ(E ′′, E′). Since suppE ′ = Ω, it
follows that z = u, so u ∈ E and this contradicts the choice of u.

Now we establish terminology and prove some results concerning vector-valued function
spaces (see [8], [9], [22]).

Let (X, ‖ · ‖X) be a real Banach space, and let X∗ stand for the Banach dual of X. By BX

and SX we denote the unit ball and the unit sphere in X respectively. By Lo(X) we will
denote the set of µ-equivalence classes of strongly Σ-measurable functions f : Ω −→ X.
For f ∈ Lo(X) let ˜f(ω) = ‖f(ω)‖X for ω ∈ Ω. Let

E(X) = { f ∈ Lo(X) : ˜f ∈ E }.

Recall that the algebraic tensor product E ⊗X is the subspace of E(X) spanned by the
functions of the form u⊗ x, (u⊗ x)(ω) = u(ω)x, where u ∈ E, x ∈ X.

From now on for a subset H of E(X) and a set A ∈ Σ we will write

˜H = { ˜f ∈ E : f ∈ H } and HA = {χAf : f ∈ H}.

In particular, for a Banach function space (E, ‖ · ‖E), the space E(X) provided with the

norm ‖f‖E(X) := ‖ ˜f‖E is usually called a Köthe-Bochner space .

For a linear functional F on E(X) let us set

|F |(f) = sup { |F (h)| : h ∈ E(X), ˜h ≤ ˜f } for all f ∈ E(X).

Then the set

E(X)∼ = {F ∈ E(X)# : |F |(f) < ∞ for all f ∈ E(X)}

will be called the order dual of E(X) (here E(X)# denotes the algebraic dual of E(X))
(see [9, §3], [22]).

For F1, F2 ∈ E(X)∼ we will write |F1| ≤ |F2| whenever |F1|(f) ≤ |F2|(f) for all f ∈ E(X).
A subset A ∈ E(X)∼ is said to be solid whenever |F1| ≤ |F2| with F1 ∈ E(X)∼ and F2 ∈ A
imply F1 ∈ A. A linear subspace I of E(X) will be called an ideal of E(X)∼ whenever I
is solid.

Let F ∈ E(X)∼ and xo ∈ SX be fixed. For every u ∈ E+ let us set:

ϕF (u) = |F |(u⊗ xo) = sup{ |F (h)| : h ∈ E(X), ˜h ≤ u }.

Then ϕF : E+ −→ R+ is an additive mapping and ϕF has a unique positive extension to
a linear mapping from E to R (denoted by ϕF again) and given by

ϕF (u) := ϕF (u
+)− ϕF (u

−) for all u ∈ E.
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A linear functional F ∈ E(X)∼ is said to be order continuous whenever for a net (fα)

in E(X), ˜fα
(o)−→ 0 in E implies F (fα) −→ 0. The set E(X)∼n consisting of all order

continuous linear functionals on E(X) is called the order continuous dual of E(X).

Let Lo(X∗, X) be the set of weak∗-equivalence classes of all weak∗-measurable functions
g : Ω −→ X∗. One can define the so called abstract norm

ϑ : Lo(X∗, X) −→ Lo

by ϑ(g) = sup{ |gx| : x ∈ BX }, where gx(ω) = g(ω)(x) for ω ∈ Ω and x ∈ X. Note that
ϑ(g) is well defined because Lo is order complete. Then for f ∈ Lo(X) and g ∈ Lo(X∗, X)
the function 〈f, g〉 : Ω −→ R defined by 〈f, g〉(ω) := 〈f(ω), g(ω)〉 is measurable, and

|〈f, g〉| ≤ ˜f ϑ(g). Moreover, ϑ(g) = g̃ for g ∈ Lo(X∗). For an ideal M of E ′ let

M(X∗, X) = {g ∈ Lo(X∗, X) : ϑ(g) ∈ M}.

Due to A. V. Bukhvalov (see [8, Theorem 4.1]) E(X)∼n can be identified with E ′(X∗, X)
through the mapping: E ′(X∗, X) 3 g 7−→ Fg ∈ E(X)∼n , where

Fg(f) =

∫

Ω

〈f(ω), g(ω)〉 dµ for all f ∈ E(X),

and moreover

|Fg|(f) =
∫

Ω

˜f(ω)ϑ(g)(ω) dµ for all f ∈ E(X).

Hence for each g ∈ E ′(X∗, X) we get for u ∈ E+

ϕFg(u) = |Fg|(u⊗ xo) =

∫

Ω

u(ω)ϑ(g)(ω) dµ = ϕϑ(g)(u).

It is known that in a weak∗-equivalence class g ∈ E ′(X∗, X) there is a function g(·) such
that the scalar function ‖g(·)‖X∗ is measurable and its equivalance class in Lo belongs to
E ′ (see [13, p. 279–280, Theorem 8; p. 213, Proposition 5]).

One can show that if M is an ideal of E ′ then the set

IM = {Fg : g ∈ M(X∗, X)}

is an ideal of E(X)∼n (see [22, Theorem 2.6]). Conversely, if I is an ideal of E(X)∼n , then
the set

MI =
{

v ∈ E ′ : |v| ≤ ϑ(g) for some g ∈ M(X∗, X) with Fg ∈ I
}

is an ideal of E ′ and I = IMI
(see [22, Theorem 1.2, Theorem 2.6]). Moreover, the ideal

IM separates the points of E(X) if and only if suppM = Ω (see [22, Theorem 2.7]).

Let M be an ideal of E ′ with suppM = Ω. Recall that the absolute weak topology
|σ|(E,M) on E is generated by the family {pv : v ∈ M} of Riesz semi-norms, where
pv(u) =

∫

Ω
|u(ω)v(ω)| dµ for u ∈ E. Denote by |σ|(E,M) the locally convex topology on
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E(X) that is generated by the family {p̄v : v ∈ M} of seminorms on E(X), where for
v ∈ M

p̄v(f) := pv(f̃ ) for f ∈ E(X).

We denote by |σ|(E(X),M(X∗, X)) the absolute weak topology on E(X), generated by
the family {%g : g ∈ M(X∗, X)} of seminorms on E(X), where

%g(f) =

∫

Ω

˜f(ω)ϑ(g)(ω) dµ for f ∈ E(X)

(see [22, § 4]). It is known that (see [22, Theorem 4.3, Theorem 4.4]):

|σ|(E(X),M(X∗, X)) = |σ|(E,M) (1)

and
(E(X), |σ|(E(X),M(X∗, X)))∗ = {Fg : g ∈ M(X∗, X)}. (2)

We shall need the following technical result.

Proposition 1.3. Let E be an ideal of Lo and let M be ideal of E ′ with suppM = Ω.
Then for a subset H of E(X) the following statements are equivalent:

(i) H is σ(E(X),M(X∗, X))-bounded.

(ii) H is |σ|(E(X),M(X∗, X))-bounded.

(iii) ˜H is |σ|(E,M)-bounded.

(iv) ˜H is σ(E,M)-bounded.

Proof. (i)⇔(ii) In view of (2) it follows from the Mackey theorem (see [31, Theo-
rem 8.4.1])

(ii)⇒(iii) Assume that H is |σ|(E(X),M(X∗, X))-bounded and let v ∈ M . Then for
g = v ⊗ x∗

o, where x∗
o ∈ SX∗ , we get

sup
f∈H

∫

Ω

˜f(ω)ϑ(g)(ω) dµ = sup
f∈H

∫

Ω

˜f(ω)|v(ω)| dµ < ∞.

This means that ˜H is |σ|(E,M)-bounded.

(iii)⇒(ii) Assume that ˜H is σ(E,M)-bounded, and let g ∈ M(X∗, X). Then ϑ(g) ∈ M ,
so

sup
f∈H

∫

Ω

˜f(ω)ϑ(g)(ω) dµ < ∞.

(iii)⇔(iv) It is obvious, because (E, |σ|(E,M))∗ = (E, σ(E,M))∗ (see [2, Theorem 6.6]).

2. Conditional weak compactness in vector-valued function spaces

H. Benabdellah and C. Castaing [4] employing M. Talagrand’s result about a “parame-
trized versionÔ of H. P. Rosenthal’s `1-theorem obtained the following characterization of
conditionally weakly compact sets in L1(X).



M. Nowak / Conditional and Relative Weak Compactness in Vector-Valued ... 453

Theorem 2.1 ([4, Theorem 2.2]). Let (Ω,Σ, µ) be a finite measure space and X be
a Banach space. For a norm bounded subset H of L1(X) the following statements are
equivalent:

(i) H is conditionally weakly compact.

(ii) (a) ˜H is uniformly integrable in L1,
(b) given any sequence (fn) in H there exists a sequence (hn) with hn ∈ conv {fk :

k ≥ n} such that (hn(ω)) is weakly Cauchy in X for a.e. ω ∈ Ω.

Now, by making use of Theorem 2.1 we are ready to state our main result.

Theorem 2.2. Let E be an ideal of Lo, M be an ideal of E ′ with suppM = Ω and let X
be a Banach space. Then for a subset H of E(X) the following statements are equivalent:

(i) H is conditionally σ(E(X),M(X∗, X))-compact.

(ii) a) The set ˜H is conditionally σ(E,M)-compact.
b) for each subset A ∈ Σf with χA ∈ M and each sequence (fn) in H there is

a sequence (hA
n ) with hA

n ∈ conv {χAfk : k ≥ n} such that (hA
n (ω)) is weakly

Cauchy in X for a.e. ω ∈ A.

Proof. (i)⇒(ii) Assertion (a) follows from [24, Theorem 2.3]. It is easy to observe that

H is σ(E(X),M(X∗, X))-bounded, so by Proposition 1.3 ˜H is σ(E,M)-bounded. Let

A ∈ Σf with χA ∈ M . Hence supf∈H
∫

Ω
˜f(ω)χA(ω) dµ < ∞. Thus HA is a norm bounded

subset of L1
A(X).

We shall now show that HA is conditionally σ(L1
A(X), L∞

A (X∗, X))-compact. Indeed,
let (fn) be a sequence in H. Then there is a σ(E(X),M(X∗, X))-Cauchy subsequence
(fkn) of (fn). Let g ∈ L∞

A (X∗, X) and let g′(ω) = g(ω) for ω ∈ A and g′(ω) = 0
for ω ∈ Ω \ A. Choose a weak∗-measurable function g(·) in g such that the function
‖g(·)‖X∗ is measurable. Then ‖g(ω)‖X∗ ≤ c for some c > 0 and a.e. ω ∈ A. Hence
‖g′(ω)‖X∗ ≤ cχA(ω) for a.e. ω ∈ Ω, so ‖g′(·)‖X∗ ∈ M , because χA ∈ M . It means that
g′ ∈ M(X∗, X). Since

∫

A

〈fkn(ω), g(ω)〉 dµ =

∫

Ω

〈fkn(ω), g′(ω)〉 dµ

and limn

∫

Ω
〈fkn(ω), g′(ω)〉 dµ exists, we obtain that (χAfkn) is a σ(L1

A(X), L∞
A (X∗, X))-

Cauchy sequence in L1
A(X). Thus in view of Theorem 2.1 there is a sequence (hA

n ) with
hA
n ∈ conv {χAfk : k ≥ n} for n ∈ N such that (hA

n (ω)) is weakly Cauchy in X for a.e.
ω ∈ A.

(ii)⇒(i) Since suppM = Ω, there is a sequence (Ωm) in Σf such that Ωm ↑ Ω and χΩm ∈
M for all m ∈ N (see [32, Theorem 86.2]). Hence for m ∈ N we get supf∈H

∫

Ωm

˜f(ω) dµ =

cm < ∞, so {χΩmf : f ∈ H} is a norm bounded subset of L1
Ωm

(X) and by (a) the set

{χΩm
˜f : f ∈ H} in L1

Ωm
is uniformly integrable (see Proposition 1.1). Thus in view of (b)

and making use of Theorem 2.1 we conclude that for each m ∈ N, {χΩmf : f ∈ H} is a
conditionally σ(L1

Ωm
(X), L∞

Ωm
(X∗, X))-compact subset of L1

Ωm
(X).

Let (fn) be a sequence inH. In view of the above observation there is a σ(L1
Ω1
(X), L∞

Ω1
(X∗,

X))-Cauchy subsequence (χΩ1fk1n) of (χΩ1fn). Next, there is a σ(L1
Ω2
(X), L∞

Ω2
(X∗, X))-
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Cauchy subsequence (χΩ2fk2n) of (χΩ2fk1n). It follows that the diagonal sequence (fknn)
has the property that for each m ∈ N, (χΩmfknn) is a σ(L1

Ωm
(X), L∞

Ωm
(X∗, X))-Cauchy

sequence.

Let hn = fknn for n ∈ N. We shall now show that (hn) is a σ(E(X),M(X∗, X))-Cauchy
sequence. Indeed, let g ∈ M(X∗, X). Choose a weak∗-measurable function g(·) in g such
that the function ‖g(·)‖X∗ is measurable. For n ∈ N let

gn(ω) =

{

g(ω) if ω ∈ Ωn and ‖g(ω)‖X∗ ≤ n,

0 elsewhere.

Clearly gn ∈ L∞
Ωn
(X∗, X). By (a), given ε > 0 there exist mo ∈ N and δ > 0 such that

sup
n

∫

ΩrΩmo

˜fn(ω)‖g(ω)‖X∗ dµ ≤ ε

8
and sup

n

∫

A

˜fn(ω)‖g(ω)‖X∗ dµ ≤ ε

8
, (3)

for each A ∈ Σ with µ(A) ≤ δ. For η = ε/(8cmo) let

Bn =
{

ω ∈ Ωmo :
∥

∥g(ω)− gn(ω)‖X∗ ≥ η
}

.

It is easy to observe that Bn ↓ ∅, so µ(Bn) −→ 0. Choose no ∈ N with no ≥ mo such that
µ(Bno) ≤ δ. Then by (3) we get

sup
n

∫

Bno

˜hn(ω)‖g(ω)‖X∗ dµ ≤ ε

8
. (4)

Hence, by (4) for n ∈ N we get

∣

∣

∣

∫

Ωmo

〈hn(ω), g(ω)− gno(ω)〉 dµ
∣

∣

∣ ≤
∫

Ωmo

˜hn(ω)‖g(ω)− gno(ω)‖X∗ dµ

≤
∫

Bno

˜hn(ω)‖g(ω)− gno(ω)‖X∗ dµ+

∫

ΩmorBno

˜hn(ω)‖g(ω)− gno(ω)‖X∗ dµ (5)

≤
∫

Bno

˜hn(ω)‖g(ω)‖X∗ dµ+ η

∫

Ωmo

˜hn(ω) dµ ≤ ε

8
+

ε

8cmo

cmo =
ε

4
.

Since (χΩmo
hn) is a σ(L1

Ωmo
(X), L∞

Ωmo
(X∗, X))-Cauchy sequence and χΩmo

gno ∈ L∞
Ωmo

(X∗,
X) there exists n1 ∈ N such that for n, n′ ≥ n1 we have:

∣

∣

∣

∫

Ωmo

〈hn(ω)− hn′(ω), gno(ω)〉 dµ
∣

∣

∣ ≤ ε

4
. (6)

For n, n′ ∈ N we have

∣

∣

∣

∫

Ω

〈hn(ω)− hn′(ω), g(ω)〉 dµ
∣

∣

∣

≤
∣

∣

∣

∫

ΩrΩmo

〈hn(ω)− hn′(ω), g(ω)〉 dµ
∣

∣

∣+
∣

∣

∣

∫

Ωmo

〈hn(ω)− hn′(ω), g(ω)〉 dµ
∣

∣

∣



M. Nowak / Conditional and Relative Weak Compactness in Vector-Valued ... 455

Using (3) for n, n′ ∈ N we get:

∣

∣

∣

∫

ΩrΩmo

〈hn(ω)− hn′(ω), g(ω)〉 dµ
∣

∣

∣

≤
∫

ΩrΩmo

˜hn(ω)‖g(ω)‖X∗ dµ+

∫

ΩrΩmo

˜hn′(ω)‖g(ω)‖X∗ dµ (7)

≤ ε

8
+

ε

8
=

ε

4
.

Moreover, by (5) and (6) for n, n′ ≥ n1 we get:

∣

∣

∣

∫

Ωmo

〈hn(ω)− hn′(ω), g(ω)〉 dµ
∣

∣

∣

≤
∣

∣

∣

∫

Ωmo

〈hn(ω)− hn′(ω), g(ω)− gno(ω)〉 dµ
∣

∣

∣+
∣

∣

∣

∫

Ωmo

〈hn(ω)− hn′(ω), gno(ω)〉 dµ
∣

∣

∣

≤
∣

∣

∣

∫

Ωmo

〈hn(ω), g(ω)− gno(ω)〉 dµ
∣

∣

∣+
∣

∣

∣

∫

Ωmo

〈hn′(ω), g(ω)− gno(ω)〉 dµ
∣

∣

∣

+
∣

∣

∣

∫

Ωmo

〈hn(ω)− hn′(ω), gno(ω)〉 dµ
∣

∣

∣ ≤
ε

4
+

ε

4
+

ε

4
=

3

4
ε.

(8)

At last, using (7) and (8) for n, n′ ≥ n1 we have:

∣

∣

∣

∫

Ω

〈hn(ω)− hn′(ω), g(ω)〉 dµ
∣

∣

∣ ≤
ε

4
+

3ε

4
= ε.

Thus H is conditionally σ(E(X),M(X∗, X))-compact, as desired.

Recall that a normed space X is said to be almost reflexive if every norm-bounded subset
of X is conditionally weakly compact (see [11]). The fundamental `1-Rosenthal theorem
[27] says that a Banach space X is almost reflexive if and only if it contains no isomorphic
copy of `1. J. Bourgain [5] and M. Talagrand [29] have studied the relationship between
conditional weak compactness and uniform integrability in L1(X) in terms of the presence
of isomorphic copies of `1 in X.

Now, using [5, Corollary 9] and Theorem 2.2 we are in position to present a char-
acterization of the almost reflexivity of a Banach space X in terms of conditionally
σ(E(X),M(X∗, X))-compact subsets of E(X) (see [1, Theorem 2.6]).

Corollary 2.3. Let E be an ideal of Lo, M an ideal of E ′ with suppM = Ω, and let X
be a Banach space. Then the following statements are equivalent:

(i) X is almost reflexive.

(ii) Every subset H of E(X) such that the set ˜H is conditionally σ(E,M)-compact is
conditionally σ(E(X),M(X∗, X))-compact.

Proof. (i)⇒(ii) Assume that X is almost reflexive, and let H be a subset of E(X) such

that ˜H is a conditionally σ(E,M)-compact subset of E. Let A ∈ Σf with χA ∈ M and

(fn) a sequence of H. The set {χA
˜fn : n ≥ 1} is bounded in L1

A. By Levin theorem, there
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exist a sequence of convex combination hn =
∑Nn

i=n λ
n
i χA

˜fi (with λn
i ≥ 0,

∑Nn

i=n λ
n
i = 1)

such that hn(ω) converges for almost every ω. Hence the sequence
∥

∥

∥

∑Nn

i=n λ
n
i (χAfi)(ω)

∥

∥

∥,

n ≥ 1, is bounded in X for almost every ω. Now we have to use almost reflexivity of X
for this sequence and conclude by Theorem 2.2.

(ii)⇒(i) Assume that (ii) holds. We shall show that the unit ball BX is conditionally
weakly compact. Indeed, let (xn) be a sequence in BX . Given a fixed u ∈ E+ r {0} let
us put hn = u⊗xn for n ∈ N. Let H = {u⊗x : x ∈ BX}. Making use of Proposition 1.1

it is easy to verify that the set ˜H is conditionally σ(E,M)-compact. Hence by (ii) there
exists a σ(E(X),M(X∗, X))-Cauchy subsequence (hkn) of (hn). Choose 0 ≤ vo ∈ M such
that

∫

Ω
u(ω)vo(ω) dµ = 1. Then vo ⊗ x∗ ∈ M(X∗, X) for each x∗ ∈ X∗, and

x∗(xkn) =

∫

Ω

u(ω)vo(ω)x
∗(xkn) dµ = Fvo⊗x∗(u⊗ xkn) −→ a ∈ R .

This means that (xkn) is a weakly Cauchy sequence in X. Thus X is almost reflexive.

3. Weak sequential compactness in vector-valued function spaces

A. Ülger [30] obtained a characterization of relatively weakly compact subsetsH of L1(X)
for a general Banach space X and a finite measure space (that are norm bounded in
L∞(X)) in terms of “convex compactnessÔ i.e., of drawing convex combinations out of
“tailsÔ of sequences (fn) in H. Next, J. Diestel, W. Ruess and W. Schachermayer [15]
remowed the restriction of L∞(X)-boundedness of a subset H of L1(X) and obtained the
following result:

Theorem 3.1 ([15, Theorem 2.1]). Let (Ω,Σ, µ) be a finite measure space and X be
a Banach space. For a norm bounded subset H of L1(X) the following statements are
equivalent:

(i) H is relatively weakly compact.

(ii) (a) ˜H is uniformly integrable in L1,
(b) given any sequence (fn) in H there exists a sequence (hn) with hn ∈ conv {fk :

k ≥ n} such that (hn(ω)) is weakly convergent in X for a.e. ω ∈ Ω.

The present author [23] found a criterion for relative σ(E(X), E(X)∼n )-compactness in a
Köthe-Bochner space E(X) whenever a Banach function space E (over a finite measure
space) is such that L∞ ⊂ E ⊂ L1 and the inclusion maps are continuous.

In this section by making use of Theorem 3.1 we characterize relatively σ(E(X), I)-
sequentially compact subsets of E(X) whenever X is a general Banach space, E is an
ideal of Lo (over a σ-finite measure space) and I is an ideal of E(X)∼n separating the
points of E(X).

The following version of the Eberlein-Smulian theorem for the locally convex space (E(X),
σ(E(X),M(X∗, X))) will be needed.

Theorem 3.2. Let E be an ideal of Lo, M an ideal of E ′ with suppM = Ω, and let X
be a Banach space. Then for a subset H of E(X) the following statements are equivalent:

(i) H is relatively σ(E(X),M(X∗, X))-sequentially compact.
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(ii) H is relatively σ(E(X),M(X∗, X))-countably compact.

Moreover, if the absolute weak topology |σ|(E,M) has the Levy property, then the state-
ments (i)–(ii) are equivalent to the following:

(iii) H is relatively σ(E(X),M(X∗, X))-compact.

Proof. (i)⇔(ii) It follows from [22, Theorem 4.8].

(ii)⇔(iii) Since |σ|(E,M) is a Lebesgue, Levy topology on E, the space (E, |σ|(E,M))
is complete (see [2, Theorem 22.2]). Making use of [7, Theorem 3] we obtain that the
space (E(X), |σ|(E,M)) is also complete. On the other hand, in view of (1) and (2) we
see that (E(X), |σ|(E,M) )∗ = (E(X), |σ|(E(X),M(X∗, X)))∗ = IM . Hence in view of
[18, Proposition 2] we conclude that (ii)⇔(iii) holds.

Since L1(X)∗ = {Fg : g ∈ L
∞
(X∗, X)}, a set H in L1(X) is relatively weakly compact if

and only if it is relatively σ(L1(X), L
∞
(X∗, X))-sequentially compact. Moreover, we will

need the following identity (see [25, Theorem 1.1]):

E ′′(X) =
{

f ∈ Lo(X) :

∫

Ω

〈f(ω), g(ω)〉 dµ < ∞ for all g ∈ E ′(X∗)
}

. (9)

Note that the absolute weak topology |σ|(E,M) on E is a σ-Levy topology if and only if
the space (E, σ(E,M)) is sequentially complete (see [2, Theorem 20.26]). It follows that
then E is perfect, i.e., E = E ′′ (see [Proposition 1.2]).

It is known that for |σ|(E,M) the σ-Levy property and the Levy property coincide (see
[16, Proposition 3.2]).

Now we are is position to state our main result.

Theorem 3.3. Let E be an ideal of Lo, M an ideal of E ′ with suppM = Ω, and let X be
a Banach space. Assume that the absolute weak topology |σ|(E,M) on E has the σ-Levy
property. Then for a subset H of E(X) the following statements are equivalent:

(i) H is relatively σ(E(X),M(X∗, X))-sequentially compact.

(ii) (a) ˜H is relatively σ(E,M)-sequentially compact.
(b) for each A ∈ Σf with χA ∈ M and each sequence (fn) in H there is a sequence

(hA
n ) with hA

n ∈ conv {fk : k ≥ n} such that (hA
n (ω)) is weakly convergent in X

for a.e. ω ∈ A.

(iii) H is relatively σ(E(X),M(X∗, X))-compact.

(iv) H is relatively σ(E(X),M(X∗, X))-countably compact.

Proof. (i)⇒(ii) Assume that H is relatively σ(E(X),M(X∗, X))-sequentially compact.
Since H is conditionally σ(E(X),M(X∗, X))-compact and the space (E, σ(E,M)) is se-

quentially complete, in view of Theorem 2.2 ˜H is relatively σ(E,M)-sequentially compact,
i.e., (a) holds.

Now assume that A ∈ Σf with χA ∈ M . Then supf∈H
∫

A
˜f(ω) dµ < ∞, because ˜H is

σ(E,M)-bounded (see Proposition 1.2). One can observe that the subset {χAf : f ∈
H} of L1

A(X) is relatively σ(L1
A(X), L

∞
A (X

∗, X))-sequentially compact. In fact, let g ∈
L

∞
(X∗, X), and choose a function g(·) in g such that the scalar function ‖g(·)‖X∗ is
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measurable. Hence χA(ω) ‖g(ω)‖X∗ ≤ c χA(ω) µ-a.e. for some c > 0. It follows that
χ
Ag ∈ M(X∗, X), because χA ∈ M . This means that the set {χAf : f ∈ H} is relatively

weakly compact in L1
A(X), so by Theorem 3.2 condition (b) holds.

(ii)=⇒(i) Assume that (iii) holds and let (fn) be a sequence inH. Then there is a pairwise
disjoint sequence (Ωm) in Σf such that χΩm ∈ M for m ∈ N and

⋃∞
m=1 Ωm = Ω (see [20,

Corollary 4.3.2]). Given m ∈ N we have supn

∫

Ωm

˜fn(ω) dµ < ∞, so { χ
Ωmfn : n ∈ N } is

a norm bounded subset of L1
Ωm

(X). Since χΩm ∈ M , in view of (a) and Proposition 1.1 for

each m ∈ N the subset { χ
Ωm

˜fn : n ∈ N } of L1
Ωm

is uniformly integrable. Hence by The-
orem 3.1 for each m ∈ N the set {χΩmfn : n ∈ N} is relatively σ(L1

Ωm
(X), L

∞

Ωm
(X∗, X))-

sequentially compact. Hence by the diagonal process we can extract a subsequence (hn)
of (fn) such that for each m ∈ N there is fΩm ∈ L1

Ωm
(X) such that

χΩmhn −→
n

fΩm for σ(L1
Ωm

(X), L
∞

Ωm
(X∗, X)). (10)

Define a function f : Ω −→ X by setting f(ω) = fΩm(ω) for ω ∈ Ωm, i.e., χΩmf = fΩm

for all m ∈ N. Then f ∈ Lo(X) and we shall now show that f ∈ E(X) and hn −→ f for
σ(E(X),M(X∗, X)).

To show that f ∈ E(X), in view of (9) and the perfectness of E it is enough to prove that

∫

Ω

〈f(ω), g(ω)〉 dµ < ∞ for all g ∈ E ′(X∗).

Let Bm =
⋃m

i=1 Ωi for m ∈ N. Then Bm ↑ Ω and χΩm ∈ M . Then from (10) it easily
follows that for each m ∈ N

χBmhn −→
n

χBmf for σ(L1
Bm

(X), L
∞

Bm
(X∗, X)). (11)

Let g ∈ M(X∗) and for m ∈ N let us put

gm(ω) =

{

g(ω) if ω ∈ Bm and ‖g(ω)‖X∗ ≤ m,

0 elsewhere.

Then ‖gm(ω)− g(ω)‖X∗ −→ 0 µ-a.e. and gm ∈ M(X∗). Given m ∈ N by SBm(X
∗) we

denote the set of all simple functions of the form:

s =
k

∑

i=1

χAi
⊗ x∗

i ,

where Ai ∈ Bm ∩ Σ, x∗
i ∈ X∗, k ∈ N. Making use of (11) one can see that for each

s ∈ SBm(X
∗) we have

∫

Ω

〈hn(ω), s(ω)〉 dµ −→
∫

Ω

〈f(ω), s(ω)〉 dµ,

so
∣

∣

∣

∣

∫

Ω

〈f(ω), s(ω)〉 dµ
∣

∣

∣

∣

= lim
n

∣

∣

∣

∣

∫

Ω

〈hn(ω), s(ω)〉 dµ
∣

∣

∣

∣

≤ supn

∫

Ω

˜hn(ω) s̃(ω) dµ < ∞.
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For s ∈ SBm(X
∗) define a measure νs : Σ −→ R by

νs(A) :=

∫

A

〈f(ω), s(ω)〉 dµ for all A ∈ Σ.

Then

|νs|(Ω) =

∫

Ω

|〈f(ω), s(ω)〉| dµ

≤ 4 supA∈Σ |νs(A)| ≤ 4 supA∈Σ(supn

∫

A

˜hn(ω) s̃(ω) dµ) (12)

= 4 supn

∫

Ω

˜hn(ω) s̃(ω) dµ < ∞.

Givenm∈N one can chose a sequence (smk ) in SBm(X
∗) such that ‖smk (ω)−gm(ω)‖X∗

k
−→ 0

and ‖smk (ω)‖X∗ ≤ ‖gm(ω)‖X∗ µ-a.e. on Ω. Moreover, since lim
m

〈f(ω), gm(ω)〉 = 〈f(ω),
g(ω)〉 µ-a.e., by the Fatou lemma we get

∫

Ω
|〈f(ω), g(ω)〉| dµ ≤ lim inf

m

∫

Ω
|〈f(ω), gm(ω)〉| dµ. (13)

On the other hand, for each m ∈ N, in view of the Fatou lemma and (12) we have

∫

Ω

|〈f(ω), gm(ω)〉| dµ ≤ lim inf
k

∫

Ω

|〈f(ω), smk (ω)〉| dµ

≤ lim inf
k

(4 supn

∫

Ω

˜hn(ω) s̃
m
k (ω) dµ )

≤ lim inf
k

(4 supn

∫

Ω

˜hn(ω) g̃m(ω) dµ )

= 4 supn

∫

Ω

˜hn(ω) g̃m(ω) dµ.

(14)

Hence, by (13) and (14) we get

∫

Ω

|〈f(ω), g(ω)〉| dµ ≤ lim inf
m

(4 supn

∫

Ω

˜hn(ω) g̃m(ω) dµ )

≤ lim inf
m

(4 supn

∫

Ω

˜hn(ω) g̃(ω) dµ )

= 4 supn

∫

Ω

˜hn(ω) g̃(ω) dµ < ∞ ,

and this proves that f ∈ E(X), as desired.

To show that hn −→ f for σ(E(X),M(X∗, X)), let g ∈ M(X∗, X) be given. Choose
a weak∗-measurable function in g(·) in g such that the scalar function ‖g(·)‖X∗ is mea-
surable and its equivalence class in Lo belongs to M . Setting Am = ΩrBm we see that
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Am ↘
µ
∅. Let ε > 0 be given. Then by (a) and Proposition 1.1 one can choose mo ∈ N

and δ > 0 such that for each A ∈ Σ with µ(A) ≤ δ we have

sup
n

∫

ΩrBmo

˜hn(ω)‖g(ω)‖X∗ dµ ≤ ε

4
and supn

∫

A

hn(ω)‖g(ω)‖X∗ dµ ≤ ε

12
, (15)

and
∫

ΩrBmo

˜f(ω) ‖g(ω)‖X∗ dµ ≤ ε

4
and

∫

A

˜f(ω) ‖g(ω)‖X∗ dµ ≤ ε

12
. (16)

For n ∈ N let us put

gn(ω) =

{

g(ω) if ω ∈ Bn and ‖g(ω)‖X∗ ≤ n ,

0 elsewhere.

It is seen that ‖gn(ω)‖X∗ ≤ nχBm(ω) for ω ∈ Ω, so gn ∈ L
∞
Bm

(X∗, X)). We have

supn

∫

Bmo

˜hn(ω) dµ = dmo for some dmo > 0 and
∫

Bmo

˜f(ω) dµ = d for some d > 0. For

η = ε/(12 max(d, dmo)) and n ∈ N let us put

Dn = {ω ∈ Bmo : ‖g(ω)− gn(ω)‖X∗ ≥ η} .

It is easy to see that Dn ↓ ∅, so µ(Dn) −→ 0. Choose no ∈ N with no ≥ mo such that
µ(Dno) ≤ δ. Then by (14) and (15) we get

supn

∫

Dno

˜hn(ω)‖g(ω)‖X∗ dµ ≤ ε

12
and

∫

Dno

˜f(ω)‖g(ω)‖X∗ dµ ≤ ε

12
. (17)

Hence, by (17) we have

∣

∣

∣

∫

Bmo

〈hn(ω), g(ω)− gno(ω)〉 dµ
∣

∣

∣ ≤
∫

Bmo

˜hn(ω) ‖g(ω)− gno(ω)‖X∗ dµ

≤
∫

Dno

˜hn(ω)‖g(ω)− gno(ω)‖X∗ dµ +

∫

BmorDno

˜hn(ω)‖g(ω)− gno(ω)‖X∗ dµ (18)

≤
∫

Dno

˜hn(ω)‖g(ω)‖X∗ dµ + η

∫

Bmo

˜hn(ω) dµ ≤ ε

12
+

ε

12dmo

dmo =
ε

6
.

Similarly, by (17) we get

∣

∣

∣

∫

Bmo

〈f(ω), g(ω)− gno(ω)〉 dµ
∣

∣

∣ ≤
ε

6
. (19)

Since gno ∈ L
∞
Bmo

(X∗, X), using (11) one can choose n1 ∈ N such that for n ≥ n1

∣

∣

∣

∫

Bmo
〈hn(ω)− f(ω), gno(ω)〉 dµ

∣

∣

∣ ≤
ε

6
. (20)
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Hence, using (18), (19) and (20) for n ≥ n1 we get

∣

∣

∣

∫

Bmo

〈hn(ω)− f(ω), g(ω)〉 dµ
∣

∣

∣ ≤
∣

∣

∣

∫

Bmo

〈hn(ω)− f(ω), gno(ω)〉 dµ
∣

∣

∣

+
∣

∣

∣

∫

Bmo

〈hn(ω), g(ω)− gno(ω)〉 dµ
∣

∣

∣+
∣

∣

∣

∫

Bmo

〈f(ω), g(ω)− gno(ω)〉 dµ
∣

∣

∣ (21)

≤ ε

6
+

ε

6
+

ε

6
=

ε

2
.

Moreover, using (15) and (16) for every n ∈ N we have

∣

∣

∣

∫

ΩrBmo

〈hn(ω)− f(ω), g(ω)〉 dµ
∣

∣

∣

≤
∫

ΩrBmo

˜hn(ω)‖g(ω)‖X∗ dµ+

∫

ΩrBmo

˜f(ω)‖g(ω)‖X∗ dµ (22)

≤ ε

4
+

ε

4
=

ε

2
.

At last, using (21) and (22) for n ≥ n1 we get

∣

∣

∣

∫

Ω

〈hn(ω)− f(ω), g(ω)〉 dµ
∣

∣

∣ ≤
∣

∣

∣

∫

ΩrBmo

〈hn(ω)− f(ω), g(ω)〉 dµ
∣

∣

∣

+
∣

∣

∣

∫

Bmo

〈hn(ω)− f(ω), g(ω)〉 dµ
∣

∣

∣ ≤
ε

2
+

ε

2
= ε.

Thus the proof is complete.

(i)⇔(iii)⇔(iv) It follows from Theorem 3.2.

As a consequence of Theorem 3.3 we obtain a characterization of reflexivity of a Banach
space X in terms of relatively σ(E(X),M(X∗, X))-sequentially compact subsets of E(X).

Corollary 3.4. Let E be an ideal of Lo, M an ideal of E ′ with suppM = Ω and let X be
a Banach space. Assume that the absolute weak topology |σ|(E,M) on E has the σ-Levy
property. Then the following statements are equivalent:

(i) X is reflexive.

(ii) Every subset H of E(X) such that the set ˜H is relatively σ(E,M)-sequentially com-
pact is relatively σ(E(X),M(X∗, X))-sequentially compact.

Proof. (i)⇒(ii) Assume that Xis reflexive, i.e., X is almost reflexive and weakly sequen-

tially complete. Let H be a subset of E(X) such that ˜H is relatively σ(E,M)-sequentially
compact in E. Hence in view of Corollary 2.3 H is conditionally σ(E(X),M(X∗, X))-
compact. Combining Theorem 2.2 and Theorem 3.3 we obtain that H is relatively
σ(E(X),M(X∗, X))-sequentially compact.

(ii)⇒(i) Assume that (ii) holds. It is enough to show that the unit ball BX is weakly
sequentially compact (see [31, Chap. 10.2]). Indeed, let (xn) be a sequence in BX . Given
a fixed u ∈ E+ r {0} let us put hn = u ⊗ xn for n ∈ N. Let H = {u ⊗ xn : n ∈ N}.
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Using Proposition 1.1 we easily obtain that ˜H is relatively σ(E,M)-sequentially compact.
Hence by (ii) there exists a subsequence (hkn) of (hn) and ho ∈ E(X) such that hkn −→ ho

for σ(E(X),M(X∗, X)). Choose 0 ≤ vo ∈ M such that
∫

Ω
u(ω)vo(ω) dµ = 1. Then

vo ⊗ x∗ ∈ M(X∗, X) for each x∗ ∈ X∗, and

x∗(xkn) =

∫

Ω

u(ω)vo(ω)x
∗(xkn) dµ

= Fvo⊗x∗(u⊗ xkn)−→Fvo⊗x∗(ho) =

∫

Ω

〈ho(ω), vo(ω)x
∗〉 dµ

=

∫

Ω

x∗(vo(ω)ho(ω)) dµ = x∗
(

∫

Ω

vo(ω)ho(ω) dµ
)

.

Hence xkn −→ xo for σ(X,X∗), where xo =
∫

Ω
vo(ω)ho(ω) dµ ∈ BX . This means that X

is reflexive.
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