Conditional and Relative Weak Compactness in Vector-Valued Function Spaces

Marian Nowak

Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, ul. Szafrana 4A, 65–516 Zielona Góra, Poland M.Nowak@wmie.uz.zgora.pl

Received December 17, 2003 Revised manuscript received November 13, 2004

Let E be an ideal of L° over a σ -finite measure space (Ω, Σ, μ) , and let $(X, \|\cdot\|_X)$ be a real Banach space. Let E(X) be a subspace of the space $L^{\circ}(X)$ of μ -equivalence classes of all strongly Σ -measurable functions $f: \Omega \longrightarrow X$ and consisting of all those $f \in L^{\circ}(X)$ for which the scalar function $\|f(\cdot)\|_X$ belongs to E. Let $E(X)_n^{\sim}$ stand for the order continuous dual of E(X). In this paper we characterize both conditionally $\sigma(E(X), I)$ -compact and relatively $\sigma(E(X), I)$ -sequentially compact subsets of E(X) whenever I is an ideal of $E(X)_n^{\sim}$. As an application, we obtain a characterization of almost reflexivity and reflexivity of a Banach space X in terms of conditionally $\sigma(E(X), I)$ -compact and relatively $\sigma(E(X), I)$ -sequentially compact subsets of E(X).

Keywords: Vector-valued function spaces, Köthe-Bochner spaces, conditional weak compactness, weak sequential completeness, almost reflexivity, reflexivity, absolute weak topologies

2000 Mathematics Subject Classification: 46E40, 46A50, 46A20, 46A25

1. Introduction and preliminaries

Given a topological vector space (L,ξ) by $(L,\xi)^*$ we will denote its topological dual. We denote by $\sigma(L,K)$ the weak topology on L with respect to a dual pair $\langle L,K\rangle$. Recall that a subset Z of L is said to be *conditionally* $\sigma(L,K)$ -compact (resp. relatively $\sigma(L,K)$ -sequentially compact) whenever each sequence in Z contains a $\sigma(L,K)$ -Cauchy subsequence (resp. each sequence in Z contains a subsequence which is $\sigma(L,K)$ -convergent to some element of L).

The problem of characterizing of conditionally and relatively weakly compact subsets of Lebesgue-Bochner spaces $L^p(X)$, where $1 \leq p \leq \infty$ (in particular in $L^1(X)$) and X is supposed to satisfy some conditions has been considered by many authors (see [6], [5], [26], [29], [17], [11], [28], [3], [14], [19], [30]). Recently, H. Benabdellah and C. Castaing [4] and J. Diestel, W. M. Ruess, W. Schachermayer [15] have found criteria for conditional weak compactness and relative weak compactness in $L^1(X)$ (over a finite measure space) for a general Banach space X.

Assume that E is an ideal of L° over a σ -finite measure space and let X be a Banach space. In Section 2 and Section 3 we characterize both conditionally $\sigma(E(X), I)$ -compact and relatively $\sigma(E(X), I)$ -sequentially compact subsets of E(X) whenever I is an ideal of the order continuous dual $E(X)_n^{\sim}$ separating the points of E(X) (see Theorem 2.2 and Theorem 3.3).

ISSN 0944-6532 / \$ 2.50 © Heldermann Verlag

Now we establish notation and terminology concerning function spaces (see [2], [20], [32]). Let (Ω, Σ, μ) be a complete σ -finite measure space and let $\Sigma_f = \{A \in \Sigma : \mu(A) < \infty\}$. Let L° denote the space of μ -equivalence classes of all Σ -measurable real valued functions defined and finite a.e. on Ω . Let χ_A stand for the characteristic function of a set A, and let \mathbb{N} and \mathbb{R} denote the sets of all natural and real numbers.

Let E be an ideal of L° with $\operatorname{supp} E = \Omega$, and let E^{\sim} and E_n^{\sim} stand for the order dual and the order continuous dual of E respectively. Let E' denote the Köthe dual of E. Throughout the paper we will assume that $\operatorname{supp} E' = \Omega$. Then E_n^{\sim} can be identified with E' through the mapping: $E' \ni v \longmapsto \varphi_v \in E_n^{\sim}$, where $\varphi_v(u) = \int_{\Omega} u(\omega) v(\omega) d\mu$ for all $u \in E$.

For a sequence (A_n) in Σ we write $A_n \searrow_{\mu} \emptyset$ whenever $A_n \downarrow$ and $\mu(\bigcap_{n=1}^{\infty} A_n) = 0$ (that is $A_n \downarrow$ and $\mu(A \cap A_n) \longrightarrow 0$ for each $A \in \Sigma_f$). It is known that a subset Z of L^1 is uniformly integrable (i.e., $\sup_{u \in Z} \int_{A_n} |u(\omega)| d\mu \xrightarrow{\to} 0$ as $A_n \searrow_{\mu} \emptyset$) if and only if for each $\varepsilon > 0$ there exist $\Omega_o \in \Sigma_f$ and $\delta > 0$ such that $\sup_{u \in Z} \int_{\Omega \smallsetminus \Omega_o} |u(\omega)| d\mu \leq \varepsilon$ and $\sup_{u \in Z} \int_A |u(\omega)| d\mu \leq \varepsilon$ whenever $\mu(A) \leq \delta$.

Let M be an ideal of E' with supp $M = \Omega$. Assume that Z is a $\sigma(E, M)$ -bounded subset of E. Then Z is also $|\sigma|(E, M)$ -bounded (see [2, Theorem 6.6]), so one can define a Riesz seminorm p_Z on M by

$$p_Z(v) = \sup_{u \in Z} \int_{\Omega} |u(\omega)v(\omega)| \,\mathrm{d}\mu.$$

Now we recall the concept of *M*-equicontinuity of a set Z in E (see [10, Definition 2.1]) which allows us to the together the various characterizations of conditionally and relatively $\sigma(E, M)$ -sequentially compact sets in E.

A subset Z of E is said to be M-equicontinuous whenever

$$\sup\{|\varphi_{v_n}(u)|: u \in Z\} \xrightarrow{n} 0$$

as $\varphi_{v_n} \downarrow 0$ in the ideal $\Phi_M (= \{ \varphi_v : v \in M \})$ of E_n^{\sim} .

Let S(Z) stand for the solid hull of Z in E. Note that for each $v \in M$ we have:

$$\sup \left\{ |\varphi_v(u)| : \ u \in S(Z) \right\} = \sup \left\{ |\varphi_v|(|u|) : \ u \in Z \right\}$$
$$= \sup \left\{ \int_{\Omega} |u(\omega)v(\omega)| \, \mathrm{d}\mu : \ u \in Z \right\}.$$
$$(+)$$

Observe that $v_n \downarrow 0$ in M if and only if $\varphi_{v_n} \downarrow 0$ in Φ_M because the mapping $M \ni v \mapsto \varphi_v \in \Phi_M$ is a Riesz isomorphism.

Now we are able to state a characterization of conditionally and relatively $\sigma(E, M)$ sequentially compact sets in E.

Proposition 1.1. Let E be an ideal of L° and M an ideal of E' such that supp $M = \Omega$. Then for a subset Z of E the following statements are equivalent:

- (i) Z is conditionally $\sigma(E, M)$ -compact.
- (ii) Z is $\sigma(E, M)$ -bounded and the seminorm p_Z on M is order continuous.

(iii) Z is $\sigma(E, M)$ -bounded and for each $v \in M$ the subset $\{uv : u \in Z\}$ of L^1 is uniformly integrable.

Moreover, if E is $\sigma(E, M)$ -sequentially complete, then the statements (i)–(iii) are equivalent to the following:

(iv) Z is relatively $\sigma(E, M)$ -sequentially compact.

Proof. $(i) \Rightarrow (ii)$ Assume that Z is conditionally $\sigma(E, M)$ -compact. Then in view of [10, Theorem 3.4] the set Z is Φ_M -equicontinuous; hence, by [10, Proposition 2.2(b)] Z is $|\sigma|(E, M)$ -bounded. Moreover, by [10, Proposition 2.2(a)] its solid hull S(Z) is also M-equicontinuous. Making use of (+) we obtain that the seminorm p_Z on M is order continuous.

 $(ii) \Rightarrow (i)$ Assume that Z is $\sigma(E, M)$ -bounded and the seminorm p_Z on M is order continuous. In view of (+) it follows that the set S(Z) is M-equicontinuous, so Z is also M-equicontinuous. Hence, by [10, Theorem 3.4] Z is conditionally $\sigma(E, M)$ -compact, as desired.

 $(ii) \Leftrightarrow (iii)$ Let Z be $\sigma(E, M)$ -bounded. It is well known that the seminorm p_Z on M is order continuous if and only if it is absolutely continuous, i.e., for each $v \in M$, $p_Z(\chi_{A_n}v) \xrightarrow{n} 0$ for every sequence (A_n) in Σ with $A_n \searrow_{\mu} \emptyset$ (see [21, Theorem 2.1]). This means that for each $v \in M$ the set $\{uv : u \in Z\}$ in L^1 is uniformly integrable. \Box

Remark. It is well known the space L^1 is weakly sequentially complete and by the "Dunford's theorem" weakly compact sets in L^1 are uniformly integrable.

Recall that E is said to be *perfect* whenever E'' = E. The following characterization of the perfectness of E will be needed.

Proposition 1.2. Let E be an ideal of L° . Then the following statements are equivalent:

- (i) E is perfect.
- (ii) $|\sigma|(E, E')$ has the Levy property.
- (iii) $|\sigma|(E, E')$ has the σ -Levy property.
- (iv) E is $\sigma(E, E')$ -sequentially complete.

Proof. $(i) \iff (ii)$ See [2, Theorem 9.4].

 $(ii) \Rightarrow (iii)$ It is obvious; $(iii) \Rightarrow (iv)$ See [2, Theorem 20.26].

 $(iv) \Longrightarrow (i)$ Assume that (iv) holds and (i) fails, i.e., $E \subsetneq E''$ and let $0 \le u \in E'' \smallsetminus E$. Since supp $E = \Omega$, there exists a sequence (Ω_n) in Σ_f such that $\Omega_n \uparrow \Omega$ with $\chi_{\Omega_n} \in E$ for $n \in \mathbb{N}$ (see [32, Theorem 86.2]). For $n \in \mathbb{N}$ let us put

$$u_n(\omega) = \begin{cases} u(\omega) & \text{if } \omega \in \Omega_n \text{ and } u(\omega) \le n \\ 0 & \text{elsewhere.} \end{cases}$$

Then $u_n \leq n \chi_{\Omega_n}$ for $n \in \mathbb{N}$, so $u_n \in E$ and $u_n(\omega) \uparrow u(\omega)$ for $\omega \in \Omega$. In fact, we have directly $u_n \longrightarrow u$ for $\sigma(E'', E')$. Indeed, for $v \in E'$

$$\left|\int_{\Omega} (u(\omega) - u_m(\omega))v(\omega) \,\mathrm{d}\mu\right| \le \int_{\Omega} (u(\omega) - u_m(\omega)) \,|v(\omega)| \,\mathrm{d}\mu$$

and by the Lebesque dominated convergence theorem, we have

$$\int_{\Omega} (u(\omega) - u_m(\omega)) |v(\omega)| \, \mathrm{d}\mu \longrightarrow 0 \text{ as } m \to \infty$$

On the other hand, since (u_n) is a Cauchy sequence for $\sigma(E, E')$, in view of (iv) there is $z \in E$ such that $u_n \longrightarrow z$ for $\sigma(E, E')$, so $u_n \longrightarrow z$ for $\sigma(E'', E')$. Since supp $E' = \Omega$, it follows that z = u, so $u \in E$ and this contradicts the choice of u.

Now we establish terminology and prove some results concerning vector-valued function spaces (see [8], [9], [22]).

Let $(X, \|\cdot\|_X)$ be a real Banach space, and let X^* stand for the Banach dual of X. By B_X and S_X we denote the unit ball and the unit sphere in X respectively. By $L^{\circ}(X)$ we will denote the set of μ -equivalence classes of strongly Σ -measurable functions $f : \Omega \longrightarrow X$. For $f \in L^{\circ}(X)$ let $\tilde{f}(\omega) = \|f(\omega)\|_X$ for $\omega \in \Omega$. Let

$$E(X) = \{ f \in L^{o}(X) : \tilde{f} \in E \}.$$

Recall that the algebraic tensor product $E \otimes X$ is the subspace of E(X) spanned by the functions of the form $u \otimes x$, $(u \otimes x)(\omega) = u(\omega)x$, where $u \in E$, $x \in X$.

From now on for a subset H of E(X) and a set $A \in \Sigma$ we will write

$$\widetilde{H} = \{ \widetilde{f} \in E : f \in H \}$$
 and $H_A = \{ \chi_A f : f \in H \}.$

In particular, for a Banach function space $(E, \|\cdot\|_E)$, the space E(X) provided with the norm $\|f\|_{E(X)} := \|\tilde{f}\|_E$ is usually called a *Köthe-Bochner space*.

For a linear functional F on E(X) let us set

$$|F|(f) = \sup \{ |F(h)| : h \in E(X), h \leq f \} \text{ for all } f \in E(X).$$

Then the set

$$E(X)^{\sim} = \{F \in E(X)^{\#} : |F|(f) < \infty \text{ for all } f \in E(X)\}$$

will be called the *order dual* of E(X) (here $E(X)^{\#}$ denotes the algebraic dual of E(X)) (see [9, §3], [22]).

For $F_1, F_2 \in E(X)^{\sim}$ we will write $|F_1| \leq |F_2|$ whenever $|F_1|(f) \leq |F_2|(f)$ for all $f \in E(X)$. A subset $A \in E(X)^{\sim}$ is said to be *solid* whenever $|F_1| \leq |F_2|$ with $F_1 \in E(X)^{\sim}$ and $F_2 \in A$ imply $F_1 \in A$. A linear subspace I of E(X) will be called an *ideal* of $E(X)^{\sim}$ whenever I is solid.

Let $F \in E(X)^{\sim}$ and $x_0 \in S_X$ be fixed. For every $u \in E^+$ let us set:

$$\varphi_F(u) = |F|(u \otimes x_o) = \sup\{ |F(h)| : h \in E(X), h \le u \}.$$

Then $\varphi_F : E^+ \longrightarrow \mathbb{R}^+$ is an additive mapping and φ_F has a unique positive extension to a linear mapping from E to \mathbb{R} (denoted by φ_F again) and given by

$$\varphi_F(u) := \varphi_F(u^+) - \varphi_F(u^-) \text{ for all } u \in E.$$

A linear functional $F \in E(X)^{\sim}$ is said to be *order continuous* whenever for a net (f_{α}) in E(X), $\tilde{f}_{\alpha} \xrightarrow{(o)} 0$ in E implies $F(f_{\alpha}) \longrightarrow 0$. The set $E(X)_{n}^{\sim}$ consisting of all order continuous linear functionals on E(X) is called the *order continuous dual of* E(X). Let $L^{o}(X^{*}, X)$ be the set of weak^{*}-equivalence classes of all weak^{*}-measurable functions $g: \Omega \longrightarrow X^{*}$. One can define the so called abstract norm

$$\vartheta: L^{\mathbf{o}}(X^*, X) \longrightarrow L^{\mathbf{c}}$$

by $\vartheta(g) = \sup\{ |g_x| : x \in B_X \}$, where $g_x(\omega) = g(\omega)(x)$ for $\omega \in \Omega$ and $x \in X$. Note that $\vartheta(g)$ is well defined because L^o is order complete. Then for $f \in L^o(X)$ and $g \in L^o(X^*, X)$ the function $\langle f, g \rangle : \Omega \longrightarrow \mathbb{R}$ defined by $\langle f, g \rangle(\omega) := \langle f(\omega), g(\omega) \rangle$ is measurable, and $|\langle f, g \rangle| \leq \tilde{f} \vartheta(g)$. Moreover, $\vartheta(g) = \tilde{g}$ for $g \in L^o(X^*)$. For an ideal M of E' let

$$M(X^*, X) = \{g \in L^{\circ}(X^*, X) : \vartheta(g) \in M\}.$$

Due to A. V. Bukhvalov (see [8, Theorem 4.1]) $E(X)_n^{\sim}$ can be identified with $E'(X^*, X)$ through the mapping: $E'(X^*, X) \ni g \longmapsto F_g \in E(X)_n^{\sim}$, where

$$F_g(f) = \int_{\Omega} \langle f(\omega), g(\omega) \rangle \, \mathrm{d}\mu \quad \text{for all} \quad f \in E(X),$$

and moreover

$$F_g|(f) = \int_{\Omega} \widetilde{f}(\omega)\vartheta(g)(\omega) \,\mathrm{d}\mu \quad \text{for all} \quad f \in E(X).$$

Hence for each $g \in E'(X^*, X)$ we get for $u \in E^+$

$$\varphi_{F_g}(u) = |F_g|(u \otimes x_o) = \int_{\Omega} u(\omega)\vartheta(g)(\omega) \,\mathrm{d}\mu = \varphi_{\vartheta(g)}(u).$$

It is known that in a weak*-equivalence class $g \in E'(X^*, X)$ there is a function $g(\cdot)$ such that the scalar function $||g(\cdot)||_{X^*}$ is measurable and its equivalance class in L° belongs to E' (see [13, p. 279–280, Theorem 8; p. 213, Proposition 5]).

One can show that if M is an ideal of E' then the set

$$I_M = \{F_g : g \in M(X^*, X)\}$$

is an ideal of $E(X)_n^{\sim}$ (see [22, Theorem 2.6]). Conversely, if I is an ideal of $E(X)_n^{\sim}$, then the set

$$M_I = \left\{ v \in E' : |v| \le \vartheta(g) \text{ for some } g \in M(X^*, X) \text{ with } F_g \in I \right\}$$

is an ideal of E' and $I = I_{M_I}$ (see [22, Theorem 1.2, Theorem 2.6]). Moreover, the ideal I_M separates the points of E(X) if and only if supp $M = \Omega$ (see [22, Theorem 2.7]).

Let M be an ideal of E' with supp $M = \Omega$. Recall that the absolute weak topology $|\sigma|(E, M)$ on E is generated by the family $\{p_v : v \in M\}$ of Riesz semi-norms, where $p_v(u) = \int_{\Omega} |u(\omega)v(\omega)| d\mu$ for $u \in E$. Denote by $\overline{|\sigma|(E, M)}$ the locally convex topology on

452 M. Nowak / Conditional and Relative Weak Compactness in Vector-Valued ...

E(X) that is generated by the family $\{\bar{p}_v : v \in M\}$ of seminorms on E(X), where for $v \in M$

$$\bar{p}_v(f) := p_v(\tilde{f}) \quad \text{for} \quad f \in E(X).$$

We denote by $|\sigma|(E(X), M(X^*, X))$ the absolute weak topology on E(X), generated by the family $\{\varrho_g : g \in M(X^*, X)\}$ of seminorms on E(X), where

$$\varrho_g(f) = \int_{\Omega} \widetilde{f}(\omega)\vartheta(g)(\omega) \,\mathrm{d}\mu \quad \text{for} \quad f \in E(X)$$

(see $[22, \S 4]$). It is known that (see [22, Theorem 4.3, Theorem 4.4]):

$$|\sigma|(E(X), M(X^*, X)) = \overline{|\sigma|(E, M)}$$
(1)

and

$$(E(X), |\sigma|(E(X), M(X^*, X)))^* = \{F_g : g \in M(X^*, X)\}.$$
(2)

We shall need the following technical result.

Proposition 1.3. Let E be an ideal of L° and let M be ideal of E' with supp $M = \Omega$. Then for a subset H of E(X) the following statements are equivalent:

- (i) H is $\sigma(E(X), M(X^*, X))$ -bounded.
- (ii) H is $|\sigma|(E(X), M(X^*, X))$ -bounded.
- (iii) \tilde{H} is $|\sigma|(E, M)$ -bounded.
- (iv) \widetilde{H} is $\sigma(E, M)$ -bounded.

Proof. $(i) \Leftrightarrow (ii)$ In view of (2) it follows from the Mackey theorem (see [31, Theorem 8.4.1])

 $(ii) \Rightarrow (iii)$ Assume that H is $|\sigma|(E(X), M(X^*, X))$ -bounded and let $v \in M$. Then for $g = v \otimes x_o^*$, where $x_o^* \in S_{X^*}$, we get

$$\sup_{f \in H} \int_{\Omega} \widetilde{f}(\omega) \vartheta(g)(\omega) \, \mathrm{d}\mu = \sup_{f \in H} \int_{\Omega} \widetilde{f}(\omega) |v(\omega)| \, \mathrm{d}\mu < \infty.$$

This means that \widetilde{H} is $|\sigma|(E, M)$ -bounded.

 $(iii) \Rightarrow (ii)$ Assume that \widetilde{H} is $\sigma(E, M)$ -bounded, and let $g \in M(X^*, X)$. Then $\vartheta(g) \in M$, so

$$\sup_{f \in H} \int_{\Omega} \widetilde{f}(\omega) \vartheta(g)(\omega) \,\mathrm{d}\mu < \infty.$$

 $(iii) \Leftrightarrow (iv)$ It is obvious, because $(E, |\sigma|(E, M))^* = (E, \sigma(E, M))^*$ (see [2, Theorem 6.6]).

2. Conditional weak compactness in vector-valued function spaces

H. Benabdellah and C. Castaing [4] employing M. Talagrand's result about a "parametrized version" of H. P. Rosenthal's ℓ^1 -theorem obtained the following characterization of conditionally weakly compact sets in $L^1(X)$. **Theorem 2.1 ([4, Theorem 2.2]).** Let (Ω, Σ, μ) be a finite measure space and X be a Banach space. For a norm bounded subset H of $L^1(X)$ the following statements are equivalent:

- (i) H is conditionally weakly compact.
- (ii) (a) \tilde{H} is uniformly integrable in L^1 ,
 - (b) given any sequence (f_n) in H there exists a sequence (h_n) with $h_n \in \operatorname{conv} \{f_k : k \ge n\}$ such that $(h_n(\omega))$ is weakly Cauchy in X for a.e. $\omega \in \Omega$.

Now, by making use of Theorem 2.1 we are ready to state our main result.

Theorem 2.2. Let E be an ideal of L° , M be an ideal of E' with supp $M = \Omega$ and let X be a Banach space. Then for a subset H of E(X) the following statements are equivalent:

- (i) H is conditionally $\sigma(E(X), M(X^*, X))$ -compact.
- (ii) a) The set H is conditionally $\sigma(E, M)$ -compact.
 - b) for each subset $A \in \Sigma_f$ with $\chi_A \in M$ and each sequence (f_n) in H there is a sequence (h_n^A) with $h_n^A \in \operatorname{conv} \{\chi_A f_k : k \ge n\}$ such that $(h_n^A(\omega))$ is weakly Cauchy in X for a.e. $\omega \in A$.

Proof. $(i) \Rightarrow (ii)$ Assertion (a) follows from [24, Theorem 2.3]. It is easy to observe that H is $\sigma(E(X), M(X^*, X))$ -bounded, so by Proposition 1.3 \widetilde{H} is $\sigma(E, M)$ -bounded. Let $A \in \Sigma_f$ with $\chi_A \in M$. Hence $\sup_{f \in H} \int_{\Omega} \widetilde{f}(\omega) \chi_A(\omega) d\mu < \infty$. Thus H_A is a norm bounded subset of $L^1_A(X)$.

We shall now show that H_A is conditionally $\sigma(L_A^1(X), L_A^{\infty}(X^*, X))$ -compact. Indeed, let (f_n) be a sequence in H. Then there is a $\sigma(E(X), M(X^*, X))$ -Cauchy subsequence (f_{k_n}) of (f_n) . Let $g \in L_A^{\infty}(X^*, X)$ and let $g'(\omega) = g(\omega)$ for $\omega \in A$ and $g'(\omega) = 0$ for $\omega \in \Omega \setminus A$. Choose a weak*-measurable function $g(\cdot)$ in g such that the function $\|g(\cdot)\|_{X^*}$ is measurable. Then $\|g(\omega)\|_{X^*} \leq c$ for some c > 0 and a.e. $\omega \in A$. Hence $\|g'(\omega)\|_{X^*} \leq c\chi_A(\omega)$ for a.e. $\omega \in \Omega$, so $\|g'(\cdot)\|_{X^*} \in M$, because $\chi_A \in M$. It means that $g' \in M(X^*, X)$. Since

$$\int_{A} \langle f_{k_n}(\omega), g(\omega) \rangle \, \mathrm{d}\mu = \int_{\Omega} \langle f_{k_n}(\omega), g'(\omega) \rangle \, \mathrm{d}\mu$$

and $\lim_n \int_{\Omega} \langle f_{k_n}(\omega), g'(\omega) \rangle d\mu$ exists, we obtain that $(\chi_A f_{k_n})$ is a $\sigma(L^1_A(X), L^\infty_A(X^*, X))$ -Cauchy sequence in $L^1_A(X)$. Thus in view of Theorem 2.1 there is a sequence (h^A_n) with $h^A_n \in \text{conv} \{\chi_A f_k : k \ge n\}$ for $n \in \mathbb{N}$ such that $(h^A_n(\omega))$ is weakly Cauchy in X for a.e. $\omega \in A$.

 $(ii) \Rightarrow (i)$ Since supp $M = \Omega$, there is a sequence (Ω_m) in Σ_f such that $\Omega_m \uparrow \Omega$ and $\chi_{\Omega_m} \in M$ for all $m \in \mathbb{N}$ (see [32, Theorem 86.2]). Hence for $m \in \mathbb{N}$ we get $\sup_{f \in H} \int_{\Omega_m} \tilde{f}(\omega) d\mu = c_m < \infty$, so $\{\chi_{\Omega_m} f : f \in H\}$ is a norm bounded subset of $L^1_{\Omega_m}(X)$ and by (a) the set $\{\chi_{\Omega_m} \tilde{f} : f \in H\}$ in $L^1_{\Omega_m}$ is uniformly integrable (see Proposition 1.1). Thus in view of (b) and making use of Theorem 2.1 we conclude that for each $m \in \mathbb{N}$, $\{\chi_{\Omega_m} f : f \in H\}$ is a conditionally $\sigma(L^1_{\Omega_m}(X), L^\infty_{\Omega_m}(X^*, X))$ -compact subset of $L^1_{\Omega_m}(X)$.

Let (f_n) be a sequence in H. In view of the above observation there is a $\sigma(L_{\Omega_1}^1(X), L_{\Omega_1}^\infty(X^*, X))$ -Cauchy subsequence $(\chi_{\Omega_1} f_{k_n^1})$ of $(\chi_{\Omega_1} f_n)$. Next, there is a $\sigma(L_{\Omega_2}^1(X), L_{\Omega_2}^\infty(X^*, X))$ -

Cauchy subsequence $(\chi_{\Omega_2} f_{k_n^2})$ of $(\chi_{\Omega_2} f_{k_n^1})$. It follows that the diagonal sequence $(f_{k_n^n})$ has the property that for each $m \in \mathbb{N}$, $(\chi_{\Omega_m} f_{k_n^n})$ is a $\sigma(L^1_{\Omega_m}(X), L^\infty_{\Omega_m}(X^*, X))$ -Cauchy sequence.

Let $h_n = f_{k_n^n}$ for $n \in \mathbb{N}$. We shall now show that (h_n) is a $\sigma(E(X), M(X^*, X))$ -Cauchy sequence. Indeed, let $g \in M(X^*, X)$. Choose a weak*-measurable function $g(\cdot)$ in g such that the function $||g(\cdot)||_{X^*}$ is measurable. For $n \in \mathbb{N}$ let

$$g_n(\omega) = \begin{cases} g(\omega) & \text{if } \omega \in \Omega_n \text{ and } ||g(\omega)||_{X^*} \le n, \\ 0 & \text{elsewhere.} \end{cases}$$

Clearly $g_n \in L^{\infty}_{\Omega_n}(X^*, X)$. By (a), given $\varepsilon > 0$ there exist $m_0 \in \mathbb{N}$ and $\delta > 0$ such that

$$\sup_{n} \int_{\Omega \smallsetminus \Omega_{m_{o}}} \widetilde{f}_{n}(\omega) \|g(\omega)\|_{X^{*}} \,\mathrm{d}\mu \leq \frac{\varepsilon}{8} \quad \text{and} \quad \sup_{n} \int_{A} \widetilde{f}_{n}(\omega) \|g(\omega)\|_{X^{*}} \,\mathrm{d}\mu \leq \frac{\varepsilon}{8}, \tag{3}$$

for each $A \in \Sigma$ with $\mu(A) \leq \delta$. For $\eta = \varepsilon/(8c_{m_o})$ let

$$B_n = \left\{ \omega \in \Omega_{m_0} : \|g(\omega) - g_n(\omega)\|_{X^*} \ge \eta \right\}.$$

It is easy to observe that $B_n \downarrow \emptyset$, so $\mu(B_n) \longrightarrow 0$. Choose $n_o \in \mathbb{N}$ with $n_o \ge m_o$ such that $\mu(B_{n_o}) \le \delta$. Then by (3) we get

$$\sup_{n} \int_{B_{n_{0}}} \widetilde{h}_{n}(\omega) \|g(\omega)\|_{X^{*}} \,\mathrm{d}\mu \leq \frac{\varepsilon}{8}.$$
(4)

Hence, by (4) for $n \in \mathbb{N}$ we get

$$\left| \int_{\Omega_{m_{o}}} \langle h_{n}(\omega), g(\omega) - g_{n_{o}}(\omega) \rangle \, \mathrm{d}\mu \right| \leq \int_{\Omega_{m_{o}}} \widetilde{h}_{n}(\omega) \|g(\omega) - g_{n_{o}}(\omega)\|_{X^{*}} \, \mathrm{d}\mu$$

$$\leq \int_{B_{n_{o}}} \widetilde{h}_{n}(\omega) \|g(\omega) - g_{n_{o}}(\omega)\|_{X^{*}} \, \mathrm{d}\mu + \int_{\Omega_{m_{o}} \setminus B_{n_{o}}} \widetilde{h}_{n}(\omega) \|g(\omega) - g_{n_{o}}(\omega)\|_{X^{*}} \, \mathrm{d}\mu \quad (5)$$

$$\leq \int_{B_{n_{o}}} \widetilde{h}_{n}(\omega) \|g(\omega)\|_{X^{*}} \, \mathrm{d}\mu + \eta \int_{\Omega_{m_{o}}} \widetilde{h}_{n}(\omega) \, \mathrm{d}\mu \leq \frac{\varepsilon}{8} + \frac{\varepsilon}{8c_{m_{o}}}c_{m_{o}} = \frac{\varepsilon}{4}.$$

Since $(\chi_{\Omega_{m_o}}h_n)$ is a $\sigma(L^1_{\Omega_{m_o}}(X), L^{\infty}_{\Omega_{m_o}}(X^*, X))$ -Cauchy sequence and $\chi_{\Omega_{m_o}}g_{n_o} \in L^{\infty}_{\Omega_{m_o}}(X^*, X)$ there exists $n_1 \in \mathbb{N}$ such that for $n, n' \geq n_1$ we have:

$$\left|\int_{\Omega_{m_{o}}} \langle h_{n}(\omega) - h_{n'}(\omega), g_{n_{o}}(\omega) \rangle \,\mathrm{d}\mu\right| \leq \frac{\varepsilon}{4}.$$
(6)

For $n, n' \in \mathbb{N}$ we have

$$\left| \int_{\Omega} \langle h_{n}(\omega) - h_{n'}(\omega), g(\omega) \rangle \, \mathrm{d}\mu \right|$$

$$\leq \left| \int_{\Omega \smallsetminus \Omega_{m_{o}}} \langle h_{n}(\omega) - h_{n'}(\omega), g(\omega) \rangle \, \mathrm{d}\mu \right| + \left| \int_{\Omega_{m_{o}}} \langle h_{n}(\omega) - h_{n'}(\omega), g(\omega) \rangle \, \mathrm{d}\mu \right|$$

Using (3) for $n, n' \in \mathbb{N}$ we get:

$$\left| \int_{\Omega \smallsetminus \Omega_{m_{o}}} \langle h_{n}(\omega) - h_{n'}(\omega), g(\omega) \rangle \, \mathrm{d}\mu \right|$$

$$\leq \int_{\Omega \smallsetminus \Omega_{m_{o}}} \widetilde{h}_{n}(\omega) \|g(\omega)\|_{X^{*}} \, \mathrm{d}\mu + \int_{\Omega \smallsetminus \Omega_{m_{o}}} \widetilde{h}_{n'}(\omega) \|g(\omega)\|_{X^{*}} \, \mathrm{d}\mu$$

$$\leq \frac{\varepsilon}{8} + \frac{\varepsilon}{8} = \frac{\varepsilon}{4}.$$
(7)

Moreover, by (5) and (6) for $n, n' \ge n_1$ we get:

$$\left| \int_{\Omega_{m_{o}}} \langle h_{n}(\omega) - h_{n'}(\omega), g(\omega) \rangle d\mu \right|$$

$$\leq \left| \int_{\Omega_{m_{o}}} \langle h_{n}(\omega) - h_{n'}(\omega), g(\omega) - g_{n_{o}}(\omega) \rangle d\mu \right| + \left| \int_{\Omega_{m_{o}}} \langle h_{n}(\omega) - h_{n'}(\omega), g_{n_{o}}(\omega) \rangle d\mu \right|$$

$$\leq \left| \int_{\Omega_{m_{o}}} \langle h_{n}(\omega), g(\omega) - g_{n_{o}}(\omega) \rangle d\mu \right| + \left| \int_{\Omega_{m_{o}}} \langle h_{n'}(\omega), g(\omega) - g_{n_{o}}(\omega) \rangle d\mu \right|$$

$$+ \left| \int_{\Omega_{m_{o}}} \langle h_{n}(\omega) - h_{n'}(\omega), g_{n_{o}}(\omega) \rangle d\mu \right| \leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \frac{3}{4} \varepsilon.$$
(8)

At last, using (7) and (8) for $n, n' \ge n_1$ we have:

$$\left|\int_{\Omega} \langle h_n(\omega) - h_{n'}(\omega), g(\omega) \rangle \,\mathrm{d}\mu\right| \le \frac{\varepsilon}{4} + \frac{3\varepsilon}{4} = \varepsilon.$$

Thus H is conditionally $\sigma(E(X), M(X^*, X))$ -compact, as desired.

Recall that a normed space X is said to be *almost reflexive* if every norm-bounded subset of X is conditionally weakly compact (see [11]). The fundamental ℓ^1 -Rosenthal theorem [27] says that a Banach space X is almost reflexive if and only if it contains no isomorphic copy of ℓ^1 . J. Bourgain [5] and M. Talagrand [29] have studied the relationship between conditional weak compactness and uniform integrability in $L^1(X)$ in terms of the presence of isomorphic copies of ℓ^1 in X.

Now, using [5, Corollary 9] and Theorem 2.2 we are in position to present a characterization of the almost reflexivity of a Banach space X in terms of conditionally $\sigma(E(X), M(X^*, X))$ -compact subsets of E(X) (see [1, Theorem 2.6]).

Corollary 2.3. Let E be an ideal of L° , M an ideal of E' with supp $M = \Omega$, and let X be a Banach space. Then the following statements are equivalent:

- (i) X is almost reflexive.
- (ii) Every subset H of E(X) such that the set \widetilde{H} is conditionally $\sigma(E, M)$ -compact is conditionally $\sigma(E(X), M(X^*, X))$ -compact.

Proof. $(i) \Rightarrow (ii)$ Assume that X is almost reflexive, and let H be a subset of E(X) such that \widetilde{H} is a conditionally $\sigma(E, M)$ -compact subset of E. Let $A \in \Sigma_f$ with $\chi_A \in M$ and (f_n) a sequence of H. The set $\{\chi_A \widetilde{f_n} : n \ge 1\}$ is bounded in L_A^1 . By Levin theorem, there

exist a sequence of convex combination $h_n = \sum_{i=n}^{N_n} \lambda_i^n \chi_A \tilde{f}_i$ (with $\lambda_i^n \ge 0$, $\sum_{i=n}^{N_n} \lambda_i^n = 1$) such that $h_n(\omega)$ converges for almost every ω . Hence the sequence $\left\|\sum_{i=n}^{N_n} \lambda_i^n(\chi_A f_i)(\omega)\right\|$, $n \ge 1$, is bounded in X for almost every ω . Now we have to use almost reflexivity of X for this sequence and conclude by Theorem 2.2.

 $(ii) \Rightarrow (i)$ Assume that (ii) holds. We shall show that the unit ball B_X is conditionally weakly compact. Indeed, let (x_n) be a sequence in B_X . Given a fixed $u \in E^+ \setminus \{0\}$ let us put $h_n = u \otimes x_n$ for $n \in \mathbb{N}$. Let $H = \{u \otimes x : x \in B_X\}$. Making use of Proposition 1.1 it is easy to verify that the set \widetilde{H} is conditionally $\sigma(E, M)$ -compact. Hence by (ii) there exists a $\sigma(E(X), M(X^*, X))$ -Cauchy subsequence (h_{k_n}) of (h_n) . Choose $0 \leq v_o \in M$ such that $\int_{\Omega} u(\omega)v_o(\omega) d\mu = 1$. Then $v_o \otimes x^* \in M(X^*, X)$ for each $x^* \in X^*$, and

$$x^*(x_{k_n}) = \int_{\Omega} u(\omega) v_{\mathbf{o}}(\omega) x^*(x_{k_n}) \, \mathrm{d}\mu = F_{v_{\mathbf{o}} \otimes x^*}(u \otimes x_{k_n}) \longrightarrow a \in \mathbb{R} \,.$$

This means that (x_{k_n}) is a weakly Cauchy sequence in X. Thus X is almost reflexive. \Box

3. Weak sequential compactness in vector-valued function spaces

A. Ülger [30] obtained a characterization of relatively weakly compact subsets H of $L^1(X)$ for a general Banach space X and a finite measure space (that are norm bounded in $L^{\infty}(X)$) in terms of "convex compactness" i.e., of drawing convex combinations out of "tails" of sequences (f_n) in H. Next, J. Diestel, W. Ruess and W. Schachermayer [15] removed the restriction of $L^{\infty}(X)$ -boundedness of a subset H of $L^1(X)$ and obtained the following result:

Theorem 3.1 ([15, Theorem 2.1]). Let (Ω, Σ, μ) be a finite measure space and X be a Banach space. For a norm bounded subset H of $L^1(X)$ the following statements are equivalent:

- (i) H is relatively weakly compact.
- (ii) (a) H is uniformly integrable in L¹,
 (b) given any sequence (f_n) in H there exists a sequence (h_n) with h_n ∈ conv {f_k : k ≥ n} such that (h_n(ω)) is weakly convergent in X for a.e. ω ∈ Ω.

The present author [23] found a criterion for relative $\sigma(E(X), E(X)_n^{\sim})$ -compactness in a Köthe-Bochner space E(X) whenever a Banach function space E (over a finite measure space) is such that $L^{\infty} \subset E \subset L^1$ and the inclusion maps are continuous.

In this section by making use of Theorem 3.1 we characterize relatively $\sigma(E(X), I)$ sequentially compact subsets of E(X) whenever X is a general Banach space, E is an
ideal of L° (over a σ -finite measure space) and I is an ideal of $E(X)_n^{\sim}$ separating the
points of E(X).

The following version of the Eberlein-Smulian theorem for the locally convex space $(E(X), \sigma(E(X), M(X^*, X)))$ will be needed.

Theorem 3.2. Let E be an ideal of L° , M an ideal of E' with supp $M = \Omega$, and let X be a Banach space. Then for a subset H of E(X) the following statements are equivalent:

(i) H is relatively $\sigma(E(X), M(X^*, X))$ -sequentially compact.

(ii) H is relatively $\sigma(E(X), M(X^*, X))$ -countably compact.

Moreover, if the absolute weak topology $|\sigma|(E, M)$ has the Levy property, then the statements (i)-(ii) are equivalent to the following:

(iii) H is relatively $\sigma(E(X), M(X^*, X))$ -compact.

Proof. $(i) \Leftrightarrow (ii)$ It follows from [22, Theorem 4.8].

 $(ii) \Leftrightarrow (iii)$ Since $|\sigma|(E, M)$ is a Lebesgue, Levy topology on E, the space $(E, |\sigma|(E, M))$ is complete (see [2, Theorem 22.2]). Making use of [7, Theorem 3] we obtain that the space $(E(X), \overline{|\sigma|(E, M)})$ is also complete. On the other hand, in view of (1) and (2) we see that $(E(X), \overline{|\sigma|(E, M)})^* = (E(X), |\sigma|(E(X), M(X^*, X)))^* = I_M$. Hence in view of [18, Proposition 2] we conclude that $(ii) \Leftrightarrow (iii)$ holds.

Since $L^1(X)^* = \{F_g : g \in L^{\infty}(X^*, X)\}$, a set H in $L^1(X)$ is relatively weakly compact if and only if it is relatively $\sigma(L^1(X), L^{\infty}(X^*, X))$ -sequentially compact. Moreover, we will need the following identity (see [25, Theorem 1.1]):

$$E''(X) = \left\{ f \in L^{o}(X) : \int_{\Omega} \langle f(\omega), g(\omega) \rangle \, \mathrm{d}\mu < \infty \quad \text{for all} \quad g \in E'(X^{*}) \right\}.$$
(9)

Note that the absolute weak topology $|\sigma|(E, M)$ on E is a σ -Levy topology if and only if the space $(E, \sigma(E, M))$ is sequentially complete (see [2, Theorem 20.26]). It follows that then E is perfect, i.e., E = E'' (see [Proposition 1.2]).

It is known that for $|\sigma|(E, M)$ the σ -Levy property and the Levy property coincide (see [16, Proposition 3.2]).

Now we are is position to state our main result.

Theorem 3.3. Let E be an ideal of L° , M an ideal of E' with supp $M = \Omega$, and let X be a Banach space. Assume that the absolute weak topology $|\sigma|(E, M)$ on E has the σ -Levy property. Then for a subset H of E(X) the following statements are equivalent:

- (i) H is relatively $\sigma(E(X), M(X^*, X))$ -sequentially compact.
- (ii) (a) H is relatively σ(E, M)-sequentially compact.
 (b) for each A ∈ Σ_f with χ_A ∈ M and each sequence (f_n) in H there is a sequence (h_n^A) with h_n^A ∈ conv {f_k : k ≥ n} such that (h_n^A(ω)) is weakly convergent in X for a.e. ω ∈ A.
- (iii) H is relatively $\sigma(E(X), M(X^*, X))$ -compact.
- (iv) H is relatively $\sigma(E(X), M(X^*, X))$ -countably compact.

Proof. $(i) \Rightarrow (ii)$ Assume that H is relatively $\sigma(E(X), M(X^*, X))$ -sequentially compact. Since H is conditionally $\sigma(E(X), M(X^*, X))$ -compact and the space $(E, \sigma(E, M))$ is sequentially complete, in view of Theorem 2.2 \widetilde{H} is relatively $\sigma(E, M)$ -sequentially compact, i.e., (a) holds.

Now assume that $A \in \Sigma_f$ with $\chi_A \in M$. Then $\sup_{f \in H} \int_A \widetilde{f}(\omega) d\mu < \infty$, because \widetilde{H} is $\sigma(E, M)$ -bounded (see Proposition 1.2). One can observe that the subset $\{\chi_A f : f \in H\}$ of $L_A^1(X)$ is relatively $\sigma(L_A^1(X), L_A^\infty(X^*, X))$ -sequentially compact. In fact, let $g \in L^\infty(X^*, X)$, and choose a function $g(\cdot)$ in g such that the scalar function $||g(\cdot)||_{X^*}$ is

measurable. Hence $\chi_A(\omega) ||g(\omega)||_{X^*} \leq c \chi_A(\omega) \mu$ -a.e. for some c > 0. It follows that $\chi_A g \in M(X^*, X)$, because $\chi_A \in M$. This means that the set $\{\chi_A f : f \in H\}$ is relatively weakly compact in $L^1_A(X)$, so by Theorem 3.2 condition (b) holds.

 $(ii) \Longrightarrow (i)$ Assume that (iii) holds and let (f_n) be a sequence in H. Then there is a pairwise disjoint sequence (Ω_m) in Σ_f such that $\chi_{\Omega_m} \in M$ for $m \in \mathbb{N}$ and $\bigcup_{m=1}^{\infty} \Omega_m = \Omega$ (see [20, Corollary 4.3.2]). Given $m \in \mathbb{N}$ we have $\sup_n \int_{\Omega_m} \widetilde{f}_n(\omega) d\mu < \infty$, so $\{\chi_{\Omega_m} f_n : n \in \mathbb{N}\}$ is a norm bounded subset of $L^1_{\Omega_m}(X)$. Since $\chi_{\Omega_m} \in M$, in view of (a) and Proposition 1.1 for each $m \in \mathbb{N}$ the subset $\{\chi_{\Omega_m} \widetilde{f}_n : n \in \mathbb{N}\}$ of $L^1_{\Omega_m}$ is uniformly integrable. Hence by Theorem 3.1 for each $m \in \mathbb{N}$ the set $\{\chi_{\Omega_m} f_n : n \in \mathbb{N}\}$ is relatively $\sigma(L^1_{\Omega_m}(X), L^\infty_{\Omega_m}(X^*, X))$ -sequentially compact. Hence by the diagonal process we can extract a subsequence (h_n) of (f_n) such that for each $m \in \mathbb{N}$ there is $f_{\Omega_m} \in L^1_{\Omega_m}(X)$ such that

$$\chi_{\Omega_m} h_n \xrightarrow{n} f_{\Omega_m} \quad \text{for} \quad \sigma(L^1_{\Omega_m}(X), L^\infty_{\Omega_m}(X^*, X)).$$
 (10)

Define a function $f: \Omega \longrightarrow X$ by setting $f(\omega) = f_{\Omega_m}(\omega)$ for $\omega \in \Omega_m$, i.e., $\chi_{\Omega_m} f = f_{\Omega_m}$ for all $m \in \mathbb{N}$. Then $f \in L^{\circ}(X)$ and we shall now show that $f \in E(X)$ and $h_n \longrightarrow f$ for $\sigma(E(X), M(X^*, X))$.

To show that $f \in E(X)$, in view of (9) and the perfectness of E it is enough to prove that

$$\int_{\Omega} \langle f(\omega), g(\omega) \rangle \, \mathrm{d}\mu < \infty \quad \text{for all} \quad g \in E'(X^*).$$

Let $B_m = \bigcup_{i=1}^m \Omega_i$ for $m \in \mathbb{N}$. Then $B_m \uparrow \Omega$ and $\chi_{\Omega_m} \in M$. Then from (10) it easily follows that for each $m \in \mathbb{N}$

$$\chi_{B_m} h_n \xrightarrow{n} \chi_{B_m} f$$
 for $\sigma(L^1_{B_m}(X), L^\infty_{B_m}(X^*, X)).$ (11)

Let $g \in M(X^*)$ and for $m \in \mathbb{N}$ let us put

$$g_m(\omega) = \begin{cases} g(\omega) & \text{if } \omega \in B_m \text{ and } ||g(\omega)||_{X^*} \le m, \\ 0 & \text{elsewhere.} \end{cases}$$

Then $||g_m(\omega) - g(\omega)||_{X^*} \longrightarrow 0$ μ -a.e. and $g_m \in M(X^*)$. Given $m \in \mathbb{N}$ by $\mathcal{S}_{B_m}(X^*)$ we denote the set of all simple functions of the form:

$$s = \sum_{i=1}^{k} \chi_{A_i} \otimes x_i^*,$$

where $A_i \in B_m \cap \Sigma$, $x_i^* \in X^*$, $k \in \mathbb{N}$. Making use of (11) one can see that for each $s \in \mathcal{S}_{B_m}(X^*)$ we have

$$\int_{\Omega} \langle h_n(\omega), s(\omega) \rangle \, \mathrm{d}\mu \longrightarrow \int_{\Omega} \langle f(\omega), s(\omega) \rangle \, \mathrm{d}\mu$$

 \mathbf{SO}

$$\left|\int_{\Omega} \langle f(\omega), s(\omega) \rangle \,\mathrm{d}\mu\right| = \lim_{n} \left|\int_{\Omega} \langle h_n(\omega), s(\omega) \rangle \,\mathrm{d}\mu\right| \le \sup_{n} \int_{\Omega} \widetilde{h}_n(\omega) \,\,\widetilde{s}(\omega) \,\mathrm{d}\mu < \infty.$$

M. Nowak / Conditional and Relative Weak Compactness in Vector-Valued ... 459 For $s \in \mathcal{S}_{B_m}(X^*)$ define a measure $\nu_s : \Sigma \longrightarrow \mathbb{R}$ by

$$\nu_s(A) := \int_A \langle f(\omega), s(\omega) \rangle \, \mathrm{d}\mu \quad \text{for all} \quad A \in \Sigma.$$

Then

$$\begin{aligned} |\nu_{s}|(\Omega) &= \int_{\Omega} |\langle f(\omega), s(\omega) \rangle| \, \mathrm{d}\mu \\ &\leq 4 \sup_{A \in \Sigma} |\nu_{s}(A)| \leq 4 \sup_{A \in \Sigma} (\sup_{n} \int_{A} \widetilde{h}_{n}(\omega) \, \widetilde{s}(\omega) \, \mathrm{d}\mu) \\ &= 4 \sup_{n} \int_{\Omega} \widetilde{h}_{n}(\omega) \, \widetilde{s}(\omega) \, \mathrm{d}\mu < \infty. \end{aligned}$$
(12)

Given $m \in \mathbb{N}$ one can chose a sequence (s_k^m) in $\mathcal{S}_{B_m}(X^*)$ such that $\|s_k^m(\omega) - g_m(\omega)\|_{X^*} \longrightarrow 0$ and $\|s_k^m(\omega)\|_{X^*} \leq \|g_m(\omega)\|_{X^*}$ μ -a.e. on Ω . Moreover, since $\lim_m \langle f(\omega), g_m(\omega) \rangle = \langle f(\omega), g(\omega) \rangle$ $g(\omega) \rangle \mu$ -a.e., by the Fatou lemma we get

$$\int_{\Omega} |\langle f(\omega), g(\omega) \rangle| \, \mathrm{d}\mu \le \liminf_{m} \int_{\Omega} |\langle f(\omega), g_{m}(\omega) \rangle| \, \mathrm{d}\mu.$$
(13)

On the other hand, for each $m \in \mathbb{N}$, in view of the Fatou lemma and (12) we have

$$\int_{\Omega} |\langle f(\omega), g_{m}(\omega) \rangle| d\mu \leq \liminf_{k} \int_{\Omega} |\langle f(\omega), s_{k}^{m}(\omega) \rangle| d\mu
\leq \liminf_{k} (4 \sup_{n} \int_{\Omega} \widetilde{h}_{n}(\omega) \widetilde{s}_{k}^{m}(\omega) d\mu)
\leq \liminf_{k} (4 \sup_{n} \int_{\Omega} \widetilde{h}_{n}(\omega) \widetilde{g}_{m}(\omega) d\mu)
= 4 \sup_{n} \int_{\Omega} \widetilde{h}_{n}(\omega) \widetilde{g}_{m}(\omega) d\mu.$$
(14)

Hence, by (13) and (14) we get

$$\begin{split} \int_{\Omega} |\langle f(\omega), g(\omega) \rangle| \, \mathrm{d}\mu &\leq \liminf_{m} \left(4 \sup_{n} \int_{\Omega} \widetilde{h}_{n}(\omega) \, \widetilde{g}_{m}(\omega) \, \mathrm{d}\mu \right) \\ &\leq \liminf_{m} \left(4 \sup_{n} \int_{\Omega} \widetilde{h}_{n}(\omega) \, \widetilde{g}(\omega) \, \mathrm{d}\mu \right) \\ &= 4 \sup_{n} \int_{\Omega} \widetilde{h}_{n}(\omega) \, \widetilde{g}(\omega) \, \mathrm{d}\mu < \infty \,, \end{split}$$

and this proves that $f \in E(X)$, as desired.

To show that $h_n \longrightarrow f$ for $\sigma(E(X), M(X^*, X))$, let $g \in M(X^*, X)$ be given. Choose a weak*-measurable function in $g(\cdot)$ in g such that the scalar function $||g(\cdot)||_{X^*}$ is measurable and its equivalence class in L° belongs to M. Setting $A_m = \Omega \setminus B_m$ we see that $A_m \searrow_{\mu} \emptyset$. Let $\varepsilon > 0$ be given. Then by (a) and Proposition 1.1 one can choose $m_0 \in \mathbb{N}$ and $\delta > 0$ such that for each $A \in \Sigma$ with $\mu(A) \leq \delta$ we have

$$\sup_{n} \int_{\Omega \smallsetminus B_{m_{o}}} \widetilde{h}_{n}(\omega) \|g(\omega)\|_{X^{*}} \, \mathrm{d}\mu \leq \frac{\varepsilon}{4} \quad \text{and} \quad \sup_{n} \int_{A} h_{n}(\omega) \|g(\omega)\|_{X^{*}} \, \mathrm{d}\mu \leq \frac{\varepsilon}{12}, \tag{15}$$

and

$$\int_{\Omega \smallsetminus B_{m_0}} \widetilde{f}(\omega) \, \|g(\omega)\|_{X^*} \, \mathrm{d}\mu \le \frac{\varepsilon}{4} \quad \text{and} \quad \int_A \widetilde{f}(\omega) \, \|g(\omega)\|_{X^*} \, \mathrm{d}\mu \le \frac{\varepsilon}{12}. \tag{16}$$

For $n \in \mathbb{N}$ let us put

$$g_n(\omega) = \begin{cases} g(\omega) & \text{if } \omega \in B_n \text{ and } ||g(\omega)||_{X^*} \le n \\ 0 & \text{elsewhere.} \end{cases}$$

It is seen that $\|g_n(\omega)\|_{X^*} \leq n\chi_{B_m}(\omega)$ for $\omega \in \Omega$, so $g_n \in L^{\infty}_{B_m}(X^*, X)$). We have $\sup_n \int_{B_{m_o}} \widetilde{h}_n(\omega) d\mu = d_{m_o}$ for some $d_{m_o} > 0$ and $\int_{B_{m_o}} \widetilde{f}(\omega) d\mu = d$ for some d > 0. For $\eta = \varepsilon/(12 \max(d, d_{m_o}))$ and $n \in \mathbb{N}$ let us put

$$D_n = \{ \omega \in B_{m_0} : \|g(\omega) - g_n(\omega)\|_{X^*} \ge \eta \}.$$

It is easy to see that $D_n \downarrow \emptyset$, so $\mu(D_n) \longrightarrow 0$. Choose $n_o \in \mathbb{N}$ with $n_o \ge m_o$ such that $\mu(D_{n_o}) \le \delta$. Then by (14) and (15) we get

$$\sup_{n} \int_{D_{n_{o}}} \widetilde{h}_{n}(\omega) \|g(\omega)\|_{X^{*}} \,\mathrm{d}\mu \leq \frac{\varepsilon}{12} \quad \text{and} \quad \int_{D_{n_{o}}} \widetilde{f}(\omega) \|g(\omega)\|_{X^{*}} \,\mathrm{d}\mu \leq \frac{\varepsilon}{12}.$$
(17)

Hence, by (17) we have

$$\left| \int_{B_{m_{o}}} \langle h_{n}(\omega), g(\omega) - g_{n_{o}}(\omega) \rangle \,\mathrm{d}\mu \right| \leq \int_{B_{m_{o}}} \widetilde{h}_{n}(\omega) \, \|g(\omega) - g_{n_{o}}(\omega)\|_{X^{*}} \,\mathrm{d}\mu$$

$$\leq \int_{D_{n_{o}}} \widetilde{h}_{n}(\omega) \|g(\omega) - g_{n_{o}}(\omega)\|_{X^{*}} \,\mathrm{d}\mu + \int_{B_{m_{o}} \smallsetminus D_{n_{o}}} \widetilde{h}_{n}(\omega) \|g(\omega) - g_{n_{o}}(\omega)\|_{X^{*}} \,\mathrm{d}\mu \quad (18)$$

$$\leq \int_{D_{n_{o}}} \widetilde{h}_{n}(\omega) \|g(\omega)\|_{X^{*}} \,\mathrm{d}\mu + \eta \int_{B_{m_{o}}} \widetilde{h}_{n}(\omega) \,\mathrm{d}\mu \leq \frac{\varepsilon}{12} + \frac{\varepsilon}{12d_{m_{o}}} d_{m_{o}} = \frac{\varepsilon}{6}.$$

Similarly, by (17) we get

$$\left|\int_{B_{m_{o}}} \langle f(\omega), g(\omega) - g_{n_{o}}(\omega) \rangle \,\mathrm{d}\mu\right| \leq \frac{\varepsilon}{6}.$$
(19)

Since $g_{n_0} \in L^{\infty}_{B_{m_0}}(X^*, X)$, using (11) one can choose $n_1 \in \mathbb{N}$ such that for $n \geq n_1$

$$\left|\int_{B_{m_o}} \langle h_n(\omega) - f(\omega), g_{n_o}(\omega) \rangle \,\mathrm{d}\mu\right| \le \frac{\varepsilon}{6}.$$
(20)

Hence, using (18), (19) and (20) for $n \ge n_1$ we get

$$\left| \int_{B_{m_{o}}} \langle h_{n}(\omega) - f(\omega), g(\omega) \rangle \, \mathrm{d}\mu \right| \leq \left| \int_{B_{m_{o}}} \langle h_{n}(\omega) - f(\omega), g_{n_{o}}(\omega) \rangle \, \mathrm{d}\mu \right|$$
$$+ \left| \int_{B_{m_{o}}} \langle h_{n}(\omega), g(\omega) - g_{n_{o}}(\omega) \rangle \, \mathrm{d}\mu \right| + \left| \int_{B_{m_{o}}} \langle f(\omega), g(\omega) - g_{n_{o}}(\omega) \rangle \, \mathrm{d}\mu \right| \quad (21)$$
$$\leq \frac{\varepsilon}{6} + \frac{\varepsilon}{6} + \frac{\varepsilon}{6} = \frac{\varepsilon}{2}.$$

Moreover, using (15) and (16) for every $n \in \mathbb{N}$ we have

$$\left| \int_{\Omega \smallsetminus B_{m_{o}}} \langle h_{n}(\omega) - f(\omega), g(\omega) \rangle \, d\mu \right|$$

$$\leq \int_{\Omega \smallsetminus B_{m_{o}}} \widetilde{h}_{n}(\omega) \|g(\omega)\|_{X^{*}} \, d\mu + \int_{\Omega \smallsetminus B_{m_{o}}} \widetilde{f}(\omega) \|g(\omega)\|_{X^{*}} \, d\mu \qquad (22)$$

$$\leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4} = \frac{\varepsilon}{2}.$$

At last, using (21) and (22) for $n \ge n_1$ we get

$$\left| \int_{\Omega} \langle h_n(\omega) - f(\omega), g(\omega) \rangle \, \mathrm{d}\mu \right| \leq \left| \int_{\Omega \smallsetminus B_{m_0}} \langle h_n(\omega) - f(\omega), g(\omega) \rangle \, \mathrm{d}\mu \right| \\ + \left| \int_{B_{m_0}} \langle h_n(\omega) - f(\omega), g(\omega) \rangle \, \mathrm{d}\mu \right| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Thus the proof is complete.

 $(i) \Leftrightarrow (iii) \Leftrightarrow (iv)$ It follows from Theorem 3.2.

As a consequence of Theorem 3.3 we obtain a characterization of reflexivity of a Banach space X in terms of relatively $\sigma(E(X), M(X^*, X))$ -sequentially compact subsets of E(X).

Corollary 3.4. Let E be an ideal of L° , M an ideal of E' with supp $M = \Omega$ and let X be a Banach space. Assume that the absolute weak topology $|\sigma|(E, M)$ on E has the σ -Levy property. Then the following statements are equivalent:

- (i) X is reflexive.
- (ii) Every subset H of E(X) such that the set \tilde{H} is relatively $\sigma(E, M)$ -sequentially compact is relatively $\sigma(E(X), M(X^*, X))$ -sequentially compact.

Proof. $(i) \Rightarrow (ii)$ Assume that X is reflexive, i.e., X is almost reflexive and weakly sequentially complete. Let H be a subset of E(X) such that \tilde{H} is relatively $\sigma(E, M)$ -sequentially compact in E. Hence in view of Corollary 2.3 H is conditionally $\sigma(E(X), M(X^*, X))$ -compact. Combining Theorem 2.2 and Theorem 3.3 we obtain that H is relatively $\sigma(E(X), M(X^*, X))$ -sequentially compact.

 $(ii) \Rightarrow (i)$ Assume that (ii) holds. It is enough to show that the unit ball B_X is weakly sequentially compact (see [31, Chap. 10.2]). Indeed, let (x_n) be a sequence in B_X . Given a fixed $u \in E^+ \setminus \{0\}$ let us put $h_n = u \otimes x_n$ for $n \in \mathbb{N}$. Let $H = \{u \otimes x_n : n \in \mathbb{N}\}$.

Using Proposition 1.1 we easily obtain that H is relatively $\sigma(E, M)$ -sequentially compact. Hence by (*ii*) there exists a subsequence (h_{k_n}) of (h_n) and $h_o \in E(X)$ such that $h_{k_n} \longrightarrow h_o$ for $\sigma(E(X), M(X^*, X))$. Choose $0 \leq v_o \in M$ such that $\int_{\Omega} u(\omega)v_o(\omega) d\mu = 1$. Then $v_o \otimes x^* \in M(X^*, X)$ for each $x^* \in X^*$, and

$$\begin{aligned} x^*(x_{k_n}) &= \int_{\Omega} u(\omega) v_{o}(\omega) x^*(x_{k_n}) \, \mathrm{d}\mu \\ &= F_{v_o \otimes x^*}(u \otimes x_{k_n}) \longrightarrow F_{v_o \otimes x^*}(h_o) = \int_{\Omega} \langle h_o(\omega), v_o(\omega) x^* \rangle \, \mathrm{d}\mu \\ &= \int_{\Omega} x^*(v_o(\omega) h_o(\omega)) \, \mathrm{d}\mu = x^* \Big(\int_{\Omega} v_o(\omega) h_o(\omega) \, \mathrm{d}\mu \Big). \end{aligned}$$

Hence $x_{k_n} \longrightarrow x_o$ for $\sigma(X, X^*)$, where $x_o = \int_{\Omega} v_o(\omega) h_o(\omega) d\mu \in B_X$. This means that X is reflexive.

Acknowledgements. The author is very grateful to the referee for many useful suggestions which have improved the paper.

References

- C. Abbott, E. Bator, R. Bilyeu, P. Lewis: Weak precompactness, strong boundedness and weak complete continuity, Math. Proc. Camb. Phil. Soc. 108 (1990) 325–335.
- [2] C. D. Aliprantis, O. Burkinshaw: Locally Solid Riesz Spaces, Academic Press, New York(1978).
- [3] J. Batt: On weak compactness in spaces of vector valued measures and Bochner integrable functions in connection with the Radon-Nikodym property of Banach spaces, Rev. Roumaine Math. Pures. Appl. 19 (1974) 285–304.
- [4] H. Benabdellah, C. Castaing: Weak compactness criteria and convergences in $L_E^1(\mu)$, Collect. Math. 48 (1997) 423–448.
- [5] J. Bourgain: An averaging result for ℓ^1 -sequences and applications to weakly conditionally compact sets in L_X^1 , Israel J. Math. 32(4) (1979) 289–298.
- [6] J. Brooks, N. Dinculeanu: Weak compactness in spaces of Bochner integrable functions and applications, Advances in Math. 24(2) (1977) 172–188.
- [7] A. V. Bukhvalov: Vector-valued function spaces and tensor products, Siber. Math. J. 13(6) (1972) 1229–1238.
- [8] A. V. Bukhvalov: On an analytic representation of operators with abstract norm, Izv. Vyss. Vceb. Zaved. 11 (1975) 21–32 (in Russian).
- [9] A. V. Bukhvalov, G. Ya. Lozanowskii: On sets closed in measure in spaces of measurable functions, Trans. Moscow Math. Soc. 2 (1978) 127–148.
- [10] O. Burkinshaw, P. Dodds: Weak sequential compactness and completeness in Riesz spaces, Canad. J. Math. 28(6) (1976) 1332–1339.
- [11] S. D. Chatterji: Weak convergence in certain special Banach spaces, MRC Technical Summary Report 443, University of Winsconsin, Madison (1963).
- [12] R. Cross: A characterization of almost reflexivity of normed function spaces, Proc. Royal Irish Acad. Sect. A, 92(2) (1992) 225–228.

- [13] N. Dinculeanu: Vector Measures, VEB Deutscher Verlag der Wissenschaften, Berlin (1967).
- [14] J. Diestel, J. J. Uhl, Jr.: Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence (1977).
- [15] J. Diestel, W. M. Ruess, W. Schachermayer: Weak compactness in $L^1(\mu, X)$, Proc. Amer. Math. Soc. 118(2) (1993) 447–453.
- [16] L. Drewnowski, I. Labuda: Copies of c_0 and l_{∞} in topological Riesz spaces, Trans. Amer. Math. Soc. 350(9) (1998) 3555–3570.
- [17] G. Emmanuele: On weak compactness in Banach spaces of E-valued measures and E-valued Bochner integrable functions, when E has an unconditional Schauder decomposition, Rev. Roumaine Math. Pures Appl. 32(7) (1987) 603–609.
- [18] A. Grothendieck: Critères de compacité dans les espaces functionnels généraux, Amer. Journal of Math. 74 (1952) 168–186.
- [19] N. Ghousoub, P. Saab: Weak compactness in spaces of Bochner integrable functions and the Radon-Nikodym property, Pacific J. Math. 110(1) (1984) 65–70.
- [20] L. V. Kantorovitch, A. V. Akilov: Functional Analysis, 3rd Ed., Nauka, Moscow (1984) (in Russian).
- [21] W. A. Luxemburg, A. C. Zaanen: Compactness of integral operators in Banach function spaces, Math. Ann. 149 (2) (1963) 150–180.
- [22] M. Nowak: Duality theory of vector valued function spaces I, Comment. Math., Prace Mat. 37 (1997) 195–215.
- [23] M. Nowak, Weak sequential compactness and completeness in Köthe-Bochner spaces, Bull. Polish Acad. Sci. Math. 46(3) (1999) 209–220.
- [24] M. Nowak: Conditional weak compactness in vector-valued function spaces, Proc. Amer. Math. Soc. 129(10) (2000) 2947–2953.
- [25] M. Nowak: Sequential $\sigma(E(X), E'(X^*))$ -compactness and completeness in vector-valued function spaces E(X), in: Proc. Conf. Function Spaces VI, Wrocław 2001, World Scientific, Singapore (2003) 198–214.
- [26] G. Pisier: Une proprieté de stabilité de la classe des espaces ne contenant ℓ_1 , C. R. Acad. Sci., Paris, Sér. A 284 (1978) 747–749.
- [27] H. Rosenthal: A characterization of Banach spaces containing ℓ_1 , Proc. Nat. Acad. Sci. USA 71 (1974) 2411–2413.
- [28] C. Schwartz: Weakly compact operators from a B-space into the space of Bochner integrable functions, Colloq. Math. 28(1) (1973) 69–76.
- [29] M. Talagrand: Weak Cauchy sequences in $L^1(X)$, Amer. Math. J. 106 (1984) 703–724.
- [30] A. Ülger: Weak compactness in $L^{1}(X)$, Proc. Amer. Math. Soc. 113(1) (1991) 143–149.
- [31] A. Wilansky: Modern Methods in Topological Vector Spaces, McGraw-Hill (1978).
- [32] A. C. Zaanen: Riesz Spaces II, North-Holland, Amsterdam (1983).