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Let E be an ideal of L° over a o-finite measure space (2,3, i), and let (X, ||- || x) be a real Banach space.
Let E(X) be a subspace of the space L°(X) of u-equivalence classes of all strongly X-measurable functions
f: 2 — X and consisting of all those f € L°(X) for which the scalar function || f(-)||x belongs to E.
Let E(X); stand for the order continuous dual of E(X). In this paper we characterize both conditionally
o(E(X), I)-compact and relatively o(FE(X), I)-sequentially compact subsets of F(X) whenever [ is an
ideal of E(X);. As an application, we obtain a characterization of almost reflexivity and reflexivity of
a Banach space X in terms of conditionally o(F(X),I)-compact and relatively o(FE(X), I)-sequentially
compact subsets of E(X).
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1. Introduction and preliminaries

Given a topological vector space (L,&) by (L,&)* we will denote its topological dual.
We denote by o(L, K) the weak topology on L with respect to a dual pair (L, K). Re-
call that a subset Z of L is said to be conditionally o(L, K)-compact (resp. relatively
o(L, K)-sequentially compact) whenever each sequence in Z contains a o(L, K)-Cauchy
subsequence (resp. each sequence in Z contains a subsequence which is o (L, K')-convergent
to some element of L ).

The problem of characterizing of conditionally and relatively weakly compact subsets of
Lebesgue-Bochner spaces LP(X), where 1 < p < oo (in particular in L'(X)) and X is
supposed to satisfy some conditions has been considered by many authors (see [6], [5],
26], [29], [17], [11], [28], [3], [14], [19], [30]). Recently, H. Benabdellah and C. Castaing [4]
and J. Diestel, W. M. Ruess, W. Schachermayer [15] have found criteria for conditional
weak compactness and relative weak compactness in L'(X) (over a finite measure space)
for a general Banach space X.

Assume that E is an ideal of L° over a o-finite measure space and let X be a Banach
space. In Section 2 and Section 3 we characterize both conditionally o(FE(X), I)-compact
and relatively o(E(X), I)-sequentially compact subsets of E(X) whenever [ is an ideal
of the order continuous dual E (X))’ separating the points of E(X) (see Theorem 2.2 and
Theorem 3.3).
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Now we establish notation and terminology concerning function spaces (see [2], [20], [32]).
Let (£2,%, 1) be a complete o-finite measure space and let Xy = {4 € ¥ : p(A) < oo}.
Let L° denote the space of p-equivalence classes of all 3-measurable real valued functions
defined and finite a.e. on . Let X4 stand for the characteristic function of a set A, and
let N and R denote the sets of all natural and real numbers.

Let E be an ideal of L° with supp EJ = €2, and let £~ and E; stand for the order dual
and the order continuous dual of E respectively. Let E’ denote the Kothe dual of E.
Throughout the paper we will assume that supp £/ = Q. Then E7 can be identiﬁed
with E’ through the mapping: E' 3> v — ¢, € E', where ¢,(u fQ w)du for
all u € E.

For a sequence (4,) in X we write A, \,, ) whenever A,, | and p((),—, A,) =0 (that is

A, | and u(AN A,) — 0for each A € ;). It is known that a subsetZ of L' is uniformly
integrable (i.e., sup,ez [, |u(w)ldu—70 as A, .y, () if and only if for each € > 0 there

exist 2, € Xy and § > 0 such that sup,c, [y o |u( ) dp < e and sup,ey [, [u(w)|dp < e
whenever pu(A) < 6.

Let M be an ideal of E’ with supp M = Q. Assume that Z is a o(E, M)-bounded subset
of E. Then Z is also |o|(E, M)-bounded (see [2, Theorem 6.6]), so one can define a Riesz

seminorm pyz on M by
= sup [ fuw)u(e)] du
uez

Now we recall the concept of M-equicontinuity of a set Z in E (see [10, Definition 2.1])
which allows us to tie together the various characterizations of conditionally and relatively
o(E, M)-sequentially compact sets in F.

A subset Z of F is said to be M-equicontinuous whenever

sup{|¢y, (W) :u € Z} == 0

as ¢y, | 01in the ideal @y (= {¢p, : v € M}) of E}.
Let S(Z) stand for the solid hull of Z in E. Note that for each v € M we have:

sup{|g0v(u)| : uES(Z)} :sup{|<py (Jul) : UGZ} (+)

—sup{/|u w)|dp : uGZ}

Observe that v, | 0 in M if and only if ¢, | 0 in ®,; because the mapping M > v —
Yy € Oy is a Riesz isomorphism.

Now we are able to state a characterization of conditionally and relatively o(E, M)-
sequentially compact sets in E.

Proposition 1.1. Let E be an ideal of L° and M an ideal of E' such that supp M = ).
Then for a subset Z of E the following statements are equivalent:

(i)  Z is conditionally o(E, M)-compact.
(it) Z is o(E, M)-bounded and the seminorm pz on M is order continuous.
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(111) Z iso(E, M)-bounded and for eachv € M the subset {uv : u € Z} of L' is uniformly
integrable.

Moreover, if E is o(E, M)-sequentially complete, then the statements (i)—(iii) are equiv-
alent to the following:

(i) Z is relatively o(E, M )-sequentially compact.

Proof. (i)=(ii) Assume that Z is conditionally o(F, M)-compact. Then in view of
[10, Theorem 3.4] the set Z is ®p-equicontinuous; hence, by [10, Proposition 2.2(b)] Z
is |o|(E, M)-bounded. Moreover, by [10, Proposition 2.2(a)] its solid hull S(Z) is also
M-equicontinuous. Making use of (+) we obtain that the seminorm py on M is order
continuous.

(11)=(i) Assume that Z is o(F, M)-bounded and the seminorm pz on M is order con-
tinuous. In view of (+) it follows that the set S(Z) is M-equicontinuous, so Z is also
M-equicontinuous. Hence, by [10, Theorem 3.4] Z is conditionally o(FE, M)-compact, as
desired.

(17)<(i17) Let Z be o(E, M)-bounded. It is well known that the seminorm pz on M is or-
der continuous if and only if it is absolutely continuous, i.e., for eachv € M, pz(xa,v) 70
for every sequence (Ay) in 3 with Ay, N\, () (see [21, Theorem 2.1]). This means that for

each v € M the set {uv: u € Z} in L' is uniformly integrable. O

Remark. It is well known the space L! is weakly sequentially complete and by the
"Dunford’s theorem" weakly compact sets in L! are uniformly integrable.

Recall that F is said to be perfect whenever E” = E. The following characterization of
the perfectness of E will be needed.
Proposition 1.2. Let E be an ideal of L°. Then the following statements are equivalent:

(i) E is perfect.

(ii) |o|(E, E") has the Levy property.
(#i) |o|(E,E") has the o-Levy property.
(iv) E is o(FE, E')-sequentially complete.

Proof. (i)<=(ii) See [2, Theorem 9.4].
(11)=(4i7) It is obvious; (iii)==-(iv) See [2, Theorem 20.26].

(iv)==-(i) Assume that (iv) holds and (¢) fails, i.e., E G E” and let 0 < u € E" \ E.
Since supp E = (2, there exists a sequence (£2,,) in X such that €, T Q with Xq, € E for
n € N (see [32, Theorem 86.2]). For n € N let us put

) u(w) ifweQ,and u(w) <n,
tn(w) = { 0 elsewhere.

Then u, <n Xq, for n €N, so u, € F and u,(w) T u(w) for w € Q. In fact, we have
directly u,, — u for o(E", E’). Indeed, for v € E’

‘/Q(U(w) — U (W))V(w) du‘ < /Q(u(w) — Uy (W) [v(w)] dpe



450 M. Nowak / Conditional and Relative Weak Compactness in Vector-Valued ...

and by the Lebesque dominated convergence theorem, we have
/(u(w) — Uy (w)) |V (w)] dpp — 0 as m — 0.
Q

On the other hand, since (u,) is a Cauchy sequence for o(E, E'), in view of (iv) there is
z € F such that u, — z for o(F, E’), so u,, — z for o(E"”, E’). Since supp £’ = €, it
follows that z = u, so u € E and this contradicts the choice of w. n

Now we establish terminology and prove some results concerning vector-valued function
spaces (see [8], [9], [22]).

Let (X, || - ||x) be a real Banach space, and let X* stand for the Banach dual of X. By Bx
and Sx we denote the unit ball and the unit sphere in X respectively. By L°(X) we will
denote the set of u-equivalence classes of strongly Y-measurable functions f: Q — X.
For f € L°(X) let f(w) =||f(w)]|x for w € Q. Let

EX)={fel°(X):feE}.

Recall that the algebraic tensor product £ ® X is the subspace of E(X) spanned by the
functions of the form u ® z, (u ® z)(w) = u(w) x, where u € E, z € X.

From now on for a subset H of F(X) and a set A € ¥ we will write
ﬁ:{fEE: feH} and Ha={xaf: fe€H}

In particular, for a Banach function space (E, || - ||g), the space E(X) provided with the

norm || f|| gx) := | £l is usually called a Kéthe-Bochner space.

For a linear functional F' on E(X) let us set

IF|(f) =sup {|F(h)|: he B(X), h< f} forall fe B(X).
Then the set
EX)"={Fe EX)*: |F|(f) <o foral fecE(X)}

will be called the order dual of E(X) (here E(X)# denotes the algebraic dual of E(X))
(see [9, §3], [22]).

For Fy, Fy € E(X)™ we will write |F}| < |Fy| whenever |F1|(f) < |F|(f) for all f € E(X).
A subset A € E(X)™ is said to be solid whenever |F}| < |Fy| with F} € E(X)~ and Fy € A
imply I} € A. A linear subspace I of E(X) will be called an ideal of E(X)~ whenever I
is solid.

Let F € E(X)~ and x, € Sx be fixed. For every u € E™ let us set:
pr(u) = |Fl(u®z,) =sup{ |F(h)|: he B(X), h<u}.

Then ¢r : BT — R* is an additive mapping and ¢ has a unique positive extension to
a linear mapping from F to R (denoted by ¢ again) and given by

or(u) == pr(u™) —pp(u”) forall uekFE.
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A linear functional F' € E(X)~ is said to be order continuous whenever for a net (f,)

in B(X), fa o E implies F(f,) — 0. The set E(X)7 consisting of all order

continuous linear functionals on E(X) is called the order continuous dual of E(X).

Let L°(X*, X) be the set of weak*-equivalence classes of all weak*-measurable functions

g : 2 — X*. One can define the so called abstract norm

v Lo(X*, X)) — L°

by 9(g) = sup{ |¢.| : © € Bx }, where g,(w) = g(w)(x) for w € 2 and = € X. Note that
Y(g) is well defined because L° is order complete. Then for f € L°(X) and g € L°(X*, X)
the function (f,g):Q — R defined by (f,g)(w) := (f(w),g(w)) is measurable, and

1(f,9)| < f9(g). Moreover, ¥(g) = § for g € L°(X*). For an ideal M of E’ let

M(X*, X)={g € L°(X*, X):9(g) € M}.

Due to A. V. Bukhvalov (see [8, Theorem 4.1]) E(X), can be identified with E'(X*, X)

through the mapping: E'(X*, X) > g — F, € E(X); , where

Fy(f) = /Q (@) g(w)) du forall fe B(X),

and moreover

|Fy|(f /f w)dp forall fe E(X).
Hence for each g € E'(X*, X) we get for u € ET

pr, (u) = [Fyl(u @ z,) = / u(w)d(g)(w) dp = @y(g) (u).

Q

It is known that in a weak*-equivalence class g € E'(X*, X) there is a function g(-) such
that the scalar function ||g(-)||x~ is measurable and its equivalance class in L° belongs to
E’ (see [13, p. 279-280, Theorem 8; p. 213, Proposition 5]).

One can show that if M is an ideal of E’ then the set

Iy ={F,: ge M(X*,X)}

is an ideal of F(X)7 (see [22, Theorem 2.6]). Conversely, if I is an ideal of F(X);, then
the set

Mr={veE: |v|<V(g) for some g€ M(X*,X) with F, €I}
is an ideal of E' and I = Iy, (see [22, Theorem 1.2, Theorem 2.6]). Moreover, the ideal

Iy separates the points of F(X) if and only if supp M = Q (see [22, Theorem 2.7]).

Let M be an ideal of E' with supp M = €. Recall that the absolute weak topology
]a\(E M) on E is generated by the family {p, : v € M} of Riesz semi-norms, where
= [, lu(w)v(w)| dp for u € E. Denote by |o|(E, M) the locally convex topology on
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E(X) that is generated by the family {p, : v € M} of seminorms on F(X), where for
veM 3

Do(f) :=po(f) for fe EX).
We denote by |o|(E(X), M(X*, X)) the absolute weak topology on E(X), generated by
the family {0, : g € M(X*, X)} of seminorms on E(X), where

/f w)dp for fe E(X)
(see [22, § 4]). It is known that (see [22, Theorem 4.3, Theorem 4.4]):
o] (B(X), M(X", X)) = [o](E, M) (1)
and
(E(X), [o[(E(X), M(X", X)))" = {F,: g€ M(X",X)}. (2)

We shall need the following technical result.

Proposition 1.3. Let E be an ideal of L° and let M be ideal of E' with supp M = ().
Then for a subset H of E(X) the following statements are equivalent:

(i) H iso(E(X), M(X*, X))-bounded.

(i) H is|o|(E(X), M(X*, X))-bounded.

(iii) H is |o|(E, M)-bounded.

(w) H is o(E, M)-bounded.

Proof. (i)<(ii) In view of (2) it follows from the Mackey theorem (see [31, Theo-
rem 8.4.1])

(1)=(i17) Assume that H is |o|(E(X), M(X*, X))-bounded and let v € M. Then for
g =v® x}, where z} € Sx«, we get

sup/f du—sup/f o(w)|dp < oo.

fed fed

This means that H is |o|(E, M)-bounded.
(iii)=(ii) Assume that H is o(E, M)-bounded, and let g € M(X*, X). Then 9(g) € M,

SO

sup/f w)dp < oo.

feHd

(1ii)<(iv) It is obvious, because (F,|o|(E, M))* = (E,o(E, M))* (see [2, Theorem 6.6]).
[

2. Conditional weak compactness in vector-valued function spaces

H. Benabdellah and C. Castaing [4] employing M. Talagrand’s result about a “parame-
trized version” of H. P. Rosenthal’s £*-theorem obtained the following characterization of
conditionally weakly compact sets in L*(X).
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Theorem 2.1 ([4, Theorem 2.2]). Let (2, %, 1) be a finite measure space and X be
a Banach space. For a norm bounded subset H of L*(X) the following statements are
equivalent:

(i)  H is conditionally weakly compact.

(i) (a) H is uniformly integrable in L',
(b) given any sequence (f,) in H there ezists a sequence (h,) with h, € conv{f :
k > n} such that (h,(w)) is weakly Cauchy in X for a.e. w € €.

Now, by making use of Theorem 2.1 we are ready to state our main result.

Theorem 2.2. Let E be an ideal of L°, M be an ideal of E' with supp M = Q and let X
be a Banach space. Then for a subset H of E(X) the following statements are equivalent:

(i) H is conditionally o(E(X), M(X*, X))-compact.
(i) a) The set H is conditionally o(E, M)-compact.
b) for each subset A € X with xa € M and each sequence (f,) in H there is
a sequence (hZ) with h?t € conv{xafy : k > n} such that (h2(w)) is weakly
Cauchy in X for a.e. w € A.

Proof. (i)=(ii) Assertion (a) follows from [24, Theorem 2.3]. It is easy to observe that
H is o(E(X), M(X*, X))-bounded, so by Proposition 1.3 H is o(E, M)-bounded. Let

A € Xy with x4 € M. Hence sup;y | Flw)xa(w)dp < oo. Thus H, is a norm bounded
subset of LY (X).

We shall now show that H, is conditionally o(LY(X), LY (X*, X))-compact. Indeed,
let (fn) be a sequence in H. Then there is a o(E(X), M(X*, X))-Cauchy subsequence
(fe,) of (fn). Let g € L¥(X*, X) and let ¢'(w) = g(w) for w € A and ¢'(w) = 0
for w € 2\ A. Choose a weak*-measurable function ¢(-) in g such that the function
llg()||x+ is measurable. Then ||g(w)|x+ < ¢ for some ¢ > 0 and a.e. w € A. Hence
Ilg" (W)l x+ < exalw) for ae. w € Q, so [|¢'(+)||x+ € M, because x4 € M. It means that
g € M(X*, X). Since

/ (o @), g(w)) dps = / (@), /(@) du
A Q

and lim,, [o,(fr, (w), ¢'(w)) du exists, we obtain that (xaf,) is a o(LL(X), LY (X*, X))-
Cauchy sequence in L4 (X). Thus in view of Theorem 2.1 there is a sequence (k') with
ht € conv{xafy : k> n} for n € N such that (h(w)) is weakly Cauchy in X for a.e.
we A

(i1)=(¢) Since supp M = (2, there is a sequence (£2,,,) in 3 such that 2, T Q and xq,, €
M for all m € N (see [32, Theorem 86.2]). Hence for m € N we get supscp [, flw)dp =
Cm < 00, 50 {Xq,.f: f € H}is a norm bounded subset of Lg, (X) and by (a) the set
{xa,f: feH}in Ly, is uniformly integrable (see Proposition 1.1). Thus in view of (b)

and making use of Theorem 2.1 we conclude that for each m € N, {xq, f: f € H} isa
conditionally o(L{, (X), L& (X*, X))-compact subset of L{, (X).

Let (f,) be asequence in H. In view of the above observation there is a o(L¢, (X), L (X*,
X))-Cauchy subsequence (xq, fr1) of (xo,fn). Next, there is a o(Lg, (X), L (X*, X))-
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Cauchy subsequence (xq,fr2) of (xa,fr1). It follows that the diagonal sequence (fin)
has the property that for each m € N, (xq,,fin) is a o(Lg, (X), Ly (X*, X))-Cauchy
sequence.

Let h, = fin for n € N. We shall now show that (h,) is a o(E(X), M(X*, X))-Cauchy
sequence. Indeed, let g € M(X*, X). Choose a weak*-measurable function g() in g such
that the function ||g(+)||x+ is measurable. For n € N let

gw) ifw e Q,and ||g(w)]x < n,
gn(w) =

0 elsewhere.

Clearly g, € L (X*, X). By (a), given € > 0 there exist m, € N and § > 0 such that

x-dp <

X* d:u <z (3>

ol M
ool ™

n

ww [ @) and sup [ F)lle)

for each A € ¥ with u(A) < 4. For n = ¢/(8¢p,) let

By ={weQp,: [[g(w) = gn(w)]

x> 1}

It is easy to observe that B, | 0, so u(B,) — 0. Choose n, € N with n, > m, such that
w(By,) < 0. Then by (3) we get

mmé7wwwwudu§ (4)

n

ool M

Hence, by (4) for n € N we get

’/m (ha(w), g(w) —gno(w))du‘ é/ T ()| 9(w) = gn. ()]

Qing

pw+/ @) 19(0) — g ()]
Qo ~Bng

x+dp

g‘é?mew—%WM x-dp (5)

g/'hwww\

no

~ 5 € €

d B (w)dp < = S

Since (xa,,, hn) is & O'(L%lmo (X), L, (X, X))-Cauchy sequence and xq,,, gn, € L, (X,
X) there exists n; € N such that for n,n’ > n; we have:

€

[ o) = bt g n ] < 3 )

W

For n,n’ € N we have

[ 0= st
< )/Q\Qmo<hn(w) —hn/(w),g(w»du\ +\ /Q - (@) — o (), g(w)) dp
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Using (3) for n,n’ € N we get:

‘ /Q\Qm {hn(w) = ho (W), g(w)) d/l‘

< [ R@ls@lsdit [ Ra@lg)lx- da (")
ONQmg QN

< S4E_¢

- 8 8 4

Moreover, by (5) and (6) for n,n’ > n; we get:

/Q () = (), gl))
< / (@) = B (@), 9(&0) — g (w0 du’+‘/ (@), Gno (w ))du’
®)
< [ ). 0) - e dn + / (o (). () = g, () dﬂ\
+ /Q (A (@) = P (@), G, (w du\ 1Titic 25'

At last, using (7) and (8) for n,n’ > ny we have:

e 3
d‘ EiE
’/ (@) g(w))duf < 747

Thus H is conditionally o(E(X), M(X*, X))-compact, as desired. O

Recall that a normed space X is said to be almost reflexive if every norm-bounded subset
of X is conditionally weakly compact (see [11]). The fundamental ¢!-Rosenthal theorem
[27] says that a Banach space X is almost reflexive if and only if it contains no isomorphic
copy of £!. J. Bourgain [5] and M. Talagrand [29] have studied the relationship between
conditional weak compactness and uniform integrability in L'(X) in terms of the presence
of isomorphic copies of ¢! in X.

Now, using [5, Corollary 9] and Theorem 2.2 we are in position to present a char-
acterization of the almost reflexivity of a Banach space X in terms of conditionally
o(E(X), M(X*, X))-compact subsets of E(X) (see [1, Theorem 2.6]).

Corollary 2.3. Let E be an ideal of L°, M an ideal of E' with supp M = 0, and let X

be a Banach space. Then the following statements are equivalent:

(i) X is almost reflexive.

(i)  Every subset H of E(X) such that the set H is conditionally o(E, M)-compact is
conditionally o(E(X), M (X*, X))-compact.

Proof. (i)=(ii) Assume that X is almost reflexive, and let H be a subset of E(X) such
that H is a conditionally o(E, M)-compact subset of E. Let A € Y with x4 € M and
(fn) asequence of H. The set {x Afn :n > 1} is bounded in LY. By Levin theorem, there



456 M. Nowak / Conditional and Relative Weak Compactness in Vector-Valued ...

exist a sequence of convex combination h, = S0 Aty af; (with A7 > 0, SN An — 1)

No \n
‘Zi:n Af(xafi)(w)
n > 1, is bounded in X for almost every w. Now we have to use almost reflexivity of X
for this sequence and conclude by Theorem 2.2.

(17)=(1) Assume that (ii) holds. We shall show that the unit ball By is conditionally
weakly compact. Indeed, let (z,,) be a sequence in By. Given a fixed u € E* ~ {0} let
us put h, =u®x, forn € N. Let H ={u®x: x € Bx}. Making use of Proposition 1.1

such that h,(w) converges for almost every w. Hence the sequence

b

it is easy to verify that the set H is conditionally o(E, M)-compact. Hence by (ii) there
exists a o(F(X), M(X*, X))-Cauchy subsequence (hy, ) of (hy,). Choose 0 < v, € M such
that [, u(w)ve(w)dpu = 1. Then v, ® 2* € M(X*, X) for each z* € X*, and

r*(Tg,) = / u(w)vo(w)z* (zg,) du = Fy g (u @ z5,) — a € R.
Q
This means that (zy, ) is a weakly Cauchy sequence in X. Thus X is almost reflexive. [

3. Weak sequential compactness in vector-valued function spaces

A. Ulger [30] obtained a characterization of relatively weakly compact subsets H of L' (X))
for a general Banach space X and a finite measure space (that are norm bounded in
L>*(X)) in terms of “convex compactness” i.e., of drawing convex combinations out of
“tails” of sequences (f,) in H. Next, J. Diestel, W. Ruess and W. Schachermayer [15]
remowed the restriction of L>°(X)-boundedness of a subset H of L'(X) and obtained the
following result:

Theorem 3.1 ([15, Theorem 2.1]). Let (2, %, 1) be a finite measure space and X be
a Banach space. For a norm bounded subset H of L'(X) the following statements are
equivalent:

(i)  H is relatively weakly compact.

(i) (a) H is uniformly integrable in L',
(b) given any sequence (f,) in H there exists a sequence (h,) with h, € conv{fy :
k > n} such that (h,(w)) is weakly convergent in X for a.e. w € €.

The present author [23] found a criterion for relative o(E(X), E(X); )-compactness in a
Kothe-Bochner space E(X) whenever a Banach function space E (over a finite measure
space) is such that L>® C E C L' and the inclusion maps are continuous.

In this section by making use of Theorem 3.1 we characterize relatively o(FE(X),[)-
sequentially compact subsets of E(X) whenever X is a general Banach space, E is an
ideal of L° (over a o-finite measure space) and [ is an ideal of E(X); separating the
points of E(X).

n

The following version of the Eberlein-Smulian theorem for the locally convex space (E(X),
o(E(X), M(X*, X))) will be needed.

Theorem 3.2. Let E be an ideal of L°, M an ideal of E' with supp M = Q, and let X
be a Banach space. Then for a subset H of E(X) the following statements are equivalent:

(i)  H is relatively o(E(X), M(X*, X))-sequentially compact.
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(ii) H is relatively o(E(X), M (X*, X))-countably compact.

Moreover, if the absolute weak topology |o|(E, M) has the Levy property, then the state-
ments (i)—(ii) are equivalent to the following:

(#i) H is relatively o(E(X), M(X*, X))-compact.

Proof. (i)<(ii) It follows from [22, Theorem 4.8].

(i1)<(ii7) Since |o|(E, M) is a Lebesgue, Levy topology on E, the space (E,|o|(E, M))
is complete (see [2, Theorem 22.2]). Making use of [7, Theorem 3] we obtain that the
space (E(X),|o|(E, M)) is also complete. On the other hand, in view of (1) and (2) we
see that (E(X),|o|(E,M))* = (E(X),|o|(E(X), M(X*, X)))* = Iy. Hence in view of
[18, Proposition 2] we conclude that (ii)<(i2i) holds. O

Since LY(X)* ={F,: g€ L™ (X*, X)}, aset H in L'(X) is relatively weakly compact if
and only if it is relatively o(L'(X), L™ (X*, X))-sequentially compact. Moreover, we will
need the following identity (see [25, Theorem 1.1}):

E"(X) = {f e LO(X) : /

Q(f(cu),g(u))) dpu<oo forall ge E'(X*)}. (9)

Note that the absolute weak topology |o|(E, M) on E is a o-Levy topology if and only if
the space (E,o(FE, M)) is sequentially complete (see [2, Theorem 20.26]). It follows that
then E is perfect, i.e., E = E” (see [Proposition 1.2]).

It is known that for |o|(E, M) the o-Levy property and the Levy property coincide (see
[16, Proposition 3.2]).

Now we are is position to state our main result.

Theorem 3.3. Let E be an ideal of L°, M an ideal of E' with supp M = Q, and let X be
a Banach space. Assume that the absolute weak topology |o|(E, M) on E has the o-Levy
property. Then for a subset H of E(X) the following statements are equivalent:

(i)  H is relatively o(E(X), M(X*, X))-sequentially compact.
(i) (a) H is relatively o(E, M)-sequentially compact.
(b) for each A € ¥y with x4 € M and each sequence (f,) in H there is a sequence
(hZY) with hZt € conv{fy : k > n} such that (h2(w)) is weakly convergent in X
for a.e. w € A.
(@i) H is relatively o(E(X), M(X*, X))-compact.
(i) H is relatively o(E(X), M(X*, X))-countably compact.

Proof. (i)=(ii) Assume that H is relatively o(E(X), M (X*, X))-sequentially compact.
Since H is conditionally o(FE(X), M(X*, X))-compact and the space (E,o(FE, M)) is se-
quentially complete, in view of Theorem 2.2 H is relatively o(E, M )-sequentially compact,
i.e., (a) holds.

Now assume that A € ¥y with y4 € M. Then sup;cy [, Fflw)dp < oo, because H is
o(E, M)-bounded (see Proposition 1.2). One can observe that the subset {xaf : f €
H} of LY (X) is relatively o(LY(X), L} (X*, X))-sequentially compact. In fact, let g €
L™ (X*,X), and choose a function g(-) in g such that the scalar function ||g(-)|x- is
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measurable. Hence y4(w)||lg(w)|lx+ < c¢xa(w) p-a.e. for some ¢ > 0. It follows that
Xag € M(X*, X), because x4 € M. This means that the set {xaf : f € H} is relatively
weakly compact in LY(X), so by Theorem 3.2 condition (b) holds.

(11)=-(7) Assume that (zii) holds and let (f,,) be a sequence in H. Then there is a pairwise
disjoint sequence (£2,,,) in X such that xq,, € M for m € N and |J>_, Q,,, = Q (see [20,

Corollary 4.3.2]). Given m € N we have sup, [, folw)dp < 00, s0 { X, fa:n €N} is
a norm bounded subset of L¢, (X). Since xq,, € M, in view of (a) and Proposition 1.1 for

each m € N the subset { Xq,, foineN } of L¢, is uniformly integrable. Hence by The-
orem 3.1 for each m € N the set {xq,, fn : n € N} is relatively o(L{, (X),Lg (X* X))-
sequentially compact. Hence by the diagonal process we can extract a subsequence (h,,)
of (f,) such that for each m € N there is fq,, € L{, (X) such that

Xanhn — fa, for o(Ly (X),L (X*,X)). (10)
Define a function f :Q — X by setting f(w) = fq,, (w) for w € Q,, ie., xa,.f = fa,.

for all m € N. Then f € L°(X) and we shall now show that f € E(X) and h,, — f for
o(E(X), M(X*, X))

To show that f € E(X), in view of (9) and the perfectness of E it is enough to prove that
/(f(w),g(w)) du < oo forall ge E'(XY).
Q

Let B, =, € for m e N. Then B,, T Q and xq, € M. Then from (10) it easily
follows that for each m € N

[ee]

X — xo, f Tor o(Ly, (X).L5, (X", X)). (1)
Let g € M(X*) and for m € N let us put

g(w) ifwe B, and ||g(w)||x+ < m,
gm(w) =

0 elsewhere.

Then ||gm(w) — g(w)||x+ — 0 p-a.e. and g, € M(X*). Given m € N by Sp_(X*) we
denote the set of all simple functions of the form:

k

*

S = E X4, ®T;,
i=1

where A; € B,,NY, z; € X*, k€ N. Making use of (11) one can see that for each
s € Sgp,, (X*) we have

/ (), () dpt — / (), 5()) d,
Q Q

SO

s du‘ ~lim

o) sw) du‘ <, [ o) 50) i < o0
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For s € Sp,,(X*) define a measure v, : ¥ — R by

vo(A) = A(f(w),s(w))du forall Ac .

Then

Q) = /| )l dp

< dsup s [vs(A)] < 4sup yen(sup, / (@) 3(w) dp) (12)
A

= 4supn/ hp(w) s(w)dp < oo.
0

Given m € N one can chose a sequence (s}*) in Sp,, (X*) such that ||s7*(w)—gm(w)|

and [|si"(w)]lx= < [lgm(w)]
g(w)) p-a.e., by the Fatou lemma we get

X * —)O
k

x+ pra.e. on §2. Moreover, since lim (f(w), gm(w)) = (f(w),

Jol(f w))|dp < lim mfo , gm(w))| dps. (13)

On the other hand, for each m € N, in view of the Fatou lemma and (12) we have

/| whldp < hm1nf/| (W), spt(w))| du

< hmlnf 4supn/hn Spi(w) dp)
K (14)

< hmlnf 4supn/hn w)dp)
Q

— dsup, / () Gon() dp

Hence, by (13) and (14) we get

/| w)dp < hmlnf (4sup, | hn(w Ydu)

< hmmf (4 sup,,

b\»:o\

Tonl) F(w) i)
_ 4supn/ o) §(w) d < o0,

and this proves that f € E(X), as desired.

To show that h, — f for o(E(X), M(X* X)), let g € M(X*, X) be given. Choose
a weak*-measurable function in g(-) in g such that the scalar function ||g(-)||x+ is mea-
surable and its equivalence class in L° belongs to M. Setting A,, = Q0 \ B,, we see that
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Am \“ (). Let € > 0 be given. Then by (a) and Proposition 1.1 one can choose m, € N
and ¢ > 0 such that for each A € 3 with pu(A) < we have

3

and sup, [ a(o)lg@)le-de< 5. (15)
A

1 ™

n

sup / Ton(@) | 9(@) - dpt <
QN Bm,

and

| Fels@lsass md [ fo) @l de< 5 09

> M

For n € N let us put

X*Snv

In(w) =

g(w) ifwe B, and ||g(w)|
0 elsewhere.

It is seen that [g,(w)|x- <nXp, (w) for weQ, so g, €Ly (X*,X)). We have
sup,, [5 Tn(w) dpt = d, for some dy,, >0 and Is. f(w)dp = d for some d > 0. For

n =¢/(12 max(d,d,,,)) and n € N let us put
Dy ={w € B, : l9(w) = gn(@)llx+ = 0} -

It is easy to see that D, | 0, so u(D,) — 0. Choose n, € N with n, > m, such that
p(Dy,) < 6. Then by (14) and (15) we get

£ ~ £
x-dp < 5 and fFlg@lx-du < 5. (A7)
Do,

sup, /D on(@)llg (@)

Hence, by (17) we have

| / (). 9() = g, ()) dn| < / Fin(@) [|g(w) = G (@)l]x+ dps

B,
< [ Bls) - @it [ Ba@)loe) - gl du (15)
< [ R@lg@lx-dun+n [ Fa@)dp < 55+ oot = 5
= Jp NG G =09 T 1o, T 6
Similarly, by (17) we get
9
[t 9 = g an| < 5. (19)

Since g,, € Ly, (X*, X), using (11) one can choose n; € N such that for n > n,

g () = (), g, (@) dia| < 2. (20)
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Hence, using (18), (19) and (20) for n > ny we get

YCCE f<w>,g<w>>du\ <| [ - f<w>,gno<w>>du\
+‘/m — g, (w dp’+‘/m = gn, (@) du| (21)

< = g
- 6+6+6 2

Moreover, using (15) and (16) for every n € N we have

‘ /Q\Bm (n(w) = f(w), g(w)) d#’

< / o) 19|+ i+ / Flg()llx- dy (22)
Q\Bmo Q\Bmo
< g g . 13

At last, using (21) and (22) for n > ny we get

‘/Q<hn(w) - f(w)7g(w)>dlz’ < ’/Q\B (hn(w) — F(W), g(w)) du

E €
[ ) - S g an] < S+ 5 -
B’mo
Thus the proof is complete.
(1)< (tii)<(iv) It follows from Theorem 3.2. O

As a consequence of Theorem 3.3 we obtain a characterization of reflexivity of a Banach
space X in terms of relatively o(E(X), M (X*, X))-sequentially compact subsets of E(X).

Corollary 3.4. Let E be an ideal of L°, M an ideal of E' with supp M = Q and let X be
a Banach space. Assume that the absolute weak topology |o|(E, M) on E has the o-Levy
property. Then the following statements are equivalent:

(i) X is reflexive.

(i)  BEvery subset H of E(X) such that the set H is relatively o(E, M)-sequentially com-
pact is relatively o(E(X), M(X*, X))-sequentially compact.

Proof. (i)=(ii) Assume that Xis reflexive, i.e., X is almost reflexive and weakly sequen-
tially complete. Let H be a subset of E(X) such that H is relatively o (E, M)-sequentially
compact in E. Hence in view of Corollary 2.3 H is conditionally o(E(X), M (X*, X))-

compact. Combining Theorem 2.2 and Theorem 3.3 we obtain that H is relatively
o(E(X), M(X*, X))-sequentially compact.

(73)=-(7) Assume that (i7) holds. It is enough to show that the unit ball By is weakly
sequentially compact (see [31, Chap. 10.2]). Indeed, let (z,) be a sequence in Bx. Given
a fixed u € ET ~ {0} let us put h, = u®ax, forn € N. Let H = {u®x, : n € N}.
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Using Proposition 1.1 we easily obtain that H is relatively o(E, M)-sequentially compact.
Hence by (i7) there exists a subsequence (hy, ) of (h,) and h, € E(X) such that hy, — h,
for o(E(X), M(X*,X)). Choose 0 < v, € M such that [,u(w)vs(w)dp = 1. Then
v, ® z* € M(X*, X) for each x* € X* and

i (2y,) = / w(w)vo(w)a (zx, ) dp

= P (4® 3,)— Foor (ho) = / (o), vo(w)z") dp

_ /Q 2 (o (@)ho(w)) dp = 2* /Q (o) d).

Hence zj, — z, for o(X, X*), where z, = [, vo(w)ho(w)dp € Bx. This means that X
is reflexive. N
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