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1. Introduction and notation

Given a convex subset C of Rn and a continuously differentiable monotone map F :
C → Rn, then a twice continuously differentiable convex function f : C → R exists such
that F = ∇f if and only if the matrix F ′(x) is symmetric and positive semidefinite for
all x ∈ C. The function f is uniquely defined up to an additive constant. The vector
(∇f(x),−1) of Rn+1 generates the normal cone at the point (x, f(x)) to the epigraph of
f . Moreover, the vector ∇f(x) of Rn generates the normal cone at x to the level set
S(x) = {x′ ∈ C : f(x′) ≤ f(x)}. Actually, the symmetry of the matrices F ′(x) ensures
the existence of f while the monotonicity of F gives the convexity of f and, thereby, its
epigraph and its level sets.

The problem considered in the paper is as follows: given a convex subset C of Rn and a
continuously differentiable pseudomonotone map F : C → Rn not vanishing on C, find a
differentiable function f : C → R such that

‖∇f(x)‖−1∇f(x) = ‖F (x)‖−1F (x) ∀x ∈ C.

It is easy to see that if a function like this f exists, it is pseudoconvex and uniquely
defined up to a scalarization: if f1 and f2 respond to the problem, then there exists
k : f1(C) → f2(C) differentiable such that k′(t) > 0 for all t ∈ f1(C) and f2(x) = k(f1(x))
for all x ∈ C. Also, as in the previous case, ∇f(x) generates the normal cone at x to the
convex level set S(x), but there are no properties concerned with the epigraph. We shall
see that a symmetry property is required on the matrices F ′(x), not on the whole space,
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but on the orthogonal subspace to F (x). Similarly to the previous case, this symmetry
property ensures the local existence of f while the pseudomonotonicity of F gives the
pseudoconvexity of f and, thereby, the convexity of its level sets.

The paper is organized as follows. In Section 2, we give a brief background on generalized
convexity and generalized monotonicity. Two local results are given in Section 3. Fi-
nally, in the last section, we apply the approach to the differentiable case of the revealed
preferences problem in consumer theory.

Now, a few words on the notation in use in the paper.

The transposed matrix of a matrix A is denoted by At, a vector of Rn is considered as a
column matrix, i.e., as a n × 1 matrix. I denotes the n × n identity matrix. The inner
product of two vectors x, y ∈ Rn is denoted by xty or 〈x, y〉, the euclidean norm of x by
‖x‖. The gradient at a point x of a differentiable function f : Rn → R is denoted by the
vector ∇f(x), the Hessian by the matrix ∇2f(x). For commodity, we write ∇tf(x) for
the 1× n matrix [∇f(x)]t and, if F : Rn → R , F t(x) for the 1× n matrix [F (x)]t.

Given two vectors x, y ∈ Rn, x ≤ y (x < y) means xi ≤ yi (xi < yi) for all i. A real
function u is said to be nondecreasing if u(x) ≤ u(y) whenever x ≤ y and increasing if
u(x) < u(y) whenever x ≤ y with x 6= y.

2. A background of generalized convexity

Given C ⊂ Rn and f : C → R , let us define

epi(f) = {(x, λ) ∈ C × R : f(x) ≤ λ}

and, for all x ∈ C,
S(x) = {y ∈ C : f(y) ≤ f(x)}.

Assume that C is convex. f is said to be convex on C if its epigraph epi(f) is convex,
quasiconvex on C if all the level sets S(x), x ∈ C, are convex. Assume now that f is
differentiable on C, then f is quasiconvex on C if and only if

[x, y ∈ C and f(y) ≤ f(x)] =⇒ (y − x)t∇f(x) ≤ 0. (1)

When f is quasiconvex, ∇f(a) = 0 does not necessarily imply that f has a local (and, a
fortiori, global) minimum at a. In order to remedy this deficiency, a slight modification
of the condition leads to the following definition: a differentiable function f on C is said
to be pseudoconvex on C if

[x, y ∈ C and f(y) < f(x)] =⇒ (y − x)t∇f(x) < 0.

A differentiable convex function is pseudoconvex, a differentiable pseudoconvex function
is quasiconvex. Conversely, it is known that if C is open, f differentiable and quasiconvex
on C and ∇f does not vanish on C, then, f is pseudoconvex on C.

f is said to be strictly quasiconvex (strictly pseudoconvex) on C if quasiconvex (pseudo-
convex) on C and

x, y ∈ C, x 6= y, t ∈ (0, 1) and f(x) = f(y) =⇒ f(tx+ (1− t)y) < f(x).

A second order necessary and sufficient condition for pseudoconvexity is as follows.
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Theorem 2.1. Assume that C is an open convex subset of Rn and f : C → R is twice
continuously differentiable on C. Assume, in addition, that f has a local minimum at any
x ∈ C such that ∇f(x) = 0. Then, f is pseudoconvex on C if and only if

x ∈ C, h ∈ Rn, ht∇f(x) = 0 =⇒ ht∇2f(x)h ≥ 0.

Related to this result, we have the following sufficient condition for strict pseudoconvexity.

Corollary 2.2. Assume that C is an open convex subset of Rn and f : C → R is twice
continuously differentiable on C. Assume that

[x ∈ C, h ∈ Rn, h 6= 0 and ht∇f(x) = 0] =⇒ ht∇2f(x)h > 0.

Then, f is strictly pseudoconvex on C.

A function f : C → R , with C ⊂ Rn convex, is said to be convexifiable (strongly convex-
ifiable) on C if there exists a continuous strictly increasing function k : f(C) → R such
that k ◦f is convex (strongly convex). In connection with Theorem 2.1 and Corollary 2.2,
we have the following sufficient condition for convexifiability.

Proposition 2.3. Assume that f is twice continuously differentiable in a neighborhood
of x̄ ∈ Rn and the following condition holds:

[h ∈ Rn, h 6= 0 and ht∇f(x̄) = 0] =⇒ ht∇2f(x̄)h > 0.

Then, f is strongly convexifiable in a neighborhood of x̄.

Proof. It follows from the Finsler-Debreu lemma [10, 9] that there exists r > 0 and α > 0
such that

ht[∇2f(x̄) + r∇f(x̄)∇tf(x̄)]h ≥ 2α‖h‖2, ∀h ∈ Rn.

Then, on a convex compact neighborhood V of x̄, it holds that

ht[∇2f(x) + r∇f(x)∇tf(x)]h ≥ α‖h‖2, ∀h ∈ Rn, ∀x ∈ V.

Set g(x) = exp(rf(x)). Then,

∇2g(x) = rg(x)[∇2f(x) + r∇f(x)∇tf(x)].

It follows that g is strongly convex on V .

A map F : C → Rn is said to be monotone on C if

〈F (x1), x2 − x1〉 ≤ 〈F (x2), x2 − x1〉, ∀x1, x2 ∈ C

and pseudomonotone on C if

x1, x2 ∈ C and 0 ≤ 〈F (x1), x2 − x1〉 =⇒ 0 ≤ 〈F (x2), x2 − x1〉.

Assume that F is continuously differentiable on the open convex set C. Then, F is
monotone on C if and only if, for all x ∈ C, the matrix F ′(x) is positive semidefinite. If
F does not vanish on C, it is pseudomonotone on C if and only if for all x ∈ C,

h ∈ Rn, 〈F (x), h〉 = 0 =⇒ 〈F ′(x)h, h〉 ≥ 0.
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A differentiable function f : C → R is convex (pseudoconvex) if and only if its gradient
∇f is monotone (pseudomonotone).

For a text book on generalized convexity and generalized monotonicity, see [2, 17]. Sur-
veys on the first and second order characterizations of generalized convex functions and
generalized monotonicity of maps can be found in [8, 9].

3. Two local results

In this section, e ∈ Rn is such that ‖e‖ = 1 and C is a compact convex neighborhood of
x̄ ∈ Rn.

Assume that f is a twice continuously differentiable function on C and et∇f(x) > 0 for
all x ∈ C. Let us define for all x ∈ C

F (x) =
∇f(x)

et∇f(x)
. (2)

Clearly etF (x) = F t(x)e = 1.

This section adresses the inverse problem: given F : C → Rn continuously differentiable
such that etF (x) = F t(x)e = 1 for all x ∈ C, find f : C → R twice continuously
differentiable such that (2) holds. In order to show the pertinence of the assumptions of
our theorem, we look at some necessary assumptions. Assume that f exists, then

(I − F (x)et)2 = I − F (x)et, (I − eF t(x))2 = I − eF t(x),

and F ′(x) = (I − F (x)et)
∇2f(x)

et∇f(x)
.

Hence,

F ′(x)(I − eF t(x)) = (I − F (x)et)
∇2f(x)

et∇f(x)
(I − eF t(x)) (3)

= (I − F (x)et)F ′(x)(I − eF t(x)).

For simplicity, we set
˜F (x) = F ′(x)(I − eF t(x)).

It follows that, for all x ∈ C, the matrix ˜F (x) is symmetric. Also, for all h ∈ Rn,

ht
˜F (x)h =

1

et∇f(x)
kt∇2f(x)k with k = (I − eF t(x))h.

Assume that f is pseudoconvex on C. Since by construction

∇tf(x)k = ∇tf(x)(I − eF t(x))h = 0,

Theorem 2.1 implies ht
˜F (x)h ≥ 0 for all h ∈ Rn and thereby the matrix ˜F (x) is positive

semidefinite. In line with these observations, our assumptions are:

(F1) The map F is continuously differentiable on C and etF (x) = 1 for all x ∈ C.

(F2) The matrix ˜F (x) is symmetric for any x ∈ C.
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If the pseudoconvexity of f is wished, the additional assumption is:

(F3) The matrix ˜F (x) is positive semidefinite for any x ∈ C.

Finally, if we wish the convexity of f , (F3) is strengthened in:

(F4) The matrix ˜F (x) is positive definite for any x ∈ C.

Assumption (F2) ((F3), (F4)) means that the matrix F ′(x) is symmetric (positive semidef-
inite, positive definite) on the linear subspace orthogonal to the vector F (x).

Our first theorem is as follows.

Theorem 3.1. Assume that assumptions (F1) and (F2) hold. Then, there exists a neigh-
borhood D of x̄ contained in C and a continuously differentiable f : D → R such that
F (x) = (et∇f(x))−1∇f(x) for all x ∈ D. If, in addition, (F3) holds, then f is pseudo-
convex on a convex neighborhood of x̄.

Proof. a) Outline: the proof being rather long and technical, we outline the main ideas
behind it: Assume that f exists and we are given some n × (n − 1) matrix A such that
the n× n matrix (A, e) is orthogonal, i.e., (A, e)(A, e)t = I. For any vector x ∈ Rn, there
exists a uniquely defined vector (y, t) ∈ Rn−1 × R such that x = Ay − te. Let x̂ ∈ C and
λ = f(x̂). Then, by the implicit function theorem, there exists a neighborhood V = Y ×T

of x̂ = Aŷ−̂te such that, for x ∈ V , f(x) = λ if and only if x is of the form x = Ay−gλ(y)e
where gλ is a continuously differentiable function on Y such that, for all y ∈ Y ,

∇gλ(y) =
At∇f(x)

et∇f(x)
= AtF (x).

If, in addition, f is twice differentiable, then so is gλ and

∇2gλ(y) = AtF ′(x)(I − eF t(x))A = At
˜F (x)A.

It follows that gλ is convex when f is pseudoconvex.

The proof consists in building such functions gλ, next in constructing f finally in proving
that f solves the problem. This approach is borrowed from Samuelson [31] who considered
the case n = 2, a quite more easier case.

b) Preliminaries: Without loss of generality, we assume that x̄ = 0. Set

˜F (x) = F ′(x)(I − eF t(x)) = (I − F (x)et)F ′(x)(I − eF t(x)).

Then, it follows from (F2) that, for any x ∈ C, ˜F (x) is symmetric and, if (F3) holds,
˜F (x) is also positive semidefinite. Since C is compact and F is continuously differentiable
on C, the following constants are well defined

M = sup[ ‖x‖ : x ∈ C ],

K0 = sup[ ‖F (x) ‖ : x ∈ C ],

K1 = sup[ ‖x2 − x1‖−1‖F (x2)− F (x1)‖ : x1, x2 ∈ C, x2 6= x1 ],

K2 = sup[ 〈h, F ′(x)k〉 : x ∈ C, h, k ∈ Rn, ‖h‖ = ‖k‖ = 1 ].

For x1, x2 ∈ C, we define

ε(x1, x2) =

{

‖x2 − x1‖−1[F (x2)− F (x1)− F ′(x1)(x2 − x1)] if x1 6= x2,
0 if x1 = x2.
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This function ε is continuous on C × C. For r > 0, define

ε̃(r) = sup[ ‖ε(x1, x2)‖ : x1, x2 ∈ C, ‖x2 − x1‖ ≤ r ].

Then ε̃(r) → 0 when r → 0.

It can be found a neighborhood Λ = [−λ̄, λ̄] ⊂ R of 0 and a convex compact neighborhood
Y ⊂ Rn−1 of 0 such that

(y, λ) ∈ Y × Λ and |t| ≤ K0‖Ay‖ =⇒ Ay − (λ+ t)e ∈ C. (4)

c) In this part of the proof, we construct an auxiliary function g. Given (y, λ) ∈ Y × Λ,
we consider the classical ordinary differential equation problem:

Find gy,λ : [0, 1] → R differentiable such that gy,λ(0) = λ and

g′y,λ(t) = (Ay)tF (tAy − gy,λ(t)e) for t > 0. (5)

Since tAy − gy,λ(t)e = −λe ∈ int(C) when t = 0 and the map F is continuous on C,
gy,λ(t) is well defined and (tAy − gy,λ(t)e) ∈ C for small positive values of t. Moreover,

|g′y,λ(t)| ≤ ‖F (tAy − gy,λ(t)e)‖ ‖Ay‖ ≤ K0 ‖Ay‖.

Hence, we deduce from (4) that, for all (t, y, λ) ∈ [0, 1]×Y ×Λ, gy,λ(t) is well defined and
tAy − gy,λ(t)e ∈ C. Set

g(t, y, λ) = gy,λ(t), and g̃(y, λ) = g(1, y, λ). (6)

By assumption, F is continuously differentiable, hence a classical result in the theory
of ordinary differential equation problems says that g is continuously differentiable on
[0, 1]×Y ×Λ and thereby g̃ is continuously differentiable on Y ×Λ. In the next two steps,
we shall give a constructive proof of the differentiability of g̃ and we shall compute its
gradient. Let us remark, beforehand, that

g′′y,λ(t) = (Ay)tF ′(tAy − gy,λ(t)e)(Ay − eg′y,λ(t))

= 〈Ay, ˜F (tAy − gy,λ(t)e)Ay〉.

d) We start with a Lipschitz property of g.

Let y, y + z ∈ Y and λ, λ+ µ ∈ Λ. For t ∈ [0, 1], let us define

α(t) = g(t, y + z, λ+ µ)− g(t, y, λ)− µ.

Then, in view of (5), α(0) = 0 and

α′(t) = 〈Ay, F (x2)− F (x1)〉+ 〈Az, F (x2)〉,

where, for simplification,

x2 = tA(y + z)− g(t, y + z, λ+ µ)e and x1 = tAy − g(t, y, λ)e.
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Then,

|α′(t)| ≤ MK1 ‖x2 − x1‖+K0‖Az‖,
|α′(t)| ≤ MK1 ‖tAz − α(t)e− µe‖+K0‖Az‖,
|α′(t)| ≤ (MK1 +K0)[ ‖Az‖+ |µ|] +MK1|α(t)|.

Let us consider the following associate ordinary differential equation problem:

Find u : [0, 1] → R such that u(0) = 0 and for all t ∈ [0, 1]

u′(t) = (MK1 +K0)(‖Az‖+ |µ|) +MK1u(t).

Then, for all t ∈ [0, 1],

|α(t)| ≤ u(t) ≤ MK1 +K0

MK1
(exp(MK1)− 1)(‖Az‖+ |µ|).

It follows that there exists L > 0 such that for all t ∈ [0, 1], y, y+ z ∈ Y and λ, λ+µ ∈ Λ,

|g(t, y + z, λ+ µ)− g(t, y, λ)| ≤ u(t) + |µ| ≤ L(‖Az‖+ |µ|). (L)

e) In this step, we prove that g̃ is differentiable on Y × Λ.

Let y, y + z ∈ Y and λ, λ+ µ ∈ Λ. For t ∈ [0, 1], let us define

β(t) = g(t, y + z, λ+ µ)− g(t, y, λ)− t〈Az, F (tAy − g(t, y, λ)e)〉.

Then β(0) = µ and

β′(t) = 〈A(y + z), F (x2)− F (x1)〉 − t〈Az, F ′(x1)[Ay − g′y,λ(t)e]〉,

= 〈Ay, F (x2)− F (x1)〉+ 〈Az, F (x2)− F (x1)〉 − t〈Az, ˜F (x1)Ay〉,

where, as previously,

x2 = tA(y + z)− g(t, y + z, λ+ µ)e and x1 = tAy − g(t, y, λ)e.

By assumption (F2), the matrix ˜F (x1) is symmetric, hence

〈Az, ˜F (x1)Ay〉 = 〈Ay, ˜F (x1)Az〉
= 〈Ay, F ′(x1)Az〉 − 〈Ay, F ′(x1)e〉〈F (x1), Az〉.

On the other hand,

x2 − x1 = tAz − g(t, y + z, λ+ µ)e+ g(t, y, λ)e

= tAz − t〈Az, F (x1)〉e− β(t)e

and

F (x2)− F (x1) = F ′(x1)(x2 − x1) + ‖x2 − x1‖ε(x1, x2)

= F ′(x1)[tAz − t〈Az, F (x1)〉e− β(t)e] + ‖x2 − x1‖ε(x1, x2).
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It follows that
β′(t) = −β(t)〈Ay, F ′(x1)e〉+ ξ(t, y, λ, z, µ),

where
ξ(t, y, λ, z, µ) = ‖x2 − x1‖〈Ay, ε(x1, x2)〉+ 〈Az, F (x2)− F (x1)〉.

Let us consider the ordinary differential equation problem:

Find γ : [0, 1] → R such that γ(0) = µ and for all t ∈ [0, 1]

γ′(t) = −γ(t)〈Ay, F ′(tAy − g(t, y, λ)e)e〉.

Then,

γ(t) = µ exp(h(t, y, λ)), where h(t, y, λ) = −
∫ t

0

〈Ay, F ′(sAy − g(s, y, λ)e)e〉ds.

It follows that β(0)− γ(0) = 0 and

β′(t)− γ′(t) = (β(t)− γ(t))〈Ay, F ′(tAy − g(t, y, λ)e)e〉+ ξ(t, y, λ, z, µ).

There exists K3 > 0 such that for all (t, y, λ) ∈ [0, 1]× Y × Λ,

|〈Ay, F ′(tAy − g(t, y, λ)e)e〉| ≤ K3.

On the other hand,

x2 − x1 = tAz − g(t, y + z, λ+ µ)e+ g(t, y, λ)e,

‖x2 − x1‖ ≤ ‖Az‖+ L(‖Az‖+ |µ|),
‖x2 − x1‖ ≤ (1 + L)(‖Az‖+ |µ|).

It results that there exists a function Ýε such that Ýε(s) → 0 when s → 0 and for all
(t, y, λ) ∈ [0, 1]× Y × Λ

|ξ(t, y, λ, z, µ)| ≤ (‖Az‖+ |µ|)Ýε(‖Az‖+ |µ|).

Let us consider the ordinary differential equation problem: Find δ : [0, 1] → R such that
δ(0) = 0 and for all t ∈ [0, 1]

δ′(t) = K3δ(t) + (‖Az‖+ |µ|)Ýε(‖Az‖+ |µ|).

Then, |β(t)− γ(t)| ≤ δ(t) for all t ∈ [0, 1]. Hence,

|β(t)− γ(t)| ≤ δ(t) ≤ δ(1) =
exp(K3)− 1

K3
(‖Az‖+ |µ|)Ýε(‖Az‖+ |µ|).

In particular, in view of (6), for t = 1,

|g̃(y + z, λ+ µ)− g̃(y, λ)− 〈G, (z, µ)〉| ≤ exp(K3)

K3
(‖Az‖+ |µ|)Ýε(‖Az‖+ |µ|),

where

G = (AtF (Ay − g̃(y, λ)e), exp(−
∫ 1

0

〈Ay, F ′(sAy − g(s, y, λ)e)e〉ds))t ∈ Rn.
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It follows that g̃ is continuously differentiable on Y × Λ, its gradient is

∇g̃(y, λ) = (AtF (Ay − g̃(y, λ)e), exp(−
∫ 1

0

〈Ay, F ′(sAy − g(s, y, λ)e)e〉ds))t.

For a fixed λ ∈ Λ, let us define

g̃λ(y) = g̃(y, λ) ∀ y ∈ Y.

Then g̃λ is twice continuously differentiable on Y and

∇2g̃λ(y) = At
˜F (Ay − g̃(y, λ)e)A. (7)

Hence, if (F3) holds, g̃λ is convex on Y .

f) In the last step, we construct the function f . Beforehand, let us define

D = {x = Ay − µe ∈ Rn : y ∈ Y, g̃(y,−λ̄) ≤ µ ≤ g̃(y, λ̄)}.

Then, D is a neighborhood of 0. Let us define H : (Y × R)× R → Y × R by

H(y, µ, λ) = g̃(y, λ)− µ, (y, λ) ∈ Y × Λ, µ ∈ R .

Remark that H ′
λ(y, λ, µ) = g̃′λ(y, λ) > 0. Hence, in view of the implicit function theorem,

there exists a continuously differentiable function f defined on D such that

[f(x) = λ, x = Ay − µe ∈ D] ⇐⇒ [g̃(y, λ) = µ, λ ∈ Λ].

It is clear that
∇f(x)

et∇f(x)
= F (x) ∀x ∈ D.

We have seen that if assumption (F3) holds, g̃λ is convex. Hence, since

g̃λ(y) = g̃(y, λ) ≤ µ ⇐⇒ f(Ay − µe) ≤ λ,

f is quasiconvex on some convex neighborhood ˜D ⊂ D of 0. Next, because ∇f does not

vanish on this neighborhood, f is also pseudoconvex on ˜D.

Remark 3.2. The theorem is local in the sense that the function f has been defined not
on the whole set C but on a neighborhood D of x̄ contained in C. Indeed, in order that
the points tAy − g(t, yλ)e, t ∈ [0, 1] stay in C, C has been reduced a first time with the
introduction of the set Y × Λ in part b) of the proof, a second time in part f) with the
introduction of D.

Corollary 3.3. Assume that assumptions (F1) to (F4) hold and F is twice continuously

differentiable. Then, there exists a convex neighborhood ˜D of x̄ and a strongly convex

function ˜f such that F (x) = (et∇ ˜f(x))−1∇ ˜f(x) holds on ˜D.

Proof. Take f and ˜D as constructed in the theorem. Then, ∇g̃ and ∇f are continuously

differentiable. Let x = Ay − µe ∈ ˜D and λ = f(x). Then,

ht∇f(x) = 0 ⇐⇒ (I − eF t(x))h = h.
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It follows from relation (3) and assumption (F4) that

ht∇f(x) = 0 =⇒ ht∇2f(x)h > 0 ∀h 6= 0.

Proposition 2.3 implies that, for r > 0 large enough, the function ˜f(x) = exp(rf(x)) is
strongly convex on a convex neighborhood of x̄.

Remark 3.4. Since gy,λ is the unique solution of problem (5), then it is also the unique
solution of the following problem:

Find fy,µ : [0, 1] → R differentiable such that fy,µ(1) = µ and

f ′
y,µ(t) = (Ay)tF (tAy − fy,µ(t)e) for t ∈ [0, 1], (8)

where µ = gλ(y) = gy,λ(1). It results that fy,µ(0) = λ. Hence,

f(Ay − µe) = fy,µ(0).

Next, we consider the case where we are given a continuously differentiable map N on a
compact neighborhood of x̄ with ‖N(x)‖ = 1 for all x ∈ C and our problem consists in
finding a (convex) neighborhood D ⊂ C of x̄ and a (pseudoconvex) differentiable function
f : D → R such that

N(x) =
∇f(x)

‖∇f(x)‖
, ∀ x ∈ D. (9)

Let us define the matrix

˜N(x) = N ′(x)(I −N(x)N t(x)).

Then, we consider the following assumptions:

(H1) The map N is continuously differentiable on C.

(H2) The matrix ˜N(x) is symmetric for any x ∈ C.

(H3) The matrix ˜N(x) is positive semidefinite for any x ∈ C.

(H4) The matrix ˜N(x) is positive definite for any x ∈ C.

The result, derived from Theorem 3.1, is as follows.

Theorem 3.5. Assume that assumptions (H1) and (H2) hold. Then, there exists a
neighborhood D of x̄ and a continuously differentiable f : D → R such that N(x) =

‖∇f(x)‖−1∇f(x) for all x ∈ D. If, in addition, (H3) holds, then f is pseudoconvex on
a convex neighborhood of x̄ and if (H1) to (H4) hold, then f can be chosen convex on an
appropriate neighborhood.

Proof. Take e = N(x̄) and reduce C to a compact neighborhood of x̄ on which etN(x) > 0
for all x in the neighborhood. Without loss of generality, we denote by C this restriction.
Let us define

F (x) =
N(x)

etN(x)
.

Then assumption (F1) holds. Next,

F ′(x) = (I − F (x)et)
N ′(x)

etN(x)
.
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Thus,

˜F (x) = (I − F (x)et)
N ′(x)

etN(x)
(I − eF t(x)).

It is easily seen that

I − eF t(x) = (I −N(x)N t(x))(I − eF t(x)).

From what we deduce that

˜F (x) = (I − F (x)et)
˜N(x)

etN(x)
(I − eF t(x)).

Then, assumption (H2) implies assumption (F2), assumption (H3) implies assumption
(F3) and finally assumption (H4) implies assumption (F4). Apply Theorem 3.1 to obtain
the function f .

4. The problem of revealed preferences

In economics, the situation when the behaviour of the consumer is described through a
utility function u is very convenient: the consumer determines his choice x by maximizing
u(x) on the commodity set G, subject to a budget constraint. Here, we assume that
G = Rn

+. Let Ýp ∈ Rn
+, Ýp 6= 0 be the vector of prices and w > 0 be the income of the

consumer. Then the problem of the consumer consists in

maximize u(x) subject to x ≥ 0 and Ýptx ≤ w.

Set p = w−1Ýp, then the problem becomes

v(p) = max [ u(x) : x ≥ 0, ptx ≤ 1].

Denote the set of optimal solutions of this problem by X(p). The multivalued map X is
called the demand correspondence, the function v the indirect utility function associated
to u. Under some reasonable conditions, u can be recovered from v via the minimization
problem:

u(x) = min [ v(p) : p ≥ 0, ptx ≤ 1].

In fact, the concept of utility is rather theorical since observations on the behaviour of
a consumer allow to know his choices (i.e., the demand correspondence X(p)), but not a
representation in terms of a utility function. Furthermore, if one utility function exists,
it is not uniquely defined since, given a utility function u and k : u(G) → R strictly
increasing, the function Ýu(x) = k(u(x)) describes the behaviour of the consumer as well.

Consequently, an important problem consists in constructing, when it is possible, a util-
ity function from the knowledge of the demand correspondence. This problem, known
as the problem of revealed preferences, has been given a special attention since the early
beginning of the theory of consumer. See, for instance, the pioneering works of Samuel-
son [28, 29], Houthakker [18], Little [15].

With reference to the previous sections, we consider the case when the demand correspon-
dence X is single-valued and continuously differentiable (the case when X is multivalued
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is the subject of another work [13]). Consequently, we write X(p) = {x(p)}. Note that
the problem is completely solved when n = 2 (see for instance Samuelson [31]), indeed
the problem reduces to a classical ordinary differential equation problem) and, for n > 2,
when the demand function x is analytic, with a proof based on exterior differential cal-
culus (see, e.g., Chiappori–Ekeland [3] and Ekeland [14]). The approach that we propose
here, close to that of [31], consists in constructing an indirect utility function associated
to the demand. Next, by duality, a direct utility function can be obtained.

Duality between direct and indirect utility functions has been actively investigated. See,
e.g., Roy [25], Lau [21], Diewert [11, 12], Sakai [27], Crouzeix [4]. Recent references are
Crouzeix [6] where the problem of differentiability of direct and indirect utility functions
is analyzed and Martinez-Legaz [22, 23] where a duality scheme is given with minimal
assumptions. Many other references can be found in the list of references of these papers.
For illustration, we have the following result due to Diewert [11]. Here K is the positive
orthant of Rn, i.e., K = {x ∈ Rn : xi > 0, ∀ i}.
Theorem 4.1. Let u : cl(K) → R be such that u is finite, continuous, quasiconcave and
nondecreasing on cl(K).

For p ∈ K, define
v(p) = sup[ u(x) : x ≥ 0, ptx ≤ 1].

Then, v is finite, continuous, quasiconvex and nonincreasing on K. Furthermore,

u(x) = inf[ v(p) : p ≥ 0, ptx ≤ 1].

Furthermore, in the differentiable case, we have the following result proved in [6].

Theorem 4.2. Let u : K → R. For all p ∈ K, let us define

v(p) = sup[ u(x) : x ≥ 0, ptx ≤ 1]. (10)

Denote the set of the optimal solutions of this problem by X(p). Assume that:

i) u is finite, strictly quasiconcave and continuously differentiable on K,

ii) ∇u(x) > 0 for all x ∈ K,

iii) X(p) ∩K 6= ∅ for all p ∈ K.

Then for all x ∈ K
u(x) = min[ v(p) : p ≥ 0, ptx ≤ 1]. (11)

Furthermore, denoting the set of the optimal solutions of this problem by P (x),

iv) v is finite, strictly quasiconvex and continuously differentiable on K,

v) ∇v(p) < 0 for all p ∈ K,

vi) P (x) ∩K 6= ∅ for all x ∈ K.

In this result, the duality is quite symmetric: under the assumptions u is strictly pseu-
doconcave on K and v is strictly pseudoconvex on K. For p ∈ K, X(p) is single-valued
and similarly, for x ∈ K, P (x) is single-valued. Furthermore, we have the following
implications.

[p ∈ K and x ∈ X(p)] ⇔ [u(x) = v(p) and ptx = 1] ⇔ [x ∈ K and p ∈ P (x)].
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Hence, since x(p) is the optimal solution of the differentiable optimization problem (10)
and ptx(p) = 1,

x(p) =
∇v(p)

pt∇v(p)
,

and if, in addition, v is twice differentiable,

x′(p) = [I − x(p)pt]
∇2v(p)

pt∇v(p)
− x(p)xt(p),

x′(p)[I − pxt(p)] = [I − x(p)pt]
∇2v(p)

pt∇v(p)
[I − pxt(p)],

x′(p)[I − pxt(p)] = [I − x(p)pt]x′(p)[I − pxt(p)].

Clearly pt∇v(p) < 0. Hence, since v is pseudoconvex, the matrix x′(p) is symmetric and
negative semidefinite on the orthogonal subspace to x(p), these properties are known as
the Slutsky conditions [32, 1].

We return to the problem of reconstructing an indirect utility function v from a single-
valued differentiable demand. Assume that the following assumptions hold on x : K → K:

(D1) The map x is continuously differentiable on K;

(D2) The condition ptx(p) = 1 holds for all p ∈ K;

(D3) For all p ∈ K, the matrix x′(p) is symmetric and negative semidefinite on the
orthogonal subspace to x(p).

The theorem is as follows.

Theorem 4.3. Assume that assumptions (D1), (D2) and (D3) hold. Then there exists
a continuously differentiable indirect utility v on K such that

x(p) =
∇v(p)

pt∇v(p)

for all p ∈ K. This function v is pseudoconvex and decreasing on K.

Proof. a) Preliminaries: Let e = 1√
n
(1, 1, · · · , 1)t ∈ Rn and A be an n×(n−1) matrix such

that (A, e)(A, e)t = I. Any p ∈ K can be written as p = Ay + µe, where y = Atp ∈ Rn−1

and µ = etp > 0. Set

F (p) =
−x(p)

etx(p)
.

Assumption (D3) implies that F ′(p) is symmetric and positive semidefinite on the orthog-
onal subspace to F (p).

Fix p = Ay + µe ∈ K and, in line with Remark 3.4, consider the ordinary differential
equation problem:

Find h(., y, µ) : [t̄, 1] → R differentiable such that h(1, y, µ) = µ and

h′
t(t, y, µ) = −(Ay)tx(tAy + h(t, y, µ)e)

etx(tAy + h(t, y, µ)e)
for t ∈ [t̄, 1], (12)
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where t̄ ∈ [0, 1] is taken in such a way that the vector tAy + h(t, y, µ)e stays positive on
[t̄, 1].

b) In this part of the proof, we shall prove that t̄ can be taken equal to 1. For simplicity,
y and µ staying fixed, set

θ(t) = h(t, y, µ), p(t) = tAy + θ(t)e and x(t) = x(p(t)).

Then, for t ∈ [t̄, 1],

θ′′(t) = −(Ay)t[I − x(t)et

etx(t)
]
x′(t)

etx(t)
[I − e[x(t)]t

etx(t)
]Ay.

The vector [I − e[x(t)]t

etx(t)
]Ay is orthogonal to x(p), thereby (D3) implies that θ is convex on

[t̄, 1]. Thus,

θ(t) ≥ θ(1) + (t− 1)θ′(1) = µ+ (1− t)
ytAtx(1)

etx(1)
,

and since
1 = [p(1)]tx(1) = (Ay)tx(1) + µetx(1),

we obtain finally,

θ(t) ≥ µt+
(1− t)

etx(1)
.

From what, we deduce that there exists a positive vector x−(y, µ) not depending on t̄
such that for all t ∈ [t̄, 1],

x(t) ≥ t(Ay + µe) +
1− t

etx(1)
e ≥ x−(y, µ) > 0. (13)

On the other hand, for all vector z ∈ Rn
+, we have the inequalities,

etz ≤ ‖z‖ ≤ etz
√
n.

Because the vector x(t) is assumed to be positive, we deduce from (12)

|θ′(t)| ≤ ‖Ay‖
√
n = ‖y‖

√
n,

which implies
θ(t) ≤ µ+ (1− t)‖y‖

√
n.

Thus, there exists a positive vector x+(y, µ) not depending on t̄ such that for all t ∈ [t̄, 1]

x(t) ≤ t(Ay + µe) + (1− t)
√
n‖y‖ e ≤ x+(y, µ). (14)

We deduce that the function h(., y, µ) is well defined on [0, 1].

c) In this part, we introduce the function v on K by

v(p) = −h(0, y, µ) where p = Ay + µe.

This function v is well defined on K. Set λ = −v(p) and let us consider the ordinary
differential equation problem:
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Find k(., y, λ) : [t̄, 1] → R differentiable such that k(0, y, λ) = λ and

k′
t(t, y, λ) = −(Ay)tx(tAy + k(t, y, λ)e)

etx(tAy + k(t, y, λ)e)
for t ∈ [0, 1].

Then, µ = k(1, y, λ).

Let p̄ = Aȳ + µ̄e ∈ K. In view of (13) and (14), there exists a convex compact neighbor-
hood C of p̄, C ⊂ K, such that for any p = Ay+µe ∈ int(C) and any t ∈ [0, 1] the vector
tAy + h(t, y, µ)e ∈ int(C).

The remaining of the proof is, mutatis mutandis, similar to the proof of Theorem 3.1,
but unlike in this proof, it is no more necessary to restrict C. It is proved that v is
differentiable on C and

x(p)

‖x(p)‖
= − ∇v(p)

‖∇v(p)‖
,

next that v is pseudoconvex on C. Finally it is observed that v is the unique differentiable
indirect utility function associated to the demand map x such that v(te) = −t.

Remark 4.4. The theorem, unlike Theorems 3.1 and 3.5 is global since, under the as-
sumptions, v is defined on the whole set K.
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