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By looking at the Γ-convergence of some easy functionals in terms of underlying Young measures, we
emphasize the connection of this issue with the Monge-Kantorovich mass transfer problem. After ex-
ploring this relationship, we study a typical example in periodic homogenization to realize the difference
between the Monge-Kantorovich problem and the usual cell-problem. We also state a version of the
Monge-Kantorovich problem for gradients.
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1. Introduction

Γ-convergence is the main concept for variational convergence of functionals. Since its in-
troduction ([5], [6]), it has found many important applications in various fields: singularly
perturbed problems, models of thin structures via dimension reduction, homogenization of
functionals, shape optimization, to name a few important cases. See [2], [4] for a complete
treatment.

Our motivation here is to discuss briefly Γ-convergence of functionals when we consider
the Γ-limit defined on Young measures rather than on functions. Since the Young measure
associated with a sequence of functions carries more information than its weak limit, we
expect that such a Γ-limit will provide more information on the asymptotic structure of
a sequence of minimizers for the sequence of functionals we are considering. But on the
other hand, and because of this same reason, its computation in specific examples should
be much more involved. We would like to present some simple examples to show that
this is indeed so. In fact, the computation of such Γ-limit in these cases will lead to
consider the classical Monge-Kantorovich mass transfer problem ([7]). We will be able to
understand such Γ-limit in those situations where we can use fine results for this classical
problem.

Consider a sequence of functionals determined by a certain sequence of functions

Ij(u) =

∫

Ω

ϕ(vj(x), u(x)) dx

where Ω ⊂ RN is a regular, bounded domain,

vj : Ω → Rd, u : Ω → Rm, ϕ : Rd ×Rm → R.
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For simplicity, we will assume that vj takes on values on a given cube Z in Rd and, as
part of admissibility, competing functions u should also take values on another cube Q
in Rm. In this simplified framework, a Young measure associated with a sequence {uj}
is nothing more than a family of probability measures ν = {νx}x∈Ω on Rm depending
measurably on x ∈ Ω ([12]) so that whenever the sequence {g(uj)} converges weakly, the
weak limit can be represented by the integral of g against the Young measure

g(x) =

∫

Rm

g(λ) dνx(λ).

We would like to explore

Ĩ(ν) = lim inf
j→∞

{Ij(uj) : {uj} generates ν} .

This sort of Γ-convergence of functionals defined in terms of Young measures was explicitly
explored in [13] for a particular situation in magnetostriction. Notice that the usual (weak)
Γ-limit can be recovered from Ĩ by putting

Iw(u) = inf

{

Ĩ(ν) :

∫

Q

λ dνx(λ) = u(x)

}

;

and the same is true for the strong Γ-limit

Is(u) = Ĩ(δu),

where δu stands for the Young measure
{

δu(x)
}

x∈Ω.

To simplify even further the situation, we will assume that the Young measure associated
with {vj} is σ, homogeneous, and compute Ĩ(ν) for ν homogeneous too, so that the Young
measure associated with {uj} is ν (no dependence on x). Since

Ij(uj) =

∫

Ω

ϕ(vj(x), uj(x)) dx,

the limit behavior of these integrals can be grasped by looking at their joint Young measure
µ = {µx}x∈Ω whose support is contained in Z ×Q. Indeed,

lim
j→∞

Ij(uj) =

∫

Ω

∫

Z×Q

ϕ(λ1, λ2) dµx(λ1, λ2) dx.

Note that the sequence {ϕ(uj, vj)} converges (or rather an appropriate subsequence)
weak * in L∞(Ω). What do we know about each µx? Their marginals must be σ and ν
because they are generated by {vj} and {uj}, respectively. Thus, we are led to consider

Ĩ(ν) = inf
µ

{∫

Z×Q

ϕ(λ1, λ2) dµ(λ1, λ2) : π1µ = σ, π2µ = ν

}

,

where πiµ, i = 1, 2, designates the two marginals. Notice how we can drop the x-
dependence on µ. This is exactly the relaxed formulation of the Monge-Kantorovich
mass transfer problem ([7]) with cost given by ϕ. The classical formulation by Monge



P. Pedregal / Remarks on Γ-Convergence and the Monge-Kantorovich Mass ... 409

([11]) consists in finding an optimal map a : Z → Rm such that it “pushes σ forward to
ν" and it minimizes the cost functional

∫

Z

ϕ(λ, a(λ)) dσ(λ)

among all such maps, where the integrand ϕ : Z × Rm → R is given. The sentence “a
pushes σ forward to ν" exactly means

ν(E) = σ
(

a−1(E)
)

for all Borel sets E. Hence, we see that the computation of the Γ-limit Ĩ(ν) is closely
related to the Monge-Kantorovich problem. To establish this connection clearly was one
of the main motivations of this note.

In Section 2, we will summarize some of the known results on the Monge-Kantorovich
problem. We will closely follow [7] for this. We pretend to translate these facts to our
Γ-convergence framework. We will do this in Section 3. Finally, Section 4 is devoted to
examining one typical situation in which we become interested in finding the Γ-limit of

Ij(u) =

∫

Z

h(〈jx〉 − u(x)) dx

where Z = (0, 1)N , and 〈z〉 is the fractional part of the vector z componentwise. We
apply some of the ideas of the Monge-Kantorovich problem, and finish stating a kind of
Monge-Kantorovich problem for gradients. Namely, given two probability measures ν, σ
with suppσ ⊂ Q ⊂ RN , find a : Q → R, a ∈ W 1,1(Q), such that ∇a pushes σ forward
to ν and it minimizes the cost functional

∫

Q

ϕ(λ,∇a(λ)) dσ(λ)

among all such a’s.

2. The Monge-Kantorovich Mass Transfer Problem

The original Monge problem [11] was considered in economics. Suppose two sets Z ⊂ Rd

and Q ⊂ Rm are given, and Z is filled uniformly with mass. Let ϕ(λ1, λ2) be the cost (per
unit of mass) for transporting material from λ1 ∈ Z to λ2 ∈ Q. The question is to find
the optimal map a : Z → Q that minimizes the cost of redistributing the mass from Z to
Q. The history of this problem is quite remarkable and several people made important
contributions. See all the references cited in [7] for details. In more precise terms, we seek
to

Minimize in a :

∫

Z

ϕ(λ, a(λ)) dσ(λ) (1)

where a is restricted by “pushing σ forward to ν". Here σ and ν are probability measures
supported on Z and Q, respectively, and the relationship between the map a, and σ and
ν is given by

ν(E) = σ(a−1(E)), E ⊂ Q;
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or alternatively, we can say that

∫

Q

ψ(λ) dν(λ) =

∫

Z

ψ(a(λ)) dσ(λ) (2)

for every continuous ψ.

(1) looks like a rather typical minimization problem in the map a. The great difficulty is
that the restriction of pushing σ forward to ν is not preserved under weak convergence so
that a direct approach cannot furnish the existence of optimal maps even if ϕ is convex in
its second variable. A previous issue is whether the set of such maps for given σ and ν is
non-empty. This is not completely trivial, and indeed imposes some mutual restrictions
on σ and ν. See again [7] for further comments.

Suppose that the set of admissible maps is non-empty. Whenever we have to face a
variational problem and we cannot apply the direct method to show existence of optimal
solutions, we can setup the problem in terms of Young measures associated with sequences
of maps aj : Z → Q. Let {aj} be minimizing in (1) and let Λ = {Λλ}λ∈Z be its
corresponding Young measure with respect to σ. The relevant issue is how the main
constraint on the maps aj translates into Λ. By (2), we have

∫

Q

ψ(λ) dν(λ) =

∫

Z

ψ(aj(λ)) dσ(λ) for all j.

This in particular implies, by the main property of the Young measure ([12]), that

∫

Q

ψ(λ) dν(λ) =

∫

Z

∫

Q

ψ(ξ) dΛλ(ξ) dσ(λ). (3)

If we put µ = Λλ ⊗ σ, a probability measure over Z ×Q (in fact the full Young measure),
then identity (3) simply means that the second marginal of µ is ν while the first one is σ.
In addition, the cost functional can be written

∫

Z

∫

Q

ϕ(λ, ξ) dΛλ(ξ) dσ(λ) =

∫

Z×Q

ϕ(λ, ξ) dµ(λ, ξ).

Therefore a relaxed formulation of the problem is to

Minimize in µ :

∫

Z×Q

ϕ(λ1, λ2) dµ(λ1, λ2)

under π1µ = σ, π2µ = ν. This relaxed formulation was indeed the main contribution of
Kantorovich ([9], [10]). The minimization problem on measures with prescribed marginals
can be taken, under precise requirements on the integrand ϕ, as a metric in the space of
measures. For the particular case ϕ(λ1, λ2) = |λ1 − λ2|2 the resulting metric is known as
the Wasserstein metric. It has been recently used in the numerical approximation of the
Fokker-Planck equation and in dynamical problems involving dissipation or diffusion (see
[8] for instance). By setting this relaxed formulation, it is relatively easy to show that
there exists an optimal measure µ, and the question is to decide if this measure µ is ever
supported on the graph of an admissible map a. Further developments permitted to put
hypotheses on the cost ϕ so that optimal maps could be found ([7]).
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In order to use these results in our Γ-convergence scenario, we state here one of the typical
results explicitly taken from [7]. We will consider costs of the form ϕ(λ1, λ2) = h(λ1−λ2)
with the main condition on h of being a strictly convex function. More restrictions are
needed to allow probability measures with unbounded support.

Theorem 2.1 ([7]). For costs ϕ as indicated above, and probability measures σ, ν on
Rd, if σ is absolutely continuous with respect to the Lebesgue measure, then there is a
unique optimal map a.

There is a number of other results relaxing the requirements on h and/or on σ ([7]).

3. Γ-Limits of Functionals

We go back to the computations of Γ-limits in terms of underlying Young measures. We
will place ourselves in a situation

Ij(u) =

∫

Ω

ϕ(x, vj(x), u(x)) dx

where Ω ⊂ RN is a regular bounded domain, and

vj : Ω → Rd, u : Ω → Rm, ϕ : Ω×Rd ×Rm → R.

The integrand ϕ is assumed to be a Carathodory integrand (measurable in x and contin-
uous in the other variables). An important restriction relates to this integrand ϕ and to
the sequence {vj} defining the functionals Ij. We will suppose that for a.e. x ∈ Ω, the
Monge-Kantorovich problem corresponding to ϕ(x, ·, ·) and to the probability measure σx,
where σ = {σx}x∈Ω is the Young measure for {vj}, is solvable for any target measure νx,

a.e. x ∈ Ω. Specifically, if we want to compute Ĩ(ν) for ν = {νx}x∈Ω the Young measure
associated with {uj}, we will assume that there is a map

aν : Ω×Rd → Rm

such that for a.e. x ∈ Ω, aν(x, ·) is an optimal map for the problem

Minimize in a :

∫

Rd

ϕ(x, λ, a(x, λ)) dσx(λ)

subject to the fact that a must push σx forward to νx. We will not be more explicit here
and then we will study some concrete situations where we know these facts about the
Monge-Kantorovich problem are true.

It is then immediate that

Ĩ(ν) =

∫

Ω

∫

Rd

ϕ(x, λ, aν(x, λ)) dσx(λ) dx, (4)

and we would have a full description of Ĩ(ν) as soon as the mapping

νx 7→ aν(x, ·)
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is determined. For a situation in which the Monge-Kantorovich problem is not solvable,
we would have

Ĩ(ν) =

∫

Ω

∫

Rd×Rm

ϕ(x, λ1, λ2) dµ
ν
x(λ1, λ2) dx

where the probability measure µν
x is the optimal solution of the problem

Minimize in µ :

∫

Rd×Rm

ϕ(x, λ1, λ2) dµ(λ1, λ2)

subject to the fact that the marginals of µ should be σx and νx, respectively.

In many situations, all the detailed information recorded in the computation of Ĩ(ν) for
any admissible family of probability measures ν cannot be explicitly found. Thinking
about the parallelism with the convexification of variational problems in terms of Young
measures ([12]), all we might be interested in is the computation of Iw(u) and, at least,
one optimal ν associated with u. Recall that

Iw(u) = inf

{

Ĩ(ν) :

∫

Q

λ dν(λ) = u

}

.

What we are saying is that, somehow, the important information is contained in the
computation of Iw(u) and the determination of νu such that

Iw(u) = I(νu).

Though the computation of Ĩ(ν) in this full generality for any ν may be almost impossible
to achieve, yet Iw(u) and νu may be more easily computed.

Let us go back to (4), and try to compute Iw(u). For this, we have to treat the overall
optimization problem

Minimize in a :

∫

Ω

∫

Rd

ϕ(x, λ, a(λ)) dσx(λ) dx

subject to

u(x) =

∫

Rd

a(λ) dσx(λ).

Notice that this constraint comes from the fact that a should push σx forward to νx. If
we define a new integrand Cϕ by putting

Cϕ(x, u) = inf
a

{∫

Rd

ϕ(x, λ, a(λ)) dσx(λ) : u =

∫

Rd

a(λ) dσx(λ)

}

, (5)

then it is evident that

Iw(u) =

∫

Ω

Cϕ(x, u(x)) dx.

In addition, an optimal map a in (5) will furnish an optimal measure νu
x . Almost the same

observations apply even if the associated Monge-Kantorovich problem is not solvable.
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4. Some Examples

One typical situation where we can use the ideas steming from the Monge-Kantorovich
problem corresponds to taking

Ij(u) =

∫

Z

h(〈jx〉 − u(x)) dx

where Z = (0, 1)N , 〈z〉 is the fractional part of z componentwise, u : Z → RN belongs
to appropriate Lebesgue spaces and h : RN → R satisfies appropriate hypotheses so that
Theorem 2.1 can be applied. This essentially amounts to taking h strictly convex and
h(0) = 0.

As a consequence of the well-known Riemann-Lebesgue lemma ([3]) the Young measure
associated with 〈jx〉 is the Lebesgue measure restricted to Z, homogeneous. Thus σx = dz
for all x ∈ Z. By applying Theorem 2.1, we conclude that

Ĩ(ν) =

∫

Z

h(z − aν(z)) dz

where the map aν : Z → RN is uniquely determined as the optimal solution of the problem

Minimize in a :

∫

Z

h(z − a(z)) dz

subject to ν = δa. This last expression is a short way of saying

∫

Z

ψ(z) dν(z) =

∫

Z

ψ(a(z)) dz

where by δa we mean the “average" of the trivial Young measure δa. See [12]. We can
also say

Ĩ(ν) = min
a

{∫

Z

h(z − a(z)) dz : ν = δa

}

.

In addition, an optimal sequence to achieve this value is aν(〈jx〉) in the sense that

∫

Z

h(〈jx〉 − aν(〈jx〉)) dx → Ĩ(ν). (6)

From here, we can also give in a more-or-less explicit fashion an integral form for Iw(u).
Indeed

Iw(u) = inf
ν

{

Ĩ(ν) : ν = {νx}x∈Ω ,

∫

RN

λ dνx(λ) = u(x)

}

= inf
ν
min
a

{∫

Z

h(z − a(z)) dz : νx = δa,

∫

RN

λ dνx(λ) = u(x)

}

=

∫

Z

[

min
a

{∫

Z

h(z − a(z)) dz :

∫

Z

a(z) dz = u(x)

}]

dx.
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If we define the integrand ψ : RN → R by putting

ψ(λ) = min
a

{∫

Z

h(z − a(z)) dz :

∫

Z

a(z) dz = λ

}

then

Iw(u) =

∫

Z

ψ(u(x)) dx.

For each x ∈ Z, there exists an optimal map a(x, z) such that

u(x) =

∫

Z

a(x, z) dz a.e. x ∈ Ω

and the optimal measure νu = {νu
x}x∈Z associated with u so that Iw(u) = Ĩ(νu) is the

push-forward of dz by the map a(x, ·). The definition of ψ above involves the typical
cell-problem in periodic homogenization ([1]).

We can now realize the distinction between the Γ-limit in terms of Young measures and
in term of functions (their first moments). In the simplified framework of our example,
the first amounts to understanding the Monge-Kantorovich problem

Minimize in a :

∫

Z

h(z − a(z)) dz

subject to the fact that a pushes dz forward to a given ν. This is a rather difficult and
delicate problem. The second leads to consider

Minimize in a :

∫

Z

h(z − a(z)) dz

subject to
∫

Z
a(z) dz = u for given u. We know that this last problem admits optimal

maps in much more generality. This is so because the integral constraint in a is preserved
under weak convergence while the property of pushing dz forward to ν is not.

A more interesting situation occurs when we consider

Ij(u) =

∫

Z

h(〈jx〉 − ∇u(x)) dx

where now u : Z → R. The situation is, however, formally the same. Because there is no
formal restriction on local gradient Young measures in the scalar case ([12]), the analysis
carried out above is still valid here. The only difficulty we encounter relates to (6). For
ν given (no dependence on x), an optimal sequence yielding the value Ĩ(ν) is {aν(〈jx〉)}.
But this is not a gradient unless the field aν itself is a gradient.

To resolve this difficulty, we would have to go back to the Monge-Kantorovich mass
transfer problem and add the fundamental ingredient that the admissible maps a be
gradients. Bearing in mind the framework at the beginning of Section 2, we would have
to examine the problem

Minimize in a :

∫

Z

ϕ(λ,∇a(λ)) dσ(λ)
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subject to ν = δ∇a, for a : Z → R. Without the gradient requirement, the optimal map
has been explicitly given under the hypotheses of Theorem 2.1 ([7]). Its explicit form is

s(x) = x− (∇h)−1(∇g(x))

for a certain (c-concave) function g. If this map s turns out to be a gradient, this would
be the solution when we incorporate the gradient requirement. If it is not, we would have
to study the Monge-Kantorovich mass transfer problem for gradients as stated at the end
of the Introduction.

The example in this section is closely related to periodic homogenization of integrals ([1]).
See [14] for an alternative way to studying Γ-convergence by means of Young measures
from a different, yet related, perspective.
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