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We give an elementary proof of a theorem of Brickman, which establishes the convexity of the image of
the unit sphere of a space with dimension at least three under a vector mapping into R2 whose component
functions are quadratic forms. We also discuss some consequences of this theorem regarding the range of
that mapping.

Keywords: Quadratic forms, convexity

2000 Mathematics Subject Classification: 15A63, 52A10

1. Introduction

In [2], Brickman proved the following theorem:

Theorem 1.1 (Brickman). Let n ≥ 3 and let A and B be two symmetric n×n matrices.
Then the set C := {(〈Ax, x〉 , 〈Bx, x〉) : x ∈ Rn, ‖x‖ = 1} is convex.

The proof given in [2] works with the n − 1 dimensional projective space and considers
a real projective hyperconic in it. The aim of this note is to provide a more elementary
proof, not requiring other concepts than those of the Euclidean space setting, to which the
statement belongs. In doing so we will actually prove, with no extra effort, that Brickman’s
theorem also holds in arbitrary real inner product spaces of (possibly infinite) dimension
at least three. This will be carried out in Section 2. In Section 3 we will present some
consequences of Brickman’s Theorem regarding the cone {(〈Ax, x〉 , 〈Bx, x〉) : x ∈ Rn} .
Brickman’s theorem is just an instance of a class of results on convexity of images of
quadratic mappings. For a survey of such results we refer the reader to [5].

2. An Elementary Proof of Brickman’s Theorem

We will use the following lemma, whose easy proof we omit.

Lemma 2.1. Let S be a 3× 3 matrix, γ ∈ R and

X :=
{

x ∈ R3 : ‖x‖ = 1, 〈Sx, x〉 = γ
}

.

Then there exists a connected set Y ⊂ X such that X = Y ∪ (−Y ) .
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Theorem 2.2. Let V be a real inner product space of dimension at least three and let A
and B be two endomorphisms of V . Then the set

C := {(〈Ax, x〉 , 〈Bx, x〉) : x ∈ V, ‖x‖ = 1}

is convex.

Proof. Let us first consider the case when V has dimension three. We can identify V with
R3 and the endomorphisms A and B with their matrices in the canonical basis. To prove
that C is convex it suffices to prove that the intersection of C with any straight line L is
connected. Let αs+βt = γ be the equation of an arbitrary straight line L in the st plane.
Then C ∩ L = {(〈Ax, x〉 , 〈Bx, x〉) : ‖x‖ = 1, 〈Sα,βx, x〉 = γ} , with Sα,β := αA + βB.
Thus if we set Xα,β := {x ∈ R3 : ‖x‖ = 1, 〈Sα,βx, x〉 = γ} and define T : X → R2 by
T (x) := (〈Ax, x〉 , 〈Bx, x〉) , we have C ∩ L = T (Xα,β) . By Lemma 2.1 there exists a
connected set Yα,β such that Xα,β = Yα,β ∪ (−Yα,β) . Since T (Xα,β) = T (Yα,β) , it follows
that C ∩ L = T (Yα,β) is connected.

Let now V have dimension at least three and (〈Ax1,x1〉,〈Bx1,x1〉) and (〈Ax2,x2〉,〈Bx2,x2〉),
with ‖x1‖ = ‖x2‖ = 1, be any two points in C and λ ∈ [0, 1] . Take any orthonormal
basis {w1, w2} of the subspace spanned by x1 and x2 (or of any twodimensional subspace
containing x1 if x1 and x2 are linearly dependent) and another vector w3 orthogonal to w1

and w2 and such that ‖w3‖ = 1. Let W be the subspace spanned by w1, w2 and w3 and
˜A := (aij) and ˜B := (bij) be the 3 × 3 matrices with entries aij := 〈Awi, wj〉 and bij :=
〈Bwi, wj〉 . Consider the linear isometry ϕ : W → R3 assigning to wi the i−th unit vector,

for each i = 1, 2, 3. Clearly, 〈Aw,w〉 =
〈

˜Aϕ (w) , ϕ (w)
〉

and 〈Bw,w〉 =
〈

˜Bϕ (w) , ϕ (w)
〉

for every w ∈ W. Since the set
{(〈

˜Au, u
〉

,
〈

˜Bu, u
〉)

: ‖u‖ = 1
}

is convex, we have

(1− λ)
(〈

˜Aϕ (x1) , ϕ (x1)
〉

,
〈

˜Bϕ (x1) , ϕ (x1)
〉)

+λ
(〈

˜Aϕ (x2) , ϕ (x2)
〉

,
〈

˜Bϕ (x2) , ϕ (x2)
〉)

=
(〈

˜Au, u
〉

,
〈

˜Bu, u
〉)

for some u ∈ R3 with ‖u‖ = 1. Hence

(1− λ)
(〈

Ax1, x1
〉

,
〈

Bx1, x1
〉)

+ λ
(〈

Ax2, x2
〉

,
〈

Bx2, x2
〉)

= (1− λ)
(〈

˜Aϕ
(

x1
)

, ϕ
(

x1
)

〉

,
〈

˜Bϕ
(

x1
)

, ϕ
(

x1
)

〉)

+λ
(〈

˜Aϕ
(

x2
)

, ϕ
(

x2
)

〉

,
〈

˜Bϕ
(

x2
)

, ϕ
(

x2
)

〉)

=
(〈

˜Au, u
〉

,
〈

˜Bu, u
〉)

=
((〈

Aϕ−1 (u) , ϕ−1 (u)
〉

,
〈

Bϕ−1 (u) , ϕ−1 (u)
〉))

∈ C.

3. Some Consequences of Brickman’s Theorem

In this section we discuss some consequences of Brickman’s Theorem regarding the cone
K := {(〈Ax, x〉 , 〈Bx, x〉) : x ∈ V } in the case when V is finite dimensional. A first
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immediate consequence of Theorem 2.2 is that K, being the cone generated by the convex
set C, is itself convex if V has (possibly infinite) dimension at least three. The next lemma
says that K is also convex when V has dimension two. Notice that, on the other hand,
in the one dimensional case K is obviously a closed halfline unless both A and B are 0,
in which case K reduces to the origin.

Lemma 3.1. Let A and B be two 2×2 real matrices. Then the set K := {(〈Ax, x〉 , 〈Bx,
x〉) : x ∈ R2} is a convex cone.

Proof. We will assume, without loss of generality, that A and B are symmetric and will
prove that

K = {(〈〈A,X〉〉 , 〈〈B,X〉〉) : X is a psd symmetric 2× 2 real matrix} ; (1)

〈〈·, ·〉〉 denotes here the standard inner product in the space of symmetric 2 × 2 real
matrices, defined as the trace of the product, and we use “psdÔ as an abbreviation
of “positive semidefiniteÔ. The inclusion ⊆ is obvious, as for any x ∈ R2 one has
(〈Ax, x〉 , 〈Bx, x〉) =

(〈〈

A, xxT
〉〉

,
〈〈

B, xxT
〉〉)

(interpreting x as a column vector and
the superscript T denoting transpose). To prove the opposite inclusion, let (a, b) belong
to the right hand side of (1). Then the solution set M of the linear system of equations
〈〈A,X〉〉 = a, 〈〈B,X〉〉 = b in the space of symmetric 2×2 real matrices is an affine man-
ifold of dimension at least one, which intersects the closed convex cone of psd matrices.
Since this cone is pointed (i.e., it contains no straight line), M intersects its boundary.
Given that all boundary points of this cone are of rank one, that is, of the type xxT , with
x ∈ R2, it follows that (a, b) ∈ K. This proves the inclusion ⊇ in (1).

Using this fact we will prove the following corollary:

Corollary 3.2. Let A and B be two symmetric n× n real matrices,

K := {(〈Ax, x〉 , 〈Bx, x〉) : x ∈ Rn} ,

and denote by clK the closure of K. Then

clK = {(a, b) : αa+ βb ≥ 0 ∀ α, β ∈ R such that αA+ βB is psd} .

Proof. Since K is a convex cone, one has clK = (K+)
+
, the superscript + denoting

dual cone. So the statement follows by observing that K+ = {(α, β) ∈ R2 : αA+ βB is
positive semidefinite}.

Lemma 3.3. Let C be a compact subset of R2. If 0 /∈ C then the convex cone K generated
by C is closed.

Proof. Since K is the cone generated by the compact convex set coC, the convex hull of
C, in case 0 /∈ coC the closedness of K immediately follows. Assume now that 0 ∈ coC.
Then, since 0 /∈ C, 0 is not an extreme point of coC. This means that 0 belongs to the
relative interior of a segment contained in coC, which clearly implies that K contains a
straight line through the origin. It only remains to observe that a convex cone in R2

containing a straight line through the origin is either the line itself, or a closed halfplane,
or the whole R2.
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We remark that the preceding lemma does not hold in higher dimensions, as shown by the
compact set

{

(x, y, z) ∈ R3 : |x| = 1, y2 + (z − 1)2 = 1
}

, which generates the convex
cone {(x, y, z) ∈ R3 : either z > 0 or y2 + z2 = 0} .
Corollary 3.4. Let A and B be two symmetric n×n real matrices, a, b ∈ R, and assume
that the homogeneous system of quadratic equations 〈Ax, x〉 = 0, 〈Bx, x〉 = 0 has no
solution other than x = 0. Then the system 〈Ax, x〉 = a, 〈Bx, x〉 = b has a solution if
and only if αa + βb ≥ 0 for every α, β ∈ R such that the matrix αA + βB is positive
semidefinite.

Proof. Let K be as in Corollary 3.2. The assumption on the homogeneous system means
that the origin ofR2 does not belong to the compact setC := {(〈Ax, x〉 ,〈Bx, x〉) : x ∈ Rn,
‖x‖ = 1}; hence K, being the convex cone generated by C, is closed in view of Lemma
3.3. Therefore the statement follows from Corollary 3.2 together with the observation
that the system 〈Ax, x〉 = a, 〈Bx, x〉 = b has a solution if and only if (a, b) ∈ K.

To see that the assumption on the homogeneous system is not superfluous in the preceding

corollary, consider the 2× 2 matrices A =

(

1 0
0 −1

)

and B =

(

2 −1
−1 0

)

. Then the

matrix αA + βB =

(

α+ 2β −β
−β −α

)

is positive semidefinite if and only if α + β = 0 ≤

β. Thus (a, b) = (1, 1) satisfies the inequalities in the statement; however the system
〈Ax, x〉 = 1, 〈Bx, x〉 = 1 has no solution. Indeed, if x1, x2 ∈ R are such that x2

1 − x2
2 = 1

and 2x2
1− 2x1x2 = 1, one has x2

1−x2
2 = 2x2

1− 2x1x2, so that x1 = x2, which is impossible.
Note that x = (1, 1) is a solution of the homogeneous system.

The condition that the homogeneous system has no nonzero solution was proved by Finsler
[4] (see also [5, p. 173]) to be equivalent, in the case n ≥ 3, to the existence of real numbers
α and β such that αA+ βB is positive definite.

The convexity of the cone K := {(〈Ax, x〉 , 〈Bx, x〉) : x ∈ Rn}, together with the fact
that it is closed if the system 〈Ax, x〉 = 0, 〈Bx, x〉 = 0 has no solution other than x = 0,
was proved by Dines [3] (see also [5, p. 171]). Here we have obtained these results as
direct consequences of Brickman’s theorem. In [3] it was also proved that, in the case the
homogeneous system above has no nonzero solution, K is either the whole R2 or a closed
convex cone different from a halfplane. It can be easily seen that the above proof yields
the same conclusion if n 6= 2.

An alternative proof of Brickman’s theorem has been given by Beckermann [1].
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