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Assume that € is a strongly convex domain, balanced with boundary of class C*. Fix number p > 1. For
any set E which is circular and of type Gs in 99 we find a holomorphic function f € Q(2) such that

E=E}(f) = {z € 00N : /|>\<1 If(A2) [P dL2(\) = oo} :
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1. Preface

The main topic of this paper is centered around the question:

What features of the function f can be recovered from a given collection of line integrals of
f? This mathematical problem is encountered in a growing number of diverse settings in
medicine, science, and technology ranging from the famous application in diagnostic radi-
ology to research in quantum optics. Especially this issue is often discussed in computed
tomography.

This paper deals with domain  which is balanced with boundary of class C*.
Definition. We define p-exceptional set for the holomorphic function f € O() as:

537 = { . on: /|| PP ) = oo}

The above definition was inspired by the questions posed by Peter Pflug and Jacques
Chaumat.

In the 1980s Peter Pflug posed a question whether there exists a domain Q C C”, a
complex subspace M in C" and a function f holomorphic in €2, square-integrable such
that f |y is not square-integrable.

A similar question was posed by Jaques Chaumat in the late 1980s; he wondered whether
there exists a function f holomorphic in the unit ball B" such that for any subspace which
is linear and complex M in C" the function f |yqp» is not square-integrable.
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We can find in the literature many papers [1, 2, 3, 4, 5, 6, 7] inspired by the above
questions. Papers [2, 3] deal with the domains Q@ C C"™™ and holomorphic functions
f € 0(Q) N L*(9), non-integrable along directions of the form

Qy:={z€C": (z,w) € Q}.
In this case we define exceptional set E(€2, f) as

E@Q f)={weC™: fla, & L*(Qu)}.

It is also possible to consider the functions which are non-integrable along complex lines
containing 0. Among the papers dealing with this problem the following [1, 5, 4, 6, 7]
should be mentioned. Due to [1, 5] we know that for a convex domain €2 with a boundary of
class C' it is possible to construct a holomorphic function f, which is not square-integrable
along any real manifold M of class C! intersecting the boundary of  transversally.
Constructions of the holomorphic functions non-integrable along selected in advance set
of complex directions of type Gs and F, with some additional properties were presented
in the paper [7] . In [7] we used some properties of Wojtaszczyk polynomials. As we know
no similar construction for the domains different than a ball, then in this paper we use a
different method.

Definition. Let D C 9. We say that the domain © is strongly convex! according to
D iff for every point y € D there exists a real hyperplane ©, such that ©, N = {y}.
Additionally €2 is strongly convex iff ) is strongly convex according to 0f).

The most important result obtained in our paper is the following:

Theorem 2.4. Let 2 be a strongly convex domain according to D = D C 052, whose
boundary is of class C'! in a neighbourhood of D. Then there exists a function f € QO(Q)N
C(Q\ D) such that for any k-dimensional, complex submanifold A/ C C™ intersecting OS2
transversally: one has [, [f|d€3}~q = 0o whenever M N D # 0.

As a consequence of that theorem we have:

Theorem 3.2. If Q is a strongly convex domain with boundary of class C* and E is a
circular set of type Gy in 02, then there exists a holomorphic function f € O(Q2) such
that £ = E5(f).

2. Convex domains

For z,w € C™ and for a non-empty set D such that D C C", we put

L., = {tz+(1—-tw: teR},

dp(z) = uljreljfsz—wH

'In the literature the following definition of strong convexity can be found:

If Q cC R" is a domain with a boundary of class C? and p is a defining function for 2 such that in the
point P € 9§ we have ) %(P)ijk > 0 for 0 # w € Tp(0f2), then we say that Q is strongly convex
in the point P.

It can be proved that if 2 is strongly convex in the point P, then there exists an open set Up such
that Tp(0Q) N Up NQ = {P}. Considering this property we introduce a geometric definition of strong
convexity that can be more easily used in our paper.
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For any ¢ > 0, any non-empty open set {2 C C", and for any non-empty closed set D C C",
we denote

Q. = {z€eQ: e]z| <1,doalz) >}
K(D;e) = {ze€C":dp(z) <e},
K(D;e) = 0.

Moreover for D, T C Q, let I'(D, T) be the set of all continuous functions v € C ([0, 1],@)
such that v(0) € D, y(1) € T and L),y NT # D for all 0 < s <t < 1.

Proposition 2.1. Let ¢ > 0. If D C 0% is a compact set and ) is a strongly convex
according to D, then there exists a finite family {©;}i=1... m of real hyperplanes in C" and
compact sets K; C ©; N Q such that:

(1) ©,NQC K(D;e) foralli=1,..,m; B
(2) UL Kinn([0,1]) # 0 for any v € I(D, ().

.....

Proof. For any x € 0Q2 and r > 0, put

Seri={2€0Q: ||z —z| <r}.

We proved in two steps. In the first step, we show that for any y € D there exists a real
hyperplane @),, a number 7, > 0 and a compact set 7}, such that:

(i) Q,NQc K(D,e)
(i) 7T, Cc@,NQ,
(iii) if v € T(Sy.y,,Q:), then v([0,1]) N T, # 0.
Choose a real hyperplane H such that H NQ = {y} by strong convexity of  and choose
a vector w normal to H with a beginning in the point y and pointed outside 2. Let
Hs = H — 6w and

Ky = Hs 0| JT(S,, Q)

for 6,n > 0. As S, and Q. are compact sets, Ks, is also a compact set. Due to the
equality Ho N2 = {y}, a number § may be selected so small that H; N C K(D,¢) and
H; N Q). = (. Additionally, as for small § we have

Hyn | LywC
weﬁe
if necessary we can select smaller 4 > 0 and a number n > 0 so small that

H(; ﬂ U Lx,w C Q (1)

(2,w)ESy,n X Qe

and the sets S, ,,, Q. lie on the opposite sides of the hyperplane Hj.

Y,

Let Q, := H;, T, :== Ks,, n, = 1. We observe that

Q,NQ=H;NQ C K(D,e),
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which yields the property (i).
It can be easily observed that

In particular, due to (1), we have the property (ii):

T QyﬂUF Yy )CH(;Q U ijwCHng:Qme.

(@,w)ESy,ny X Qe

Let v € ['(Syn, Q.). As the sets Sy, and Q. lie on the opposite sides of the hyperplane
Qy, we have v ([0,1]) N Q, # 0. In particular, the property (iii) follows from:

v([0,1)NQy CQyN UF(SymvaE) =T,

In the second step, we proceed to prove the existence of hyperplanes ©; and compact sets
K; such that the properties (1)-(2) are fulfilled.

Observe that
Dc | J{z€: |z —z| <n.},
xzeD
where the number 7, was defined in the first step. As D is a compact set, there exist
points x1, ..., x,, such that

It suffices to define ©; := Q,, and K; :=T},. Obviously K; C ©,N{2 and 0;NQ C K(D;e).
Moreover, if v € I'(D, (2 ), then v(0) € D. Therefore, there exists j € {1,...,m} such that
7(0) € Sy .- In particular v € T(S,, , , Q) and 7 ([0, 1]) N K; # 0. O

______ m 1S a finite family of
compact sets such that Ki cUnNnGO; fori=1,..,m, then there exists a finite family of
compact sets {T;}i=1.._m and a number n > 0 such that

(1) K;CcT,cUN®O; fori=1,...m

(2) if v € T(09Q,0.) is such that v([0,1]) N T; # O and v([0,1]) N T; = O for some
i,j € {1,...,m} withi < j, then for every x € v([0,1]) NT; the inequality de,(x) > n
holds.

Proof. Fix any number ;1 > 0 and define 7 := K; and
Sl =K (Tl N @1,,[11)

Having defined T;, S; we define

Siy1 = K(U(Tjﬂ@z‘ﬂ);ﬂ)

Jj=1

Tiy1 = (Sig1 UKip1) N Oiq.
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Observe that the number p can be so small that S;, T; C U. It can be easily seen that
K, cT,cUnNno©,fort=1,...m.

Fixie{l,...,m—1}and j€ {i +1,...,m}.

Assume that we have a sequence of curves {7, }nen and points {z, }nen such that:

o {Wnlnen CT(39, ),

o ¥ ([0,1]) N T; = 0,
o 1z, €(0,1)NT.

Let én be a hyperplane parallel to ©; such that z, € @)n. It suffices to show that
de, (x,) > n > 0 for some constant 7 independent of the sequence selection {7, },en-

We show this fact by considering proper cases. First we show the following fact:
(A) If lim, o de, (7,) = 0, then ,([0,1]) N©; = () for n sufficiently large.

Assume that there exists a sequence {2, },oy such that z,, € 7,,([0,1]) N ©;. We may
assume’ that T, — To € T; N O;. From the definition of the sets 11, ..., T}, it follows

that K(T;;0) N ©; C T;. As K({zo}; 1) N ©; C T and 7,([0,1]) N T; = ( one has
|20, — ®ol| > p > 0. On the other hand, due to the equality ©; N 2. = ), we must have

L N Qe =0

Znp T

for k sufficiently large, which is inconsistent with the choice of ~,.

Now let us show the second fact:

(B) If lim, o de,(2,) = 0, then the points 7,(0), 7,(1) lie on different sides of the
hyperplane® ©,, for n sufficiently large.

Assume that v, (1) lie on the same side of énk We may assume that {n;}rey = N and
due to (A): ,([0,1]) N ©; =0 for n € N.

There exist then different points z,, w, such that z,,w, € ¥,([0,1]),

lim de,(2,) = lim de,(w,) =0

and the line L, ,,, is parallel to the hyperplane ©;. As ©;N€. = 0, we have L, ,,, Ny, =

() for n sufficiently large, which is inconsistent with the choice of ~,.

Now let us show the following fact:

(C) If lim,_ de,(2,) = 0, then the points ,(0), 7,(1) lie on the same side of the
hyperplane* ©,, for n sufficiently large.

Assume that ,, (0) and 7, (1) lie on opposite sides of the hyperplane ©, . We may

assume that {ngrey = N and due to (A): 7,([0,1]) N ©; = 0 for n € N.

Observe that if the point z, lies between the hyperplanes ©; and én, then

0< nh_)rgo de,(zn) < nh_)rgo de,(r,) = 0.
2We select a subsequence if necessary.

30bviously, in this case 7, (0) ¢ O, and 7, (1) ¢ O,,.

4In particular, we can have v, (0) € ©,, or 1(1) € O,,.
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Therefore, as ©;N€, = @ and 7, (1) € Qa. C O, 7, (1) cannot lie between the hyperplanes

©, and O, for n sufficiently large. As 7,([0,1])N ©; = () the points v,(0) and 7, (1) lic on
the same side of the hyperplane ©,. In particular, +,,(0) has to lie between the hyperplanes

©, and O, for n sufficiently large. Therefore

0 < lim dg,(7,(0)) < lim de,(z,) = 0.

n—oo n—oo

As zp € ©,NQ and v,(0) € 09, for n sufficiently large we have L., ()4, N Q. = 0, which
is inconsistent with the choice of ~,.

It remains to establish the last fact:

(D) There exists a constant 7 > 0 such that if v € (99, Q.), v([0,1]) N T; # 0,
7([0,1]) N T; = 0, and x € ¥([0,1]) N T}, then dg,(x) > n.

Assume that such a constant 7 does not exist. We can then select a sequence of curves
{Vn}nen and points {x, }nen such that:

. {’Yn}nEN - F(697§22)7
o 4(0,1)NT, =0,
o 1z, €(0,1)NT,

and lim,, .o de,(z,) = 0. By (B) and (C) above, we obtain a construction. O

Theorem 2.3. Let D be a compact subset of 0N). Assume that §2 is strongly convex
according to D. For each € > 0 there exists 6 > 0 such that for all m, M > 0, one can
select a holomorphic function h € Q(C™) with the following properties:

(1) |h(2)| <m for all z € Q\ K(D;e).
(2)  Ify € T(D,Qy.), then there exists v € ([0, 1]) such that dpo(x) > 6 and |h(z)| > M.

Proof. On the basis of Proposition 2.1 and Lemma 2.2, we can select a finite family of

real hyperplanes {©;},—1 ., in C", compact sets T; and a number 1 > 0 with the following

properties:

(1) Ticoe,ng;

2) ©,NQC K(D;e) foralli=1,... k;

3) UL, Tin~#0 forall y € T(D,Q);

(4) if v € T'(D, Q) is such that v([0,1])) N T; # ® and ~([0,1]) N T; = @ for some
i,7 € {1,...,k} such that ¢ < j, then for every x € ~([0,1]) N T we have the
inequality de,(x) > 7.

-----

We may assume that ¢ is so small that 0 € {25.. We may also assume that n € (0,1). Let
S =T(D,Qs). Because D and . are compact sets, S is a compact set.

The real hyperplane ©; can be represented in the form of
©;:={2€C": Re({z — 2;,2;)) =0} (2)
for some z; € C" \ {0}. For any § € (0, 1) we define

Vis ={2€C": Re((z — 2;,2)) < =0 HZZHQ} : (3)
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Let us consider ¢ € (0,1) so small that 0 < 0 ||zl < n for i = 1,...,k and dpa(z) > §
for all z € UleTi. As ©,NQ C K(D,e), making 6 > 0 smaller, we may assume that
Q \ K(D,S) C ‘/;75.

A)  We have

Vis={2€C": Re((z — 2, %)) <0,de,(z) > |z}
Indeed let

Qis={2€C": Re({z— (1 —10)z;,2)) =0}.

Observe that V; 5 = {z € C": Re({z — (1 — §)z;, 2;)) < 0}. Then it is enough to note that
distance between ©; and @Q); s is equal to ||z; — (1 — 9)z|| = & ||z
Now we claim that:
B)  For all m, M > 0 there exists a function h € O(C"™) with the following properties:

(1) |h(z)| <mforall z€ Q\ K(D;e).
(2) Ify € T(D,Qs), then there exists z € ([0, 1]) such that daq(z) > § and |h(z)| > M.

Let us consider function
hi(z) := b;exp(a;(z — z;, z;))
for z € C" and a;, b; > 0. Due to (2), we have |h;(2)| = b; for z € ©;.

We select a; and b; by means of induction. Let by = M + m. If we have already defined
b;, then due to (3) we can define a; as a positive number so large that

hi(2)] < 2T for all z € Vjg.

Number b;,; is defined by the formula:

_, 2€S

bipr =M +m+ Y sup|h;(2)|
7=1

foralli=1,..., k.
We define

As Q\ K(D;¢) C Vi5, we have |h(z)| < m for all z € Q\ K(D;¢).

Let v € T'(D,Qy.). There exists i € {1,...,k} such that v([0,1]) N T; # 0. After having
increased the index ¢, we may assume that ([0,1]) N T; =0 for all j =i+ 1,..., k. Fix
z € v([0,1]) N T;. We have dg,(z) > n forall j =i+ 1,....k. As x € T; C ©;, we have

Re({(x — zi,z;)) = 0 and dag(x) > 0 (6 is so small that dgn(z) > 6 for allz € UleT]) :
Moreover we can select maximally possible v € {i,i + 1, ..., k} such that

Re((z — 2y, 2,)) > 0.
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If v = k, then (note that x € S = [JT\(D, Q.)):

M = o) = 3 o

> m—i—M—I—Zsup|h Z|h
> m+ M.

If v < k, then Re((z — 2;,2;)) < 0 and de,(x) > 1 > 6 ||z for j = v +1,..., k. Therefore
due to (A) we have x € V5 for all j = v + 1,..., k. Finally we can estimate:

h(z)] = Ihu(w)\—z_:\hj(x)l— > (@)

Jj=v+1
v—1

k
> m+M+Zsup|h Z|h =D Ihy(@)

j=v+1

> m4+ M— Z gzM.

j=v+1

]

Theorem 2.4. Let Q be a strongly conver domain according to D = D C 02, whose
boundary is of class C* in a neighbourhood of D. Then there exists a function f € Q(Q)N

C(Q\ D) such that for any k-dimensional, complex submanifold M C C™ intersecting 0
transversally: one has [, o |fld€3nq = oo whenever M N D # 0.

Proof. Let D = |J,cy Di, where {D;},. is a sequence of compact sets such that D; C
Diyy. If f € LY(M N Q), then we denote a proper norm as || f[|y;; = [y,00 |fld€35nq. We
present the proof in a few steps.

First we show:
(A) Let P € M NS There exists a constant C; > 0 and an open set Up such that
P € Up with the property: if f € O(Q) and [}, |fldg2k o < oo, then

Cum ||f||M1

2) <
|f( )l = daQ(Z)k
forze MNQNUp.

Observe that M is locally the graph of a holomorphic function. Without loss of generality,
we may assume that P = 0. In particular:

MNU ={(w,g(w)): weV}

where V, U are open sets such that U, V are compact, 0 € V C C*, 0 € U C C" and g is
a holomorphic function on V' with the values in C"~*, such that g(0) = 0. Let

Qy ={weV: (wg(w)) e N}
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Shrinking the sets V, U, we may assume that there exists a constant C; such that for any

n,&eV:
1(n,9(n) — (& gl < Culln =& -

There exists an open set Uy such that 0 € Uy C U and

i — >
int | (r.9(m) = 2| > don(2)

for z € M NU,.

Using the Cauchy integral formula on polydisc for the function
vV ow— f(wgw)) e C,

we have the inequality:

Co M,1
g < G0t

for w € Qy, where the constant C5 depends only on the manifold M.
In particular, if z € M N QN Uy, then there exists w € Qy such that z = (w, g(w)). It
follows that for all z € M N QN Uy one has:

ZHfHM1 < C{CC?HfHM,l OfCQHfHM,l
oay (W)* ™ infycon, [|(n,9(n) = 2" T don(2)*

7)) < -

Next we prove:

(B) There exists a sequence of holomorphic functions {f;};eny € O(C™) and a sequence
of positive, real numbers {¢;};cn such that:
(1) 0 <241 < €
(2) |fi(z)| < & for all z € Q\ K(Dj;&;);

(3) If v € T(Dy, Qae,), then there exists z € ([0, 1]) such that dgg(x) > ;41 and

! ) +1—|—Zsup|f]

i+l = z€S;

fi(a)] = (

where Sz = U r (Di,ﬁQei).

The sequences { fi}ien, {€i}ien are defined inductively. Let e; = 1. If we have already
defined a number ¢;, then on the basis of Theorem 2.3 we can select a number § for
€= %ei. In this case we define €;,, := §. Let m := 27" and

M = (&l) +1—|—Zsup|fj(z)\.

j=1 z€S;

Use again Theorem 2.3 for the numbers m, M. In particular, there exists a holomorphic
function f; € O(C™) such that the properties (2)-(3) are fulfilled.

Finally, we prove:
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(C) Function f(z) := Y .o, fi(z), where a sequence {f;};en was selected in (B) has the
following properties:
(1) fe0@)NC@\D);
(2) if M is a compact submanifold C", intersecting 92 transversally and M ND # (),
then || f[|,, = oo.

Let K be a compact set in Q \D. As 0 < 25ﬁ1 < &4, one has lim;_,, &; = 0. Therefore,
there exists a constant i so large that K C Qg \ K(D;¢;) for all j > iy. As f; € O(C")

and
.1 2
SHPZ‘fz 22— %

ZGK

for j > ig, one has f € O(Q) N C(Q\ D).
Let M be a k-dimensional, compact submanifold C". Assume that M N D # () and

1 llags = / FlAC2 o < oo.
MnN

Let P € M N D. As M intersects the boundary of (2 transversally in the point P, there
exist an indicator ¢; and a curve y € T’ (Dil,Qgeil) such that v(0) = P and ~([0,1]) C M.

Observe that v € T' (D;, Qa.,) for i > ;. Due to the property (B)(3), there exists then a
sequence of points x; € ([0, 1]) such that dgq(x;) > ;11 and

1
(x| > + 1+ su
= () Zzeglfg
for all i > i;. As z; € Q\ K(D;e;) for all j > i+ 1, one has

(@) < 55

for j > i+ 1>1i; + 1. Observe that z; € S;. Therefore the following estimation follows:

V

f@)] = |fi(z)] Zm z) = > |fia)]

j=it1

1 o0
(5.+1> +1+Zsup|fg Z\f] w) = > Ifi(@)]

' j=it+1
(5”1> +1_j;1§ - (daﬂ(ﬂfi)> '

Because of (A), we have an obvious contradiction.

We must therefore have [, o [f|dL3j~q = oo. O

v

v
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3. Exceptional sets
We present how to describe exceptional sets using Theorem 2.4.

To each pair (i, 7) we assign a positive integer |7, j| so that:

o i+j<k+1l if i+5#k+1
L27]J<U€’”<:>{i<k if i+j=k+1 "
For z € 02 we denote
Dz ={Az: [\ <1}.
Lemma 3.1. If E = (\,.,U; C ... CUipy C U; C ... C 09, where {U;}ien is a sequence
of open, circular sets in OS2, then there exist sequences of closed, circular sets {T; ;}i jen,
{Di,j}i,jGN with E,j U Di,j C GQ such that
(1) Ui=UjenTij forieN;
(2) ZTZ'J' N DZ'J‘ = @ fO?” Z,j € N,’
<3> oQ \ EC UnEN m[i,jj >n Dlv]

Proof. We denote:

1 1
T,j = qz€lU;: — < inf |z—w|]| < ——>,
’ J+2 7 weou; J+1
1
Di; = {2669: TFBE <w1er%f Hz—wH}

Obviously the sets T; ; and D; ; are circular. Conditions (1) and (2) result directly from
the definition. Moreover, it can also be easily noted that 0\ U; C D, ;.

A) Note that ||z — w|]> e for z € Tij and w € Ty when k — j > 2.
Assume that z € T}, w € Ti,k and |z —wl| < 552 +3) . In this case there exists u € 9U;
such that ||[u —w]| < k+1 < ]_1%
We can estimate
1 1 1 1
5 Slu—z] < lu—wll +flw—=2 < + <

j+2 7~ J+3 (G432 j+2

which is impossible.
B) Note that T;; C D, when k —j > 2.

Let k > j+2. If # € T, ; \ Dy, then there exists a point y € T}, such that ||z —y| <

ﬁ < ﬁ, which is impossible in reference to A).

C)  We have the following property 9Q\ E C U, cx N jjsn Dis-

Indeed, fix z € OQ\ E. If 2 ¢ Uy, then z € D, ; for any 4,5 € N, as 0Q \ U; C D, ; and
U1 C U;. If z € Uy, then there exists m € N such that z ¢ U; for i > m and z € U; for
t < m. Moreover, there exist numbers k; for ¢ < m such that z € T}, for ¢ < m. Let now
n =2+ m+ max{ki,...,k,}. Due to B) we conclude that z € D;;, when i +j > n. If
li,7] > [n, 1], theni+j > n+ 1. Therefore z € U, ,en (i > m,1] Dij» Which finishes the
proof. O]
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Theorem 3.2. If Q is a strongly convexr domain with boundary of class C' and if E
is a circular subset of type Gs in OS), then there exists a function f € OQ(Q) such that
E = Eq(f).

Proof. There exists {U;}eny a sequence of open circular sets in 092 such that £ =
ﬂieN U, C ... C Uy CU; C .... On the basis of Lemma 3.1 there exist sequences of
compact® circular sets {7} ;}; jen » {Dij}ijen with T;; U D; ; C 09 such that

° Ui = UjeN Ti g
° T.;ND;; =0

d O\ E C Upen ﬂu,jjzn Dy
By Theorem 2.4 for every 4, j there exists a function g; ; such that sz |9:.;|dL3, = oo for
A ﬂ,j and Gij € C(ﬁ\ﬂd)
We denote
2
hij(z) == / |91 (2¢7)[" df.
0
Observe that

1
0

when z € T; ;. Moreover h;; € C(Q\ T;).

We select constants a; ;,b;;,€;; such that 0 < &;; < 1,0 < a;; < bj; < ax; < 1 when
li,7] < |k,l] and 2(1 — b; ;) < 1 —bg; when |k,1] < |i,7]. Moreover:

(1)
1
bi,j p 1
(/ €£jhi’j<bi7j2t)dt) > 14 Z (/ élehk,l(bk,lzt)dt)

i Lkl <lig] \7 %

D=

for z € T; j;
(2) eulgss ()] <2759 for = € (0,11 U [0, 01,100

Letay = % Number €1 ; is selected so that the condition (2) is fulfilled. As fall eilhl,l(z)dt
= oo for z € Ty 1 and hy; € C(Q\T},), we can select by ; close to 1, so that a;; < b1y < 1

and
b%
bl_& / 6112’1h171(2t)dt > 1
a1,1b1,1

=

for z € Ty ;. In particular

b171 % b%,l P
/ eilhl,l(bl’lzt)dt = b;& / 611971h1,1(2t)dt > 1
a1 a1,1b1,1

°If O is not compact it is enough to modify slightly the sets T ;, D; ; as follows Tm =T 5 N F

and INDM = D;; N F|; |, where {F;},. is an increasing sequence of compact, circular sets so that
Uien Fi = 99
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for each z € T} ;. Assume now that we have already selected the numbers ay, by, €k,
for |k,l| < [4,7]. The number a;; is selected so that by; < a;; < 1 when |k,[| <
l,7]. Note that the number ¢;; is selected so that the condition (2) is fulfilled. As

fl ey hij(2t)dt = oo for z € T; j and h;; € C(Q\ T;;), we can select b; ; close to 1, so

Q4 4

that bk:,l <a;;<b;<1,2(1—=0b,;) <1—by; when |k, 1| < |i,j] and

1 1
b7 P 1 P
(bm.l / gijhi,j(zt)dt> >1+ ) ( / aglhk,,(bk,lz)dt)
gt [kdl<li) \7 %3
for z € T; ;. In particular
1 1
bi; P b3 »
</ 8£jhi’j(bi’j2t)dt> = <b;j1/ €§jhi’j<2t)dt>
ai,j ai’jbiyj
1
1 P
> 1+ Z </ 5Z’lhk,l<bk,l2)dt>
Lk,1) <]d,5] Gisg

for each z € T} ;.
We define a function f by

= cigis(bis2).

i,jEN

Due to the property (2) the function f is holomorphic on €.

If z € 0Q\ E, then there exists n € N such that z € D, ; when |4, j| > n. Note that due
to (2):

=

. 1 :
( / |f|pdszD) > ( / ef,jhz-,xbi,jzt)dt) ;
zD o 0

li.j]<n
+ ) (/ (b zt)dt>
lij)>n N0
1
< Z </ ey ihij(bij2t) dt) Z 2714 < 0.
lijJ<n 0 li,j)2n

Denote Q(z,i.7) = {Az: a;; < |\ <0b;;}. When z € T;,, then on the basis of the
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properties (1) — (2):

Sl

v bi,j
(/Q( ”)|f’pd£%)z> > (/ 5£jhi7j(biath)dt> -
2,i,j a; ;

2,7

bq‘,y]‘
— Z (/ 6Zé’lhk7l(bk’lzt)dt>

[)<li) \7 s

bi,j
— Z (/ €Zlhk,l(bk,12t)dt)

Lkol)>1.7]

b’L,]
Z 1-— Z (/ 6£7lhk7l(bk,52t>dt>

Lk, >i,5] \* @i

> 1- ) =g alil
L) >3]

3=

Sal

Sl

If now z € E, then there exists a sequence {k; };en of natural numbers such that z € T .
In particular, we can estimate

rags, > S / FPdg,
=1 Q(z’ivki)

Dz
> Z (1- 2_Li’kiJ)p = 00.
i=1
The proof is then complete. [
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