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Assume that Ω is a strongly convex domain, balanced with boundary of class C1. Fix number p ≥ 1. For
any set E which is circular and of type Gδ in ∂Ω we find a holomorphic function f ∈ O(Ω) such that

E = Ep
Ω(f) =

{

z ∈ ∂Ω :

∫

|λ|<1
|f(λz)|p dL2(λ) = ∞

}

.
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1. Preface

The main topic of this paper is centered around the question:

What features of the function f can be recovered from a given collection of line integrals of
f? This mathematical problem is encountered in a growing number of diverse settings in
medicine, science, and technology ranging from the famous application in diagnostic radi-
ology to research in quantum optics. Especially this issue is often discussed in computed
tomography.

This paper deals with domain Ω which is balanced with boundary of class C1.

Definition. We define p-exceptional set for the holomorphic function f ∈ O(Ω) as:

Ep
Ω(f) =

{

z ∈ ∂Ω :

∫

|λ|<1

|f(λz)|p dL2(λ) = ∞
}

.

The above definition was inspired by the questions posed by Peter Pflug and Jacques
Chaumat.

In the 1980s Peter Pflug posed a question whether there exists a domain Ω ⊂ Cn, a
complex subspace M in Cn and a function f holomorphic in Ω, square-integrable such
that f |M∩Ω is not square-integrable.

A similar question was posed by Jaques Chaumat in the late 1980s; he wondered whether
there exists a function f holomorphic in the unit ball Bn such that for any subspace which
is linear and complex M in Cn the function f |M∩Bn is not square-integrable.
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We can find in the literature many papers [1, 2, 3, 4, 5, 6, 7] inspired by the above
questions. Papers [2, 3] deal with the domains Ω ⊂ Cn+m and holomorphic functions
f ∈ O(Ω) ∩ L2(Ω), non-integrable along directions of the form

Ωw := {z ∈ Cn : (z, w) ∈ Ω}.

In this case we define exceptional set ˜E(Ω, f) as

˜E(Ω, f) = {w ∈ Cm : f |Ωw /∈ L2(Ωw)}.

It is also possible to consider the functions which are non-integrable along complex lines
containing 0. Among the papers dealing with this problem the following [1, 5, 4, 6, 7]
should be mentioned. Due to [1, 5] we know that for a convex domain Ω with a boundary of
class C1 it is possible to construct a holomorphic function f , which is not square-integrable
along any real manifold M of class C1 intersecting the boundary of Ω transversally.
Constructions of the holomorphic functions non-integrable along selected in advance set
of complex directions of type Gδ and Fσ with some additional properties were presented
in the paper [7] . In [7] we used some properties of Wojtaszczyk polynomials. As we know
no similar construction for the domains different than a ball, then in this paper we use a
different method.

Definition. Let D ⊂ ∂Ω. We say that the domain Ω is strongly convex1 according to
D iff for every point y ∈ D there exists a real hyperplane Θy such that Θy ∩ Ω = {y}.
Additionally Ω is strongly convex iff Ω is strongly convex according to ∂Ω.

The most important result obtained in our paper is the following:

Theorem 2.4. Let Ω be a strongly convex domain according to D = D ⊂ ∂Ω, whose
boundary is of class C1 in a neighbourhood of D. Then there exists a function f ∈ O(Ω)∩
C(Ω \D) such that for any k-dimensional, complex submanifold M ⊂ Cn intersecting ∂Ω
transversally: one has

∫

M∩Ω |f |dL2k
M∩Ω = ∞ whenever M ∩D 6= ∅.

As a consequence of that theorem we have:

Theorem 3.2. If Ω is a strongly convex domain with boundary of class C1 and E is a
circular set of type Gδ in ∂Ω, then there exists a holomorphic function f ∈ O(Ω) such
that E = Ep

Ω(f).

2. Convex domains

For z, w ∈ Cn and for a non-empty set D such that D ⊂ Cn, we put

Lz,w := {tz + (1− t)w : t ∈ R} ,
dD(z) := inf

w∈D
‖z − w‖ .

1In the literature the following definition of strong convexity can be found:
If Ω ⊂⊂ Rn is a domain with a boundary of class C2 and ρ is a defining function for Ω such that in the

point P ∈ ∂Ω we have
∑ ∂2ρ

∂xj∂xk
(P )wjwk > 0 for 0 6= w ∈ TP (∂Ω), then we say that Ω is strongly convex

in the point P .
It can be proved that if Ω is strongly convex in the point P , then there exists an open set UP such
that TP (∂Ω) ∩ UP ∩ Ω = {P}. Considering this property we introduce a geometric definition of strong
convexity that can be more easily used in our paper.
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For any ε > 0, any non-empty open set Ω ⊂ Cn, and for any non-empty closed setD ⊂ Cn,
we denote

Ωε := {z ∈ Ω : ε ‖z‖ < 1, d∂Ω(z) > ε}
K(D; ε) := {z ∈ Cn : dD(z) < ε} ,
K(∅; ε) := ∅.

Moreover for D,T ⊂ Ω, let Γ(D,T ) be the set of all continuous functions γ ∈ C
(

[0, 1],Ω
)

such that γ(0) ∈ D, γ(1) ∈ T and Lγ(s),γ(t) ∩ T 6= ∅ for all 0 ≤ s < t ≤ 1.

Proposition 2.1. Let ε > 0. If D ⊂ ∂Ω is a compact set and Ω is a strongly convex
according to D, then there exists a finite family {Θi}i=1,...,m of real hyperplanes in Cn and
compact sets Ki ⊂ Θi ∩ Ω such that:

(1) Θi ∩ Ω ⊂ K(D; ε) for all i = 1, ...,m;

(2)
⋃m

i=1 Ki ∩ γ([0, 1]) 6= ∅ for any γ ∈ Γ(D,Ωε).

Proof. For any x ∈ ∂Ω and r > 0, put

Sx,r := {z ∈ ∂Ω : ‖z − x‖ ≤ r}.

We proved in two steps. In the first step, we show that for any y ∈ D there exists a real
hyperplane Qy, a number ηy > 0 and a compact set Ty such that:

(i) Qy ∩ Ω ⊂ K(D, ε)

(ii) Ty ⊂ Qy ∩ Ω,

(iii) if γ ∈ Γ(Sy,ηy ,Ωε), then γ([0, 1]) ∩ Ty 6= ∅.

Choose a real hyperplane H such that H ∩Ω = {y} by strong convexity of Ω and choose
a vector −→w normal to H with a beginning in the point y and pointed outside Ω. Let
Hδ := H − δ−→w and

Kδ,η := Hδ ∩
⋃

Γ(Sy,η,Ωε)

for δ, η > 0. As Sy,η and Ωε are compact sets, Kδ,η is also a compact set. Due to the
equality H0 ∩ Ω = {y}, a number δ may be selected so small that Hδ ∩ Ω ⊂ K(D, ε) and
Hδ ∩ Ωε = ∅. Additionally, as for small δ we have

Hδ ∩
⋃

w∈Ωε

Ly,w ⊂ Ω,

if necessary we can select smaller δ > 0 and a number η > 0 so small that

Hδ ∩
⋃

(x,w)∈Sy,η×Ωε

Lx,w ⊂ Ω (1)

and the sets Sy,η, Ωε lie on the opposite sides of the hyperplane Hδ.

Let Qy := Hδ, Ty := Kδ,η, ηy = η. We observe that

Qy ∩ Ω = Hδ ∩ Ω ⊂ K(D, ε),
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which yields the property (i).

It can be easily observed that
⋃

Γ(Sy,η,Ωε) ⊂
⋃

(x,w)∈Sy,η×Ωε

Lx,w.

In particular, due to (1), we have the property (ii):

Ty = Qy ∩
⋃

Γ(Sy,ηy ,Ωε) ⊂ Hδ ∩
⋃

(x,w)∈Sy,ηy×Ωε

Lx,w ⊂ Hδ ∩ Ω = Qy ∩ Ω.

Let γ ∈ Γ(Sy,ηy ,Ωε). As the sets Sy,ηy and Ωε lie on the opposite sides of the hyperplane
Qy, we have γ ([0, 1]) ∩Qy 6= ∅. In particular, the property (iii) follows from:

γ ([0, 1]) ∩Qy ⊂ Qy ∩
⋃

Γ(Sy,ηy ,Ωε) = Ty.

In the second step, we proceed to prove the existence of hyperplanes Θi and compact sets
Ki such that the properties (1)-(2) are fulfilled.

Observe that
D ⊂

⋃

x∈D

{z ∈ ∂Ω : ‖z − x‖ < ηx},

where the number ηx was defined in the first step. As D is a compact set, there exist
points x1, ..., xm such that

D ⊂
⋃

i=1,...,m

Sxi,ηxi
.

It suffices to define Θi := Qxi
andKi := Txi

. ObviouslyKi ⊂ Θi∩Ω and Θi∩Ω ⊂ K(D; ε).
Moreover, if γ ∈ Γ(D,Ωε), then γ(0) ∈ D. Therefore, there exists j ∈ {1, ...,m} such that
γ(0) ∈ Sxj ,ηxj

. In particular γ ∈ Γ(Sxj ,ηxj
,Ωε) and γ ([0, 1]) ∩Kj 6= ∅.

Lemma 2.2. Let ε > 0. Let also {Θi}i=1,...,m - be a finite family of real hyperplanes in
Cn such that Θi ∩ Ωε = ∅. Let U ⊂ Ω be an open set. If {Ki}i=1,...,m is a finite family of
compact sets such that Ki ⊂ U ∩ Θi for i = 1, ...,m, then there exists a finite family of
compact sets {Ti}i=1,...,m and a number η > 0 such that

(1) Ki ⊂ Ti ⊂ U ∩Θi for i = 1, ...,m;

(2) if γ ∈ Γ(∂Ω,Ω2ε) is such that γ([0, 1]) ∩ Ti 6= ∅ and γ([0, 1]) ∩ Tj = ∅ for some
i, j ∈ {1, ...,m} with i < j, then for every x ∈ γ([0, 1])∩Ti the inequality dΘj

(x) ≥ η
holds.

Proof. Fix any number µ > 0 and define T1 := K1 and

S1 := K (T1 ∩Θ1;µ).

Having defined Ti, Si we define

Si+1 := K

(

i
⋃

j=1

(Tj ∩Θi+1);µ

)

Ti+1 := (Si+1 ∪Ki+1) ∩Θi+1.



P. Kot / Exceptional Sets in Convex Domains 355

Observe that the number µ can be so small that Si, Ti ⊂ U . It can be easily seen that
Ki ⊂ Ti ⊂ U ∩Θi for i = 1, ...,m.

Fix i ∈ {1, ...,m− 1} and j ∈ {i+ 1, ...,m}.
Assume that we have a sequence of curves {γn}n∈N and points {xn}n∈N such that:

• {γn}n∈N ⊂ Γ(∂Ω,Ω2ε),

• γn([0, 1]) ∩ Tj = ∅,
• xn ∈ γn([0, 1]) ∩ Ti.

Let ˜Θn be a hyperplane parallel to Θj such that xn ∈ ˜Θn. It suffices to show that
dΘj

(xn) > η > 0 for some constant η independent of the sequence selection {γn}n∈N.
We show this fact by considering proper cases. First we show the following fact:

(A) If limn→∞ dΘj
(xn) = 0, then γn([0, 1]) ∩Θj = ∅ for n sufficiently large.

Assume that there exists a sequence {znk
}k∈N such that znk

∈ γnk
([0, 1]) ∩ Θj. We may

assume2 that xnk
→ x0 ∈ Ti ∩ Θj. From the definition of the sets T1, ..., Tm it follows

that K(Ti;µ) ∩ Θj ⊂ Tj. As K({x0};µ) ∩ Θj ⊂ Tj and γn([0, 1]) ∩ Tj = ∅ one has
‖znk

− x0‖ ≥ µ > 0. On the other hand, due to the equality Θj ∩ Ωε = ∅, we must have

Lznk
,xnk

∩ Ω2ε = ∅

for k sufficiently large, which is inconsistent with the choice of γn.

Now let us show the second fact:

(B) If limn→∞ dΘj
(xn) = 0, then the points γn(0), γn(1) lie on different sides of the

hyperplane3 ˜Θn for n sufficiently large.

Assume that γnk
(1) lie on the same side of ˜Θnk

. We may assume that {nk}k∈N = N and
due to (A): γn([0, 1]) ∩Θj = ∅ for n ∈ N.

There exist then different points zn, wn such that zn, wn ∈ γn([0, 1]),

lim
n→∞

dΘj
(zn) = lim

n→∞
dΘj

(wn) = 0

and the line Lzn,wn is parallel to the hyperplane Θj. As Θj∩Ωε = ∅, we have Lzn,wn∩Ω2ε =
∅ for n sufficiently large, which is inconsistent with the choice of γn.

Now let us show the following fact:

(C) If limn→∞ dΘj
(xn) = 0, then the points γn(0), γn(1) lie on the same side of the

hyperplane4 ˜Θn for n sufficiently large.

Assume that γnk
(0) and γnk

(1) lie on opposite sides of the hyperplane ˜Θnk
. We may

assume that {nk}k∈N = N and due to (A): γn([0, 1]) ∩Θj = ∅ for n ∈ N.

Observe that if the point zn lies between the hyperplanes Θj and ˜Θn, then

0 ≤ lim
n→∞

dΘj
(zn) ≤ lim

n→∞
dΘj

(xn) = 0.

2We select a subsequence if necessary.
3Obviously, in this case γn(0) /∈ ˜Θn and γn(1) /∈ ˜Θn.
4In particular, we can have γn(0) ∈ ˜Θn or γn(1) ∈ ˜Θn.
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Therefore, as Θj∩Ωε = ∅ and γn(1) ∈ Ω2ε ⊂ Ωε, γn(1) cannot lie between the hyperplanes

Θj and ˜Θn for n sufficiently large. As γn([0, 1])∩Θj = ∅ the points γn(0) and γn(1) lie on
the same side of the hyperplane Θj. In particular, γn(0) has to lie between the hyperplanes

Θj and ˜Θn for n sufficiently large. Therefore

0 ≤ lim
n→∞

dΘj
(γn(0)) ≤ lim

n→∞
dΘj

(xn) = 0.

As x0 ∈ Θj ∩Ω and γn(0) ∈ ∂Ω, for n sufficiently large we have Lγn(0),xn ∩Ω2ε = ∅, which
is inconsistent with the choice of γn.

It remains to establish the last fact:

(D) There exists a constant η > 0 such that if γ ∈ Γ(∂Ω,Ω2ε), γ([0, 1]) ∩ Ti 6= ∅,
γ([0, 1]) ∩ Tj = ∅, and x ∈ γ([0, 1]) ∩ Ti, then dΘj

(x) ≥ η.

Assume that such a constant η does not exist. We can then select a sequence of curves
{γn}n∈N and points {xn}n∈N such that:

• {γn}n∈N ⊂ Γ(∂Ω,Ω2ε),

• γn([0, 1]) ∩ Tj = ∅,
• xn ∈ γn([0, 1]) ∩ Ti,

and limn→∞ dΘj
(xn) = 0. By (B) and (C) above, we obtain a construction.

Theorem 2.3. Let D be a compact subset of ∂Ω. Assume that Ω is strongly convex
according to D. For each ε > 0 there exists δ > 0 such that for all m, M > 0, one can
select a holomorphic function h ∈ O(Cn) with the following properties:

(1) |h(z)| ≤ m for all z ∈ Ω \K(D; ε).

(2) If γ ∈ Γ(D,Ω2ε), then there exists x ∈ γ([0, 1]) such that d∂Ω(x) ≥ δ and |h(x)| ≥ M .

Proof. On the basis of Proposition 2.1 and Lemma 2.2, we can select a finite family of
real hyperplanes {Θi}i=1,...,k in Cn, compact sets Ti and a number η > 0 with the following
properties:

(1) Ti ⊂ Θi ∩ Ω;

(2) Θi ∩ Ω ⊂ K(D; ε) for all i = 1, ..., k;

(3)
⋃k

i=1 Ti ∩ γ 6= ∅ for all γ ∈ Γ(D,Ωε);

(4) if γ ∈ Γ(D,Ω2ε) is such that γ([0, 1]) ∩ Ti 6= ∅ and γ([0, 1]) ∩ Tj = ∅ for some
i, j ∈ {1, ..., k} such that i < j, then for every x ∈ γ([0, 1]) ∩ Ti we have the
inequality dΘj

(x) ≥ η.

We may assume that ε is so small that 0 ∈ Ω2ε. We may also assume that η ∈ (0, 1). Let
S =

⋃

Γ(D,Ω2ε). Because D and Ω2ε are compact sets, S is a compact set.

The real hyperplane Θi can be represented in the form of

Θi := {z ∈ Cn : Re(〈z − zi, zi〉) = 0} (2)

for some zi ∈ Cn \ {0}. For any δ ∈ (0, 1) we define

Vi,δ :=
{

z ∈ Cn : Re(〈z − zi, zi〉) ≤ −δ ‖zi‖2
}

. (3)
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Let us consider δ ∈ (0, 1) so small that 0 < δ ‖zi‖ < η for i = 1, ..., k and d∂Ω(z) ≥ δ
for all z ∈

⋃k
i=1 Ti. As Θi ∩ Ω ⊂ K(D, ε), making δ > 0 smaller, we may assume that

Ω \K(D, ε) ⊂ Vi,δ.

A) We have

Vi,δ = {z ∈ Cn : Re(〈z − zi, zi〉) ≤ 0, dΘi
(z) ≥ δ ‖zi‖} .

Indeed let

Qi,δ = {z ∈ Cn : Re (〈z − (1− δ)zi, zi〉) = 0} .

Observe that Vi,δ = {z ∈ Cn : Re (〈z − (1− δ)zi, zi〉) ≤ 0}. Then it is enough to note that
distance between Θi and Qi,δ is equal to ‖zi − (1− δ)zi‖ = δ ‖zi‖.
Now we claim that:

B) For all m,M > 0 there exists a function h ∈ O(Cn) with the following properties:

(1) |h(z)| ≤ m for all z ∈ Ω \K(D; ε).

(2) If γ ∈ Γ(D,Ω2ε), then there exists x ∈ γ([0, 1]) such that d∂Ω(x) ≥ δ and |h(x)| ≥ M .

Let us consider function

hi(z) := bi exp(ai〈z − zi, zi〉)

for z ∈ Cn and ai, bi > 0. Due to (2), we have |hi(z)| = bi for z ∈ Θi.

We select ai and bi by means of induction. Let b1 = M +m. If we have already defined
bi, then due to (3) we can define ai as a positive number so large that

|hi(z)| ≤
m

2i
for all z ∈ Vi,δ.

Number bi+1 is defined by the formula:

bi+1 := M +m+
i

∑

j=1

sup
z∈S

|hj(z)|

for all i = 1, ..., k.

We define

h(z) :=
k

∑

i=1

hi(z).

As Ω \K(D; ε) ⊂ Vi,δ, we have |h(z)| ≤ m for all z ∈ Ω \K(D; ε).

Let γ ∈ Γ(D,Ω2ε). There exists i ∈ {1, ..., k} such that γ([0, 1]) ∩ Ti 6= ∅. After having
increased the index i, we may assume that γ([0, 1]) ∩ Tj = ∅ for all j = i + 1, ..., k. Fix
x ∈ γ([0, 1]) ∩ Ti. We have dΘj

(x) ≥ η for all j = i + 1, ..., k. As x ∈ Ti ⊂ Θi, we have

Re(〈x − zi, zi〉) = 0 and d∂Ω(x) ≥ δ (δ is so small that d∂Ω(z) ≥ δ for allz ∈
⋃k

j=1 Tj) .
Moreover we can select maximally possible ν ∈ {i, i+ 1, ..., k} such that

Re(〈x− zν , zν〉) ≥ 0.
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If v = k, then (note that x ∈ S =
⋃

Γ(D,Ω2ε)):

|h(x)| ≥ |hk(x)| −
k−1
∑

j=1

|hj(x)|

≥ m+M +
k−1
∑

j=1

sup
z∈S

|hj(z)| −
k−1
∑

j=1

|hj(x)|

≥ m+M.

If v < k, then Re(〈x− zj, zj〉) < 0 and dΘj
(x) ≥ η ≥ δ ‖zj‖ for j = ν + 1, ..., k. Therefore

due to (A) we have x ∈ Vj,δ for all j = ν + 1, ..., k. Finally we can estimate:

|h(x)| ≥ |hν(x)| −
ν−1
∑

j=1

|hj(x)| −
k

∑

j=ν+1

|hj(x)|

≥ m+M +
ν−1
∑

j=1

sup
z∈S

|hj(z)| −
ν−1
∑

j=1

|hj(x)| −
k

∑

j=ν+1

|hj(x)|

≥ m+M −
k

∑

j=ν+1

m

2j
≥ M.

Theorem 2.4. Let Ω be a strongly convex domain according to D = D ⊂ ∂Ω, whose
boundary is of class C1 in a neighbourhood of D. Then there exists a function f ∈ O(Ω)∩
C(Ω \D) such that for any k-dimensional, complex submanifold M ⊂ Cn intersecting ∂Ω
transversally: one has

∫

M∩Ω |f |dL2k
M∩Ω = ∞ whenever M ∩D 6= ∅.

Proof. Let D =
⋃

i∈N Di, where {Di}i∈N is a sequence of compact sets such that Di ⊂
Di+1. If f ∈ L1(M ∩Ω), then we denote a proper norm as ‖f‖M,1 =

∫

M∩Ω |f |dL2k
M∩Ω. We

present the proof in a few steps.

First we show:

(A) Let P ∈ M ∩ ∂Ω. There exists a constant CM > 0 and an open set UP such that
P ∈ UP with the property: if f ∈ O(Ω) and

∫

M∩Ω |f |dL2k
M∩Ω < ∞, then

|f(z)| ≤
CM ‖f‖M,1

d∂Ω(z)k

for z ∈ M ∩ Ω ∩ UP .

Observe that M is locally the graph of a holomorphic function. Without loss of generality,
we may assume that P = 0. In particular:

M ∩ U = {(w, g(w)) : w ∈ V }

where V, U are open sets such that U , V are compact, 0 ∈ V ⊂ Ck, 0 ∈ U ⊂ Cn and g is
a holomorphic function on V with the values in Cn−k, such that g(0) = 0. Let

ΩV := {w ∈ V : (w, g(w)) ∈ Ω}.
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Shrinking the sets V, U , we may assume that there exists a constant C1 such that for any
η, ξ ∈ V :

‖(η, g(η))− (ξ, g(ξ))‖ ≤ C1 ‖η − ξ‖ .

There exists an open set U0 such that 0 ∈ U0 ⊂ U and

inf
η∈∂ΩV

‖(η, g(η))− z‖ ≥ d∂Ω(z)

for z ∈ M ∩ U0.

Using the Cauchy integral formula on polydisc for the function

ψ : V 3 w → f(w, g(w)) ∈ Cn,

we have the inequality:

|f(w, g(w))| ≤
C2 ‖f‖M,1

d∂ΩV
(w)k

for w ∈ ΩV , where the constant C2 depends only on the manifold M .

In particular, if z ∈ M ∩ Ω ∩ U0, then there exists w ∈ ΩV such that z = (w, g(w)). It
follows that for all z ∈ M ∩ Ω ∩ U0 one has:

|f(z)| ≤
C2 ‖f‖M,1

d∂ΩV
(w)k

≤
Ck

1C2 ‖f‖M,1

infη∈∂ΩV
‖(η, g(η))− z‖k

≤
Ck

1C2 ‖f‖M,1

d∂Ω(z)k
.

Next we prove:

(B) There exists a sequence of holomorphic functions {fi}i∈N ⊂ O(Cn) and a sequence
of positive, real numbers {εi}i∈N such that:
(1) 0 < 2εi+1 < εi;
(2) |fi(z)| ≤ 1

2i
for all z ∈ Ω \K(Di; εi);

(3) If γ ∈ Γ(Di,Ω2εi), then there exists x ∈ γ([0, 1]) such that d∂Ω(x) ≥ εi+1 and

|fi(x)| ≥
(

1

εi+1

)i

+ 1 +
i−1
∑

j=1

sup
z∈Si

|fj(z)| ,

where Si :=
⋃

Γ
(

Di,Ω2εi

)

.

The sequences {fi}i∈N, {εi}i∈N are defined inductively. Let ε1 = 1. If we have already
defined a number εi, then on the basis of Theorem 2.3 we can select a number δ for
ε = 1

2
εi. In this case we define εi+1 := δ. Let m := 2−i and

M :=

(

1

εi+1

)i

+ 1 +
i−1
∑

j=1

sup
z∈Si

|fj(z)| .

Use again Theorem 2.3 for the numbers m, M . In particular, there exists a holomorphic
function fi ∈ O(Cn) such that the properties (2)-(3) are fulfilled.

Finally, we prove:
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(C) Function f(z) :=
∑∞

i=1 fi(z), where a sequence {fi}i∈N was selected in (B) has the
following properties:
(1) f ∈ O(Ω) ∩ C(Ω \D);
(2) ifM is a compact submanifold Cn, intersecting ∂Ω transversally andM∩D 6= ∅,

then ‖f‖M,1 = ∞.

Let K be a compact set in Ω \D. As 0 < 2εi+1 < εi, one has limi→∞ εi = 0. Therefore,
there exists a constant i0 so large that K ⊂ Ω0 \K(D; εj) for all j > i0. As fi ∈ O(Cn)
and

sup
z∈K

∞
∑

i=j

|fi(z)| ≤
∞
∑

i=j

1

2i
≤ 2

2j

for j > i0, one has f ∈ O(Ω) ∩ C(Ω \D).

Let M be a k-dimensional, compact submanifold Cn. Assume that M ∩D 6= ∅ and

‖f‖M,1 =

∫

M∩Ω
|f |dL2k

M∩Ω < ∞.

Let P ∈ M ∩D. As M intersects the boundary of Ω transversally in the point P , there
exist an indicator i1 and a curve γ ∈ Γ

(

Di1 ,Ω2εi1

)

such that γ(0) = P and γ([0, 1]) ⊂ M .

Observe that γ ∈ Γ
(

Di,Ω2εi

)

for i ≥ i1. Due to the property (B)(3), there exists then a
sequence of points xi ∈ γ([0, 1]) such that d∂Ω(xi) ≥ εi+1 and

|fi(xi)| ≥
(

1

εi+1

)i

+ 1 +
i−1
∑

j=1

sup
z∈Si

|fj(z)|

for all i > i1. As xi ∈ Ω \K(D; εj) for all j ≥ i+ 1, one has

|fj(xi)| ≤
1

2j

for j ≥ i+ 1 > i1 + 1. Observe that xi ∈ Si. Therefore the following estimation follows:

|f(xi)| ≥ |fi(xi)| −
i−1
∑

j=1

|fj(xi)| −
∞
∑

j=i+1

|fj(xi)|

≥
(

1

εi+1

)i

+ 1 +
i−1
∑

j=1

sup
z∈Si

|fj(z)| −
i−1
∑

j=1

|fj(xi)| −
∞
∑

j=i+1

|fj(xi)|

≥
(

1

εi+1

)i

+ 1−
∞
∑

j=i+1

1

2j
≥

(

1

d∂Ω(xi)

)i

.

Because of (A), we have an obvious contradiction.

We must therefore have
∫

M∩Ω |f |dL2k
M∩Ω = ∞.
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3. Exceptional sets

We present how to describe exceptional sets using Theorem 2.4.

To each pair (i, j) we assign a positive integer bi, jc so that:

bi, jc < bk, lc ⇔
{

i+ j < k + l if i+ j 6= k + l
i < k if i+ j = k + l

.

For z ∈ ∂Ω we denote
Dz = {λz : |λ| < 1} .

Lemma 3.1. If E =
⋂

i∈N Ui ⊂ ... ⊂ Ui+1 ⊂ Ui ⊂ ... ⊂ ∂Ω, where {Ui}i∈N is a sequence
of open, circular sets in ∂Ω, then there exist sequences of closed, circular sets {Ti,j}i,j∈N,
{Di,j}i,j∈N with Ti,j ∪Di,j ⊂ ∂Ω such that

(1) Ui =
⋃

j∈N Ti,j for i ∈ N;
(2) Ti,j ∩Di,j = ∅ for i, j ∈ N;
(3) ∂Ω \ E ⊂

⋃

n∈N
⋂

bi,jc≥nDi,j.

Proof. We denote:

Ti,j :=

{

z ∈ Ui :
1

j + 2
≤ inf

w∈∂Ui

‖z − w‖ ≤ 1

j + 1

}

,

Di,j :=

{

z ∈ ∂Ω :
1

(j + 3)2
≤ inf

w∈Ti,j

‖z − w‖
}

.

Obviously the sets Ti,j and Di,j are circular. Conditions (1) and (2) result directly from
the definition. Moreover, it can also be easily noted that ∂Ω \ Ui ⊂ Di,j.

A) Note that ‖z − w‖ ≥ 1
(j+3)2

for z ∈ Ti,j and w ∈ Ti,k when k − j ≥ 2.

Assume that z ∈ Ti,j, w ∈ Ti,k and ‖z − w‖ < 1
(j+3)2

. In this case there exists u ∈ ∂Ui

such that ‖u− w‖ ≤ 1
k+1

≤ 1
j+3

.

We can estimate

1

j + 2
≤ ‖u− z‖ ≤ ‖u− w‖+ ‖w − z‖ <

1

j + 3
+

1

(j + 3)2
≤ 1

j + 2
,

which is impossible.

B) Note that Ti,j ⊂ Di,k when k − j ≥ 2.

Let k ≥ j + 2. If x ∈ Ti,j \ Di,k, then there exists a point y ∈ Ti,k such that ‖x− y‖ <
1

(k+3)2
≤ 1

(j+3)2
, which is impossible in reference to A).

C) We have the following property ∂Ω \ E ⊂
⋃

n∈N
⋂

bi,jc≥nDi,j.

Indeed, fix z ∈ ∂Ω \ E. If z /∈ U0, then z ∈ Di,j for any i, j ∈ N, as ∂Ω \ Ui ⊂ Di,j and
Ui+1 ⊂ Ui. If z ∈ U0, then there exists m ∈ N such that z /∈ Ui for i ≥ m and z ∈ Ui for
i < m. Moreover, there exist numbers ki for i < m such that z ∈ Ti,ki for i < m. Let now
n = 2 +m + max {k1, ..., km}. Due to B) we conclude that z ∈ Di,j, when i + j > n. If
bi, jc > bn, 1c, then i+ j ≥ n+1. Therefore z ∈

⋃

m∈N
⋂

bi,jc>bm,1cDi,j, which finishes the
proof.
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Theorem 3.2. If Ω is a strongly convex domain with boundary of class C1 and if E
is a circular subset of type Gδ in ∂Ω, then there exists a function f ∈ O(Ω) such that
E = Ep

Ω(f).

Proof. There exists {Ui}i∈N a sequence of open circular sets in ∂Ω such that E =
⋂

i∈N Ui ⊂ ... ⊂ Ui+1 ⊂ Ui ⊂ .... On the basis of Lemma 3.1 there exist sequences of
compact5 circular sets {Ti,j}i,j∈N , {Di,j}i,j∈N with Ti,j ∪Di,j ⊂ ∂Ω such that

• Ui =
⋃

j∈N Ti,j;

• Ti,j ∩Di,j = ∅;
• ∂Ω \ E ⊂

⋃

n∈N
⋂

bi,jc≥nDi,j.

By Theorem 2.4 for every i, j there exists a function gi,j such that
∫

Dz |gi,j|dL
2
Dz = ∞ for

z ∈ Ti,j and gi,j ∈ C(Ω \ Ti,j).

We denote

hi,j(z) :=

∫ 2π

0

∣

∣gi,j
(

zeiθ
)∣

∣

p
dθ.

Observe that
∫ 1

0

thi,j(zt)dt = ∞

when z ∈ Ti,j. Moreover hi,j ∈ C(Ω \ Ti,j).

We select constants ai,j, bi,j, εi,j such that 0 < εi,j < 1, 0 < ai,j < bi,j < ak,l < 1 when
bi, jc < bk, lc and 2(1− bi,j) < 1− bk,l when bk, lc < bi, jc. Moreover:

(1)
(

∫ bi,j

ai,j

εpi,jhi,j(bi,jzt)dt

) 1
p

> 1 +
∑

bk,lc<bi,jc

(

∫ 1

ai,j

εpk,lhk,l(bk,lzt)dt

) 1
p

for z ∈ Ti.j;

(2) εi,j|gi,j(z)| ≤ 2−bi,jc for z ∈ [0, 1]Di,j ∪ [0, ai,j]Ω.

Let a1,1 =
1
2
. Number ε1,1 is selected so that the condition (2) is fulfilled. As

∫ 1

a1
εp1,1h1,1(z)dt

= ∞ for z ∈ T1,1 and h1,1 ∈ C(Ω\T1,1), we can select b1,1 close to 1, so that a1,1 < b1,1 < 1
and

(

b−1
1,1

∫ b21,1

a1,1b1,1

εp1,1h1,1(zt)dt

) 1
p

> 1

for z ∈ T1,1. In particular

(

∫ b1,1

a1,1

εp1,1h1,1(b1,1zt)dt

) 1
p

=

(

b−1
1,1

∫ b21,1

a1,1b1,1

εp1,1h1,1(zt)dt

) 1
p

> 1

5If ∂Ω is not compact it is enough to modify slightly the sets Ti,j , Di,j as follows ˜Ti,j := Ti,j ∩ Fbi,jc

and ˜Di,j := Di,j ∩ Fbi,jc, where {Fi}i∈N is an increasing sequence of compact, circular sets so that
⋃

i∈N Fi = ∂Ω.
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for each z ∈ T1,1. Assume now that we have already selected the numbers ak,l, bk,l, εk,l
for bk, lc < bi, jc. The number ai,j is selected so that bk,l < ai,j < 1 when bk, lc <
bi, jc. Note that the number εi,j is selected so that the condition (2) is fulfilled. As
∫ 1

ai,j
εpi,jhi,j(zt)dt = ∞ for z ∈ Ti,j and hi,j ∈ C(Ω \ Ti,j), we can select bi,j close to 1, so

that bk,l < ai,j < bi,j < 1, 2(1− bi,j) < 1− bk,l when bk, lc < bi, jc and

(

b−1
i,j

∫ b2i,j

ai,jbi,j

ε2i,jhi,j(zt)dt

) 1
p

> 1 +
∑

bk,lc<bi,jc

(

∫ 1

ai,j

εpk,lhk,l(bk,lz)dt

) 1
p

for z ∈ Ti,j. In particular

(

∫ bi,j

ai,j

εpi,jhi,j(bi,jzt)dt

) 1
p

=

(

b−1
i,j

∫ b2i,j

ai,jbi,j

εpi,jhi,j(zt)dt

) 1
p

> 1 +
∑

bk,lc<bi,jc

(

∫ 1

ai,j

εpk,lhk,l(bk,lz)dt

) 1
p

for each z ∈ Ti,j.

We define a function f by

f(z) =
∑

i,j∈N

εi,jgi,j(bi,jz).

Due to the property (2) the function f is holomorphic on Ω.

If z ∈ ∂Ω \ E, then there exists n ∈ N such that z ∈ Di,j when bi, jc ≥ n. Note that due
to (2):

(∫

zD
|f |pdL2

zD

) 1
p

≤
∑

bi,jc<n

(∫ 1

0

εpi,jhi,j(bi,jzt)dt

)
1
p

+

+
∑

bi,jc≥n

(∫ 1

0

εpi,jhi,j(bi,jzt)dt

)
1
p

≤
∑

bi,jc<n

(∫ 1

0

εpi,jhi,j(bi,jzt)dt

)
1
p

+
∑

bi,jc≥n

2−bi,jc < ∞.

Denote Q(z, i.j) = {λz : ai,j ≤ |λ| ≤ bi,j}. When z ∈ Ti,j, then on the basis of the
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properties (1)− (2):

(∫

Q(z,i,j)

|f |pdL2
Dz

) 1
p

≥

(

∫ bi,j

ai,j

εpi,jhi,j(bi,jzt)dt

) 1
p

−

−
∑

bk,lc<bi,jc

(

∫ bi,j

ai,j

εpk,lhk,l(bk,lzt)dt

) 1
p

−
∑

bk,lc>bi,jc

(

∫ bi,j

ai,j

εpk,lhk,l(bk,lzt)dt

) 1
p

≥ 1−
∑

bk,lc>bi,jc

(

∫ bi,j

ai,j

εpk,lhk,l(bk,lzt)dt

) 1
p

≥ 1−
∑

bk,lc>bi,jc

2−bk,lc = 1− 2−bi,jc.

If now z ∈ E, then there exists a sequence {ki}i∈N of natural numbers such that z ∈ Ti,ki .
In particular, we can estimate

∫

Dz
|f |pdL2

Dz ≥
∞
∑

i=1

∫

Q(z,i,ki)

|f |pdL2
zD

≥
∞
∑

i=1

(

1− 2−bi,kic
)p

= ∞.

The proof is then complete.
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